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Classical results

The Atiyah-Singer index theorem calculates the index of an
elliptic operator on a closed manifold in terms of the topology.

The original proof used methods from K-theory and
cobordism theory.

Over time, new proofs emerged, one of which was the heat
kernel method, which led to the local index theorem.
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The heat kernel method

Let E ,F → M be hermitian vector bundles over a closed
Riemannian manifold M.

Let D : Γ(E )→ Γ(F ) be a elliptic differential operator.

Then D defines two heat semigroups exp(−tD∗D) and
exp(−tDD∗).

exp(−tD∗D) and exp(−tDD∗) are smoothing operators, i.e.
they have smooth Schwartz kernels k1, k2. In particular, they
are trace-class operators.
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The heat kernel method

A simple argument shows that for any t > 0

indD = tr exp(−tD∗D)− tr exp(−tDD∗)

=

∫
M

(trk1(x , x))− trk2(x , x))dvolg

:=

∫
M

(str exp(−tD2)(x , x))dvolg

The local index theorem asks the question whether the limit

lim
t↘0

(str exp(−D2)(x , x))dvolg

exists and if so, what the limit is.
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The local index theorem for twisted Dirac operators

The local index theorem is true for twisted Dirac operators:

Theorem (Gilkey ’73, Atiyah-Bott-Patodi ’73, Getzler ’83, Bismut
’84, Berline-Vergne ’85,...)

Let (M, g) be a Riemannian spin manifold and E → M be a
Hermitian vector bundle with connection ∇E . Then for the twisted
Dirac operator DE , we have

lim
t↘0

(str exp(−tD2
E )(x , x))dvolg =

(
Â(∇g )(x) ∧ ch(∇E )(x)

)
n
,

where ωn denotes the n-form part of a mixed-degree differential
form ω.
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Categories & natural transformations

Let Mann be the category of compact, connected, smooth
n-manifolds with local diffeomorphisms as morphisms.

Set
Met : Manopn → Set

to be the functor sending M to the set of metrics Met(M) on
M.

Set
Ωq : Manopn → Set

to be the functor sending M to the set Ωq(M) of differential
q-forms on M.
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Riemannian invariants

By a monomial in the partial derivatives of a metric g on Rn, we
mean expressions of the form

mα(g) = ∂α1
x gi1j1 · · · · · ∂αn

x ginjn .

A natural transformation ω : Met→ Ωq is said to be

homogeneous of weight k , if for every λ > 0
ω(λ2g) = λkω(g) holds.

regular, if in coordinates, ω(g) takes the form

ω(g)(x) =
∑
I

finite∑
α

aα,I (g(x)) ·mα(g)(x) · dx i1 ∧ · · · ∧ dx iq ,

where aα,I : Sym>0 → C are C∞-functions.
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Pontryagin forms

Let Ωg be the curvature 2-form of the Levi-Civita connection
of g ∈ Met(M).

Pont(g) = {P(Ωg )|P : o(n)→ CO(n)− inv. polynomial}
The Pontryagin forms are given by

det

(
t +

Ωg

2π

)
=
∑

tn−2kpk(g).

These are generators of Pont(g).

pk : Met→ Ω4k defines a regular, homogeneous natural
transformation of weight 0.
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Gilkey’s Theorem

Theorem (Gilkey ’73, Atiyah-Bott-Patodi ’73)

The only regular, homogeneous natural transformations
ω : Met→ Ωq of weight ≥ 0 have values in the ring Pont(g)
generated by the Pontryagin forms of g, and these have weight 0.
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Geometric structures

Let Gn ∈ {O(n), SO(n),Pin(n), Spin(n)}.
Gn has a natural action on Rn.

Given a manifold Mn, there are topological conditions for
Gn-structures, the parameter spaces for the different
Gn-structures are again determined by the topology of M.

There is a subcategory Gn −Mann of Mann, whose objects
are the manifolds admitting Gn-structures.

There is a functor

Gn − Str : Gn −Manopn → Set,

sending a manifold M to the set of different Gn-structures on
M.
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Geometric structures

The set of orientations O(M) on M is given by π0(M̃), where M̃ is
the orientation double cover of M. O is a functor from Manopn to
Set.

Gn Obj(Gn −Mann) Gn − Str

O(n) Obj(Mann) ∗
SO(n) M with w1(M) = 0 O
Pin(n) M with w1(M) = w2(M) = 0 H1(·,Z2)
Spin(n) M with w1(M) = w2(M) = 0 O × H1(·,Z2)

A Gn-manifold (M, α) is a pair with M ∈ Obj(Gn −Mann) and
α ∈ Gn − Str(M).
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Constructions emerging from geometric structures

Let M ∈ Obj(Gn −Mann).

Each g ∈ Met(M) and α ∈ Gn − Str(M) determines a
Gn-principal bundle PGg ,α(M).

The metric g induces a Levi-Civita connection 1-form ωLC on
PGg ,α(M).

A Gn-representation ρ : Gn → End(V ) induces an associated
vector bundle EV ,g ,α = PGg ,α(M)×ρ V .

The connection 1-form ωLC induces a covariant dericative
∇LC on EV ,g ,α.
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Geometric operators

Definition

A geometric symbol σ is a Gn-equivariant map

σ : Rn → Hom(V ,W ),

V ,W are hermitian representations of Gn. For a Riemannian
Gn-manifold (M, g , α), σ defines an (elliptic) first-order differential
operator

Dσ,g ,α := σ̄ ◦ ∇LC : C∞(M,EV ,g ,α)→ C∞(M,EW ,g ,α),

where σ̄ is the to σ associated section of
T ∗M ⊗Hom(EV ,g ,α,EW ,g ,α). Operators constructed in this way
are called geometric.
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Geometric operators: Properties

For λ > 0 there exists canonical vector bundle isomorphisms
εV : EV ,g ,α → EV ,λ2g ,α, εW : EW ,g ,α → EW ,λ2g ,α such that

λDσ,λ2g ,α ◦ εV = εW ◦ Dσ,g ,α.

In coordinates, the coefficients of Dσ,gα are of the form

a(x , g) =
∑
α

aα(g(x))mα(g)(x),

where aα : Sym>0(n)→ C are C∞-functions.
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Definition of Chiral Geometric Symbol

Definition

Let Hn ∈ {Pin(n),O(n)}, V be an Hn-representation, and
Gn ⊆ Hn be the connected component of 1 ∈ Hn. A chiral
(Gn-)geometric symbol (σ, ε) consists of:

A Hn-geometric symbol σ : Rn → Hom(V ),

a Hn-geometric map ε : ΛnRn → Hom(V ),

such that

σ(ξ) is skew-adjoint for all ξ ∈ Rn

ε(e1 ∧ ... ∧ en)2 = 1

σ · ε(e1 ∧ · · · ∧ en) = −ε(e1 ∧ · · · ∧ en) · σ.
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Geometric Operators from Chiral Symbols

Let Gn ∈ {SO(n),Spin(n)} and (σ, ε) be an Gn-geometric
symbol.

V± are the ±1-eigenspaces of ε(e1 ∧ · · · ∧ en).

V± are Gn-representations and

σ± : Rn ⊗ V± → V∓

are Gn-equivariant.

Alberto Richtsfeld University of Potsdam

Local index theory for the Rarita-Schwinger operator



Geometric Operators from Chiral Symbols

Given a Riemannian Gn-manifold (M, g , α), the chiral
geometric symbol induces a Z2-grading:

EV = EV+ ⊕ EV−

EV± can be identified as the ±1-eigenspaces of ε̄(dvolg ).

Geometric operators obtained:

Dσ : EV → EV , Dσ+ : EV+ → EV− , Dσ− : EV− → EV+.

Such that:

Dσ =

(
0 Dσ−

Dσ+ 0

)
Since Dσ is self-adjoint, we have:

(Dσ+)∗ = Dσ− .
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Proposition

Let Gn ∈ {SO(n),Spin(n)} and (σ, ε) be a chiral geometric
symbol. Let (M, g , α) be a Gn-manifold and ᾱ ∈ Gn − Str(M) be
the Gn-structure that is obtained from α by reversing the
orientation. Then we have the followng equalities

EV ,α = EV ,ᾱ, EV±,α = EV∓,ᾱ, Dσ±,α = Dσ∓,ᾱ.
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Higher Dirac operators

For n = 2k , let V±j be the irreducible representation of
Spin(n) with dominant weight

λ±j =
( 3

2
, . . . ,

3

2︸ ︷︷ ︸
j times

,
1

2
, . . . ,

1

2
,±1

2

)
.

Vj = V+
j ⊕ V−j is a Pin(n)-representation.

Vj appears once in Σn ⊗ ΛjCn:

Σn ⊗ ΛjCn = Vj ⊕W , Σ±n ⊗ ΛjCn = V±j ⊕W±.

All sums are Spin(n)-equivariant, the first is
Pin(n)-equivariant.

The (orthogonal) projection πj : Σn ⊗ ΛjCn → Vj is
Pin(n)-equivariant.
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Higher Dirac operators

Define twisted Clifford multiplication γj and involution
ωC ⊗ idΛjCn ,

ωC = ike1 · · · en.

Set σj = πj ◦ γj |Rn⊗Vj
, then (σj , ωC ⊗ id|Vj

) defines a chiral
geometric symbol.

Operators Dj obtained are called higher Dirac operators.

D0 is the Dirac operator, D1 is the Rarita-Schwinger operator.

indDj ,+ = 〈(ch(ΛjT ∗CM) + ch(Λj−1T ∗CM))Â(M), [M]〉
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Index and heat kernel

Let (σ, ε) be a chiral geometric symbol, (M, g , α) closed and
connected Riemannian Gn-manifold. Let

D : Γ(E )→ Γ(E )

the geometric symbol obtained from σ, D± : Γ(E±)→ Γ(E∓) the
chiral parts. exp(−tD2) is a smoothing operator, w.r.to the
splitting E = E+ ⊕ E−:

exp(−tD2) =

(
exp(−tD−D+) 0

0 exp(−tD+D−)

)
.

indD+ =

∫ O
str(exp(−tD2)(x , x))dvolg ,O

O is the orientation induced from α,

str(A) = tr(ε̄(dvolg ,O)A), A ∈ Hom(E ,E ).
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Construction of asymptotic expansion

Obtain an asymptotic expansion

exp(−tD2)(x , x) ∼
∑

Φk(x)t
k−n

2 :

Let σD2 =
∑

k≤2 ak is the total symbol of D2 in coordinates, ak
being the homogeneous parts of degree k. Approximate the symbol
of the parametrix (D2 − λ)−1 by inverting the symbol of D2 − λ
formally:

b0(x , ξ.λ) = (a2(x , ξ)− λ)−1,

For Dα
x = (−i)|α|∂αx ,

bk = −

 ∑
|α|+j+l=k

j<k

1

α!

∂αbj
∂ξα

· Dα
x a2−l

 · b0

.
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The heat coefficients

The asymptotic expansion of the heat kernel is given by

Φk(x) =
√

det g(x)
−1 1

2πi

∫ ∫
Γ
e−λbk(x , ξ, λ)dλdξ,

where Γ is given by

C

z = re−iφ, r ≥ ε

z = re iφ, r ≥ ε
z = ε · e iθ,
−φ ≤ θ ≤ φ

Re

Im
Γ
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The heat coefficents

Let Φk be the asymptotic expansion of exp(−tD2
σ,g ,α).

Set ω
(σ,ε)
k (M, g , α)(x) = str(Φk(x))dvolg ,O.

indD+
σ,g ,α =

∫ O
M ω

(σ,ε)
n .
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Heat coefficients as natural transformations

ω
(σ,ε)
k (M, g , α) does not depend on α:

ω
(σ,ε)
k (M, g , α) is a local construction.

Locally, a Gn-structure is determined by the orientation.

ω
(σ,ε)
k (M, g , α)(x) = tr(ε̄(dvolg ,O)Φk(x))dvolg ,O

For the reversed orientation Ō we have dvolg ,Ō = −dvolg ,O.

Proposition

The kth heat coefficient ω
(σ,ε)
k defines a natural transformation

Met→ Ωn.
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Regularity of the heat coefficients

Lemma

The natural transformation ω
(σ,ε)
k is regular.

Alberto Richtsfeld University of Potsdam

Local index theory for the Rarita-Schwinger operator



Proof of regularity

Sketch of proof:

In coordinates, the coefficients of Dσ,g are of the form

a(x , g) =
∑
α

aα(g(x))mα(g)(x), (∗)

where aα : Sym>0(n)→ C are C∞-functions.

Functions of the form ∗ are closed under addition,
multiplications and taking derivatives in x .

By carefully going through the construction of ωσ,ε one
obtains regularity.
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Homogeneity of the heat coefficients

Lemma

The natural transformation ω
(σ,ε)
k is homogeneneous of weight n−k

2
in g , i.e.

ωk(λ2g) = λn−kωk(g).

This follows from Dσ,λ2g ,α
∼= 1

λDσ,g ,α.
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Preliminary local index theorem

Theorem

For k < n, the heat coefficient ω
(σ,ε)
k is zero, and ω

(σ,ε)
n ∈ Pont(g).

In particular, if (M, g , α) is a closed Gn-manifold and Dg ,α the

induced geometric operator, str
(
e−tD

2
g,α(x , x)

)
dvolg converges

for t ↘ 0 with

lim
t↘0

str
(
e−tD

2
g,α(x , x)

)
dvolg = ωn(g)(x).
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Atiyah-Singer index theorem

On an oriented manifold Mn with orientation O, denote by
χ(TMO) ∈ Hn(M,R) the Euler class of the TM with respect to
the orientation O.

Theorem (Atiyah-Singer)

Let (σ, ε) be a chiral Gn-geometric symbol for n = 2m even and
(M, g , α) be a Riemannian Gn-manifold. Then the characteristic
class (ch(E+,g ,α)− ch(E−,g ,α))/χ(TMO) ∈ H∗(M,R) is
well-defined and

ind(D+,g ,α) = (−1)m
(
ch(E+,g ,α)− ch(E−,g ,α)

χ(TMO)
· Â(M)2

)
[MO].
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Atiyah-Singer integrand

Let V be the Gn-module σ acts on.

Let Ẽ+, Ẽ−, T̃ be associated bundles to the
Gn-representations V+, V−, Rn on the classifying space BGn.

The cohomology class

ch(Ẽ+)− ch(Ẽ−)

χ(T̃ )
Â(T̃ )2 ∈ H∗(BGn,R)

is well-defined.

By Chern-Weil theory, there exists a Gn-invariant polynomial
Pσ,ε : gn → R representing the above cohomology class.
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The mixed-degree form P(σ,ε)(Ω̄LC
g ,α) does not depend on α.

ω(σ,ε) : g 7→ (P(σ,ε)(Ω̄LC
g )n defines a zero-homogeneous,

regular natural transformation Met→ Ωn.

For all Gn-manifolds (M, g , α),∫
M
ωn = ind(D+,g ,α) =

∫
M
ω(σ,ε).
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Thom’s Theorem

Applying Gilkey’s Theorem,

ωn =
∑
I

aIpI , ω(σ,ε) =
∑
I

bIpI aI , bI ∈ C,

where I runs over all partitions of n and p(i1,...,ir ) = pi1 ∧ · · · ∧ pir ,
pi denotes the i-th Pontryagin form. To deduce aI = bI , we use
the following Theorem by Thom:

Theorem

Let M1 be the K3-surface and Mi = HP i for i ≥ 2. Then Mi is
spinnable and the matrix

(pI (Mj1 × · · · ×Mjk ))I ,J partitions of k

is non-singular.
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The local index theorem

Rewrite

ch(Ẽ+)− ch(Ẽ−)

χ(T̃ )
(∇LC ,g ) · Â(∇LC ,g )2 = P(σ,ε)(Ω̄LC

g ).
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Our discussion shows:

Theorem

Let (σ, ε) be a chiral Gn-geometric symbol for n = 2m even. Let
(M, g , α) be a Riemannian Gn-manifold and
Dg : C∞(M,E )→ C∞(M,E ) be the induced geometric operator.
Then the equality

lim
t↘0

str
(
e−tD

2
g (x , x)

)
dvolg =

= (−1)m

(
ch(Ẽ+)− ch(Ẽ−)

χ(T̃ )
(∇LC ,g )(x) · Â(∇LC ,g )(x)2

)
n

holds.
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Local index theorem for the Rarita-Schwinger operator

Corollary

Let Q = D1 be the Rarita-Schwinger operator on an
even-dimensional Riemannian spin-manifold (M, g). Then

lim
t↘0

str
(
e−tQ

2
(x , x)

)
dvolg =

=
(
Â(∇LC ,g )(x)

(
ch(T̃C)(∇LC ,g )(x) + 1)

))
n
.
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Corollary

Let Dj be the higher Dirac operator on an even dimensional
Riemannian spin-manifold (M, g). Then

lim
t↘0

str
(
e−tD

2
j (x , x)

)
dvolg =

=
(
Â(∇LC ,g )(x)

(
ch(Λj T̃C)(∇LC ,g )(x) + ch(Λj−1T̃C)(∇LC ,g )(x)

))
n
.
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Thank you for your attention!
感谢您的关注
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