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Motivation and plan
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1)

2)

3)

Pb: duality holds iff amplitudes commutative, but in QED and QCD amplitudes are matrices.

4) Extend duality to non-commutative algebras.

5) When duality fails with groups, extend to loops = non-associative groups.
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1) QFT: quantum corrections and virtual particles

‚ Problems in QED [1930’s]: QM predictions on electron mass and charge need corrections!

‚ Feynman graphs [1948]: Lpφ;λq “ L0pφq ` λLintpφq

$

&

%

L0 gives free propagator ...

Lint gives vertices ...

ñ
Feynman graphs Γ, e.g. for φ3:

with amplitude apΓq = integral over internal points with Feynman rules.

‚ Green functions: G pkqpx1, ..., xk ;λq “ x1

x2 x3
x4

. . .

xk

“
ÿ

EpΓq“k

apΓ; x1, ..., xkq ~LpΓq λV pΓq

‚ Formal series in λ:
A “ C,M4pCq...
given by L0

G pkqpλq “
ÿ

ně0

G pkqn λn
P Ar~srrλss with G pkqn “

ÿ

V pΓq“n

EpΓq“k

apΓq ~LpΓq P Ar~s
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Renormalization

‚ Divergent graphs:
p p

q

p´q

“

ż

d4q

p2πq4
1

q2`m2

1

pp´qq2`m2
»

ż 8

|q|min

d |q|
1

|q|
“ 8 !

Counterterms cpΓq = ´ divergent part (scalar in A)

Amplitudes arenpΓq “ apΓq ` cpΓq ` subdivergencies ùñ G ren
pλq “

ř

arenpΓq ~LpΓqλV pΓq

‚ Dyson formulas [1949]: can collect cpΓq’s in few series Zi pλq s.t.

for
φ0 “ φZ3pλq

1{2

λ0 “ λZ1pλqZ3pλq
´3{2 get

Lrenpφ;λq “ Lpφ0;λ0q

G renpλq “ G
`

λ0pλq
˘

Z3pλq
´1{2

Renormalization factors: Zpλq “ 1` Opλq ñ invertibile series with product

Bare coupling: λ0pλq “ λ` Opλ2
q ñ formal diffeomorphism with substitution

‚ Ren. group (perturbative) = bare coupling ˙ ren. factors contains
`

λ0pλq,Zi pλq
˘

Semidirect product
`

λ10,Z
1
˘

‚
`

λ0pλq,Zpλq
˘

“

´

λ10
`

λ0pλq
˘

, Z 1
`

λ0pλq
˘

Zpλq
¯

ùñ acts on Gpλq by Dyson’s formula G ren
“ G ‚ pλ0,Zq
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2) Counterterms and Hopf algebras

‚ BPHZ formula [’57–’69]: recurrence on 1PI divergent subgraphs

arenpΓq “ apΓq ` cpΓq `
ÿ

pγi q

apΓ{pγi q
q cpγ1q ¨ ¨ ¨ cpγr q

cpΓq “ ´TaylordivpΓq
“

apΓq `
ÿ

apΓ{pγi q
q cpγ1q ¨ ¨ ¨ cpγr q

‰

γ1, ..., γr Ă Γ
1PI disjoint

‚ Hopf algebra on Feynman graphs:

[Connes-Kreimer ’98-2000]

HCK “ Cr1PI Γs free commutative product

∆pΓq “ Γb 1` 1b Γ`
ÿ

Γ{pγk q
b γ1 ¨ ¨ ¨ γr

SpΓq “ ´
”

Γ`
ÿ

Γ{pγk q
Spγ1q ¨ ¨ ¨Spγr q

ı

Hopf algebra multiplication m : H bH Ñ H
unit u : K ãÑ H

comultiplication ∆ : H Ñ H bH
counit ε : H Ñ K

antipode S : H Ñ H

e.g. ∆
´ ¯

“ b1` 2 b ` b

´ ¯2
` 1b

amplitudes = algebra maps a, aren : HCK Ñ Ar~s related to coproduct ∆

counterterms = algebra map c : HCK Ñ C Ă Ar~s related to antipode S
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3) Groups of series with coefficients in a commutative algebra A

‚ Proalgebraic group:
representable functor

G : ComÑ Groups
A ÞÑ GpAq “ HomCompH,Aq

H = coordinate ring of G gen. by
coordinate functions xnpgq :“ gpxnq

‚ Duality: H is a Hopf algebra with ∆Hpxnqpg , g
1
q “ xnpgg

1
q

G is the convolution group with gg 1 “ mApg b g 1q∆H

e.g. GLn, SLn, On...

‚ Formal diffeomorphisms:
[Lagrange 1770, Faà di Bruno 1855]

DiffpAq “
!

apλq“
ÿ

anλ
n`1
| a0“1, an P A

)

pa˝bqpλq “ a
`

bpλq
˘

‚ Diffeographisms:
[Connes-Kreimer 2000]:

DiffCKpAq :“ HomCompHCK,Aq “
!

apλq “
ÿ

Γ

aΓ λ
Γ
ˇ

ˇ aΓ P A
)

pa ‚ bqpλq “
ÿ

Γ

´

aΓ ` bΓ `
ÿ

aΓ{pγk q
bγ1 ¨ ¨ ¨ bγr

¯

λΓ

“virtual” series!

“λΓ” symbol

‚ Virtual � Real: projection DiffCKpAq� DiffpAq, λΓ
ÞÑ λV pΓq

‚ In QFT: need integral counterterms for Zkpλq “ 1`
ÿ

EpΓq“k

ckpΓq

sympΓq
λV pΓq

ùñ Integral BPHZ!
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4) Extension to non-commutative coefficients

‚ Renormalization ruled by functors Diff and DiffCK: same procedure for all QFTs! All?

‚ Fermions and gauge bosons: need non commutative algebra Ar~s (at least M4pCq),
but the functors Diff,DiffCK : ComÑ Groups do not apply to As!

‚ QED given by a commutative Hopf algebra via matrix coefficients [Van Suijlekom 2007]

but not functorial in A (i.e ‚ ‰ convolution of ∆CK)!

‚ QED also given by non-commutative FdB Hopf algebra [Brouder-F-Krattenthaler 2006]:

Hnc
FdB “ Kxxn | n ě 1y px0 “ 1q

∆nc
FdBpxnq “

ÿ

m`k0`¨¨¨`km“n

xm b xk0
¨ ¨ ¨ xkm

‚ Can we extend Diff to a functor on associative (non-commutative) algebras?

Not for free! If H and A are non-commutative, the convolution product

a˚b “ mA pabbq ∆H in HomAspH,Aq

is not well defined because mA : AbAÑ A is not an algebra morphism! (old problem)
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Groups of series with coefficients in a non-commutative algebra A

‚ Idea: in As replace the tensor algebra AbB with product pabbq¨pa1bb1q “ aa1bbb1

by free product A >B “
à

ně0

”

Ab B b Ab ¨ ¨ ¨
looooooooomooooooooon

n

‘ B b Ab B b ¨ ¨ ¨
looooooooomooooooooon

n

ı

with pabbq¨pa1bb1q “ abbb a1bb1

Then mA :AbAÑ A lifts to a folding map µA : A >AÑ A which is an algebra map!

‚ Cogroup in As [Kan 1958, Eckmann-Hilton 1962] = associative algebra H with

comultiplication ∆> : H Ñ H >H coass.

counit ε : H Ñ K + prop

antipode S : H Ñ H + prop

ùñ proalgebraic group GpAq :“ HomAspH,Aq with a˚b “ µA pa > bq ∆>
H

‚ Group of invertible series:
[Brouder-F-Krattenthaler 2006]

InvpAq ðñ
H “ Kxx1, x2, . . .y

∆>pxnq “
ř

xm b xn´m

Non-commutative
symmetric functions

ùñ good model for renormalization factors Zpλq in QFT!
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5) When groups fail: use loops!

‚ Problem: if A is not commutative,

the composition in DiffpAq is not associative:
´

pa ˝bq ˝ c´ a ˝ pb ˝ cq
¯

pλq “ pa1b1c1´ a1c1b1qλ
4
`¨ ¨ ¨ ‰ 0

‚ Loop [Moufang 1935] = set Q with

multiplication a ¨ b (not nec. assoc.)

unit 1 + prop.

left and right divisions azb a{b + prop.

ñ left and right inverse of a 1{a az1 + prop.

so that a ¨ x “ b and y ¨ a “ b have unique solutions x “ azb, y “ b{a P Q

‚ Associative loops = groups 1{a “ az1 “ a´1 azb “ a´1
¨ b a{b “ a ¨ b´1

‚ Smallest non-associative smooth loop: S7
“ tunit octonionsu (ñ 2-qbits, Hopf fibration)

‚ Thm. [Sabinin 1977, 1981, 1986] On a manifold M with affine connection: parallel transport along small
geodesics gives a local smooth loop structure. Flat connection ñ global loop.

‚ Infinitesimal spaces: given by Sabinin algebras (and Malt’sev algebras for Moufang loops).
Differential calculus developed on smooth loops.
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Loops of series with coefficients in a non-commutative algebra A

‚ Coloop in As = algebra H with
[F-Shestakov 2019] comultiplication ∆> : H Ñ H >H (not nec. coass.)

counit ε : H Ñ K + prop

codivisions δl , δr : H Ñ H >H + prop

ñ antipodes Sl , Sr : H Ñ H + prop

ùñ proalgebraic loop QpAq :“ HomAspH,Aq with a˚b “ µA pa > bq ∆>
H

‚ Loop of formal diffeomorphisms:
[F-Shestakov 2019]

DiffpAq ô

H “ Kxx1, x2, . . .y ∆>
pxnq “ ∆nc

FdBpxnq

δr pxnq “ non-commutative Lagrange

δlpxnq “ new explicit formula (very complicated)

‚ Thm. In DiffpAq inverse is unique and a{bpλq “ a˝b´1
pλq (while azbpλq ‰ a´1 ˝ bpλq!)

ñ Dyson renormalization formulas make sense! cf. Birkhoff dec. G“G ren‚pλ0,Zq´1

ñ good model for charge renormalization λ0pλq in QFT!
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Conclusion and perspectives

Conclusion:

‚ In pQFT, renormalization group (RG) acts as a functor (via Hopf alg.): same procedure for any scalar QFT.

‚ RG action can be extended as a functor to non-scalar QFTs, if forget associativity (modify flow equations).
Possible because Diff is a non-associative loop with extra properties for which the RG action makes sense.

Perspectives:

‚ Proalgebraic groups and loops exist on associative, alternative, non-associative algebras (in particular unitary
matrices): explore applications in maths and physics.

‚ Unitary loops on octonions are used to generalise gauge groups [Loginov 2003, Ootsuka-Tanaka-Loginov 2005]:
explore the compatibility with non-associative RG.

‚ Develop software to compute with free product instead of tensor product.

‚ Compute a BPHZ integral formula for countertermes (PhD project: if you know candidates let me know).

‚ Explore non-associative RG in Wilson’s approach: replace usual flow of ODE by flow in smooth loops (cf.

[Lev Sabinin 1999]).

Thank you for the attention!
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Free product is necessary!

In the loop DiffpAq, we have 1{a “ az1 “: a´1 and also a{b “ a ˝ b´1 but

azb ‰ a´1
˝ b !

In the series azb, the coefficient

pazbq3 “ b3 ´
`

2a1b2 ` a1b
2
1

˘

`
`

5a2
1b1 ` a1b1a1 ´ 3a2b1

˘

´
`

5a3
1 ´ 2a1a2 ´ 3a2a1 ` a3

˘

contains the term a1b1a1 which can not be represented in the form

xpaqb ypbq P Hnc
FdB b Hnc

FdB,

while it can be represented as
x1paqb y1pbqb x1paq P H>FdB >H

>
FdB.

This justifies the need to replace b by > in the coproduct and in the codivisions!
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