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The Euler-Maclaurin Formula

For any f: [0, N] — R of class C” we have
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R, Remainder which depends linearly on £(p),

Carlo Bellingeri Euler-Maclaurin formula and generalised iterated integrals



The Euler-Maclaurin Formula

For any f: [0, N] — R of class C” we have

=
—

(EML) f(k):/o ds+z [f(k VN, + R,

0

=
Il

By Bernoulli numbers 1, é, 61.),0 0, e
R, Remainder which depends Iinearly on f(P).

This identity links integrals to sums, leading to many results in
mathematics: complex analysis, operator theory, numerical
analysis.

What happens in a stochastic framework with Riemann-Stieltjes
integration?
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The Euler-Maclaurin Formula

(EML) is justified on the basis of three basic identities
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The Euler-Maclaurin Formula

(EML) is justified on the basis of three basic identities

e The sum Y and the integration | are the inverse operators of

§f(x) = f(x+1)—f(x), Df(x)=f(x).
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The Euler-Maclaurin Formula

(EML) is justified on the basis of three basic identities

e The sum Y and the integration | are the inverse operators of
§f(x) = f(x+1)—f(x), Df(x)=f(x).

@ The formal expansion

(k) (x k
SF(x) = f k!( ) _ > %f(x) = (eP —id)f(x)

k>1 k>1
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The Euler-Maclaurin Formula

(EML) is justified on the basis of three basic identities

e The sum Y and the integration | are the inverse operators of
§f(x) = f(x+1)—f(x), Df(x)=f(x).

@ The formal expansion

(k) (x k
SF(x) = f k!( ) _ > %f(x) = (eP —id)f(x)

k>1 k>1

@ The series expansion
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The Euler-Maclaurin Formula

By combining these three facts

_s1_(.D_:n-1_p-1
Y =5t=(P—id)'=D o

B B
_ p-1 Pk k-1 _ Pk yk—1
=D +Zk!D _/+Zklo

k>1 : k>1
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The Euler-Maclaurin Formula

By combining these three facts
_ 51 _ (D :n-1_ -1
Y =5t=(P—id)'=D o

B B
_ p-1 Pk k-1 _ Pk yk—1
=D +Zk!D _/+Zklo

k>1 : k>1

This approach does not take account of boundary terms.

Using this approach, classical sums can be replaced by a generic
sum over the vertices of a polytope [Berline-Vergne '18] and other
generalizations
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An alternative proof

The same formula can be proved as a specific case of a family of
EML-type formulas [Boas '77]

The key point is to rewrite the sum as a Stieltjes integral.
N-1 N—a

f(k) = /_ f(s)d[s] 0<a<1

a
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An alternative proof

The same formula can be proved as a specific case of a family of
EML-type formulas [Boas '77]

The key point is to rewrite the sum as a Stieltjes integral.
N-1 N—a

f(k) = /_ f(s)d[s] 0<a<1

a

Applying an integration by parts with the function Pi(s) = s — [s]

> /- / F(5)d(Py(s)

N—a
= [-f(s)Pi(s)IV, 2 + / f'(s)Py(s)ds

J —a

What happens if we iterate the integration?
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An alternative proof

For any sequence of functions (Px)k>1 s.t. P, = Px_1 we have
"N—a

3= [ ep e + e [ pes

a

Sending a | 0, one has EML formula modulo initial constants
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An alternative proof

For any sequence of functions (Px)k>1 s.t. P, = Px_1 we have

"N—a

3= [ ep e + e [ pes

a

Sending a | 0, one has EML formula modulo initial constants

The classic choice is to consider P = (Qk)x>1 St

Qr = Qu—1
Q=t—[t]—3
Qx 1—periodic,f01 Qx(s)ds =0

The system identifies a unique solution such that Q(0) = %.

Functions Qy are called periodic Bernoulli polynomials.
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Extension to Stieltjes Integrals

Let X: [0, N] — V be a finite variation process and
f:V— L(V,W) asmooth function with V, W Banach spaces.
We consider the Riemann-Stieltjes integral.

/ para

we want to compare it with Riemann-Stieltjes sums

=
-

IN(f, X) = f(Xk)5Xk s (5Xk = Xk+1 — Xk
0

»
I
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Extension to Stieltjes Integrals

Let X: [0, N] — V be a finite variation process and
f:V— L(V,W) asmooth function with V, W Banach spaces.
We consider the Riemann-Stieltjes integral.

/ para

we want to compare it with Riemann-Stieltjes sums

=
-

IN(f, X) = f(Xk)5Xk s (5Xk = Xk+1 — Xk
0

»
I

Is there a way of deriving a formula between these two operators?
Yes, but we must use the Boas approach.
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Extension to Stieltjes Integrals

Thanks to the finite variation we write

N-1 N—a
F(X) (Xt — Xi) = / F(Xs)dX(e 1]

—a

k=0
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Extension to Stieltjes Integrals

Thanks to the finite variation we write

N-1 N—a

F(X) (Xt — Xe) = / F(Xe)d X1
k=0 -4

Using the notation Z! = X, — X[s,1) we repeat

In(F, X) — /N_a F(Xs)dXs = — /_N_a F(X)dA(ZL + bt

—a a
"N—a
= A2 BV / DF (Xe)(dXs @ Z1 + bY)ds
—a
By iterating this integration by parts, we obtain a sequence of
non-linear path functionals on X.
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Tensor notation

For each f: V — L(V, W) we write the gradient

DPf: V — L(VEPTL W)
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Tensor notation

For each f: V — L(V, W) we write the gradient
DPf: V — L(VEPTL W)
To keep track of higher order tensors, we use unitary tensor space
P
(V) =1aJv® TH(V)=1adDV®
i=1 i=1

with its applications of projections 7;: T1((V)) — V@' and its

inverse application v — v~ 1.
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Sawtooth Signature

Definition (B.,Friz, Paycha '24+)

For any b € T1((V)), we consider the finite variation process
Z(b): [0,N] — T1((V)) given by

7T1(Zt(b)) = Xt — X[t+1] aF 7l'1(b)

and the higher order components satisfy for all k > 2 the
differential equations

{dwk(Zt(b)) = dX; ® mk_1(Z:(b))
Zo(b) = mk(b)

We call Z(b) the sawtooth signature with initial data b.
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Preliminary EML formula

Proposition (B.,Friz, Paycha '24+)
For any b € TP(V)

N
In(F, X) = / F(YR)AX, — [F(X)B
n Z YID'F(Xe)mi(Ze(B))]g + RP(b)

where the remainder R™(b) is given by the Stieltjes integral

N
RP(s) = (<1P* [ PR dmy s (Zu(B)).
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Preliminary EML formula

Proposition (B.,Friz, Paycha '24+)
For any b € TP(V)

N
In(F, X) = / F(YR)AX, — [F(X)B
n Z YID'F(Xe)mi(Ze(B))]g + RP(b)

where the remainder R™(b) is given by the Stieltjes integral

N
RP(s) = (<1P* [ PR dmy s (Zu(B)).

The result is obtained by repeating the integration by parts.
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Three fundamental questions

Even if the formula appears to be the same as before, three main
questions need to be understood:

@ How can | best describe the sawtooth signature Z;(b)?

@ How do you choose b to find periodic Bernoulli polynomials in
a non-periodic context?

e What formula is obtained when RP(b) = 07

Carlo Bellingeri Euler-Maclaurin formula and generalised iterated integrals



Iterated integrals

It is natural to compare Z(b) with the signature of the path X
S(X):{0<s<t< N} — T1((V))

W/(Ss,t(X)) = /AI dX51®' : '®dXs, Aé,f = {S S 51 S e S S| S t}

s,t
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Iterated integrals

It is natural to compare Z(b) with the signature of the path X
S(X):{0<s<t< N} — T1((V))

(S £(X)) = /A Ao @dX, Al ={s<s < <s<t)

s,t

The process t — S +(X) is the solution of the differential equation

dssyt(X) = Ss,t(X) ® dXt
Sss(X)=1

and it is the basis for rough paths
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Classic signature and sawtooth signature

Theorem (B.,Friz, Paycha '24+)
For all b€ T1((V)) and | > 1 we have the identity

m(Ze(b)) =(=1)'m(So.e(X) ) @ b
[t]
S 1) Sk (X) 7Y @ 60X

k=0
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Classic signature and sawtooth signature

Theorem (B.,Friz, Paycha '24+)
For all b€ T1((V)) and | > 1 we have the identity

m(Ze(b)) =(=1)'m(So.e(X) ) @ b
[t]
S 1) Sk (X) 7Y @ 60X

k=0

@ The dependence of b is linear with respect to ®.

@ Zi(b) is an algebraic functional of the signature.
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|dea of Proof

To describe Z;(b) we couple a classical induction with the study of
the reversed signature t — SSbJ(X) which solves

dS? (X) = dX; ® S2,(X)
5575(X) =1

the components of SSbJ(X) are the reversed iterated integrals

7T/(5;t(X)) = /AI,* dXs,®@- - -@dXs, , Aé’; = {0 <s<...<s <t}
0,t
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|dea of Proof

To describe Z;(b) we couple a classical induction with the study of
the reversed signature t — SSbJ(X) which solves

dS? (X) = dX; ® S2,(X)
5575(X) =1

the components of SSbJ(X) are the reversed iterated integrals

7T/(5;t(X)) = // dXs,®@- - -@dXs, , Aé’t = {0 <s<...<s <t}
Ag 7

We can calculate m;(S/4*(X)) using the relation

m(52(X)) = (=1)'m(Sse (X))
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Optimal choice of initial constants

It is natural to look for the constant b which minimises RP(b).
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Optimal choice of initial constants

It is natural to look for the constant b which minimises RP(b).

By decomposing RP symmetrically we apply Cauchy-Schwarz

1/2

N
E[[RP(b)] < (E / rwp(zt(b))ui@p\dxtr)

with |dX:| the total variation of the process

Carlo Bellingeri Euler-Maclaurin formula and generalised iterated integrals



Optimal choice of initial constants

As we are looking for a sequence of universal constants
b e T1((V)) we would like to define m,(b) recursively
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Optimal choice of initial constants

As we are looking for a sequence of universal constants
b e T1((V)) we would like to define m,(b) recursively

Definition (B.,Friz, Paycha '24+)
For all I > 1 we set

1

(b)) = ————
E [ |dXi]

N
B [ m(zi(b<)lax,
0

where b*<! = (1,1 (b*),...,m_1(b*),0,...). We call
b* € T1((V)) the optimal average constants
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Optimal choice of initial constants

Theorem (B.,Friz, Paycha '24+)

When V is a Hilbert space the value 7;(b*) minimizes for all | > 1
the functional

N
veVve o IE/ | (Z:(b*< + v))||%/®,|dXt|.
0
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Optimal choice of initial constants

Theorem (B.,Friz, Paycha '24+)

When V is a Hilbert space the value 7;(b*) minimizes for all | > 1
the functional

N
veVve o IE/ | (Z:(b*< + v))||%/®,|dXt|.
0

Thanks to the linear dependence of b, we can prove that
N
E [ m(Z(6 !+ V)X
0
N
—E [ Im(Z(6") + vIRerldX
0

The result follows from the optimisation of a quadratic functional
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Moyennes optimales et nombres de Bernoulli

Theorem (B.,Friz, Paycha '24+)

When X; = t and V =R for all | > 2 we have

m(Z(b%)) = Qi(t)
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Moyennes optimales et nombres de Bernoulli

Theorem (B.,Friz, Paycha '24+)

When X; = t and V =R for all | > 2 we have

m(Z(b%)) = Qi(t)

The proof is derived by an explicit calculation and an intrinsic
property of the Bernoulli numbers

In general, this choice should improve the numerical efficiency in
the computation of Riemann-Stieltjes integrals.
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Zero Remainder in EML

A classical application of EML are the Faulhaber formulas when
fix)=x9, g>letp=q+1

Z E Nq—/+1
O C A

N—-1

DK

k=1

Nq+1
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Zero Remainder in EML

A classical application of EML are the Faulhaber formulas when
fix)=x9, g>letp=q+1

N—-1

Nq+1 B | .
Z IZ T NI—I+1

P 1

When b =1 et DPf = 0 the preliminary EML becomes

N—
/ f(Xs)d Z (Xi)d X + Z 1)+ 1D (X )i (Zn(1))
k=0 1=2
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Zero Remainder in EML

When f(X)(Y) =X & Y

N-1

/ dXs @ dXs, = > Xie ® 6 X — m2(Zw)
JAG N k=0
= Z X @ 60Xk — m2(Zn)
0<I<k<N

Carlo Bellingeri Euler-Maclaurin formula and generalised iterated integrals



Zero Remainder in EML

When f(X)(Y)=X® Y

=
R

/ d)(s1 &® dX52 = X ® 06Xy — 7T2(ZN)

JAZ -0

= X @ 60Xk — m2(Zn)
0<I<k<N

x

The term on the right involves the discrete signature of order 2
defined from the time series { X }x=o,...n

The sawtooth signature can be seen as a correction between
discrete and continuous signatures.
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Discrete Signatures

Given a time series x: [0, N] — V/, consider the iterated sums
Y(x): {0<m<n< N} — Ti((V))

T (Xm,n(x)) = Z OXjy ® ... @ 0x;,

m<ji<...<jj<n
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Discrete Signatures

Given a time series x: [0, N] — V/, consider the iterated sums
Y(x): {0<m<n< N} — Ti((V))

T (Xm,n(x)) = Z OXjy ® ... @ 0x;,

m<ji<...<jj<n

Unfortunately, these tensors are not sufficient to describe all

possible products.

m1(To,n(x)) @ m1(Ton(X)) = Xn — X0 @ Xy — X0

= Z 0X| ® Oxx + Z 5X/®5xk+25xk

0<I<k<N 0<k<I<N
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Discrete Signatures

For any integer n > 0 a composition of n is a vector
I =(i,,...,I) of positive integers s.t. i1 + ...ix = n.

k

1=> i, =k

j=1
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Discrete Signatures

For any integer n > 0 a composition of n is a vector

I =(i,,...,I) of positive integers s.t. i1 + ...ix = n.
k
1=> i, =k
j=1

Definition (DET 2020, BP2023)

We define the discrete signature as the value
{ZI(X)Z {0 <m<n< N} — V®HI”}I€Composition

T = Y (6x:)® @ (5,) %

m§j1<...<j|/|<n
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Discrete Signatures and linear interpolations

Theorem (Chen 1954, AFS 2019, DET 2020)

Let X'": [0, N] — V be the linear interpolation of a time series
x: [0, N] — V. For any integer u > 1 we have

7"'u(sm,n()din)): Z %Zin,n(x)

nt...|1
Jec(u) © Tk

A
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Discrete Signatures and linear interpolations

Theorem (Chen 1954, AFS 2019, DET 2020)

Let X'": [0, N] — V be the linear interpolation of a time series
x: [0, N] — V. For any integer u > 1 we have

7"'u(sm,n()din)): Z %Zin,n(x)

nt...|1
Jec(u) © Tk

A

Thanks to a slight generalisation of the identity

N—-1 P
/N F(Xs)dXs = > F(Xi)oXi + Y _(—1)/ D" (Xn)mi(Zw)
0 k=0 1=2

we can provide an alternative proof of this identity with possible
extensions.
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Remarks and Perspectives

@ Similar results can be obtained for right-point Riemann sums

=2
-

f(Xit1)0 Xk
0

x
Il

@ Extension to semimartingales, rough paths.

@ Numerical simulations of integrals?
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