Resurgence illustrated on partial theta series

Algebraic, analytic and geometric structures emerging from QFT

Chengdu, March 2024

David SAUZIN (Capital Normal University, Beijing, on leave from CNRS - IMCCE,
Paris Observatory - PSL University)

Based on

— https://arxiv.org/abs/2112.15223 with Li HAN, Yong LI, Shanzhong SUN
(19 p., published in Functional Analysis and Applications)

— https://arxiv.org/abs/2310.15029 (13 p., review of Resurgence Theory prepared for
the 2nd edition of the Encyclopedia of Mathematical Physics)



O(r;v, f, M) = Z 2, €™M \ith a, = n”f(n)

n=1
where the function f : Z — C is M-periodic, and v = 0,1, ...

O(r; v, f, M) is holo & 2M-periodic in H := {SmT > 0}. We are
interested in asymptotics as 7 tends non-tangentially to 0 or a rational «

H

0 a€eQ
Limit fen a € Qr . — O™(a) = lim, ., O(7; v, o, M) is 2M-periodic.
We'll see 0 € Qr, v < {f) =0 and appearance of two resurgent series
(depending on odd/even part of f) in relation to 7 — 0. Since

Ola+ v, f,M)=0(Mer;, fa M,) with f3(n) == f(n) ™8 we get

Qrm={aeQ|{fa)=0}

and asympt behaviour around « for f deduced from that around 0 for fa .




CRASH COURSE IN RESURGENCE THEORY



DEFINITION (Ecalle/[CNP]) A resurgent series is any formal series
whose formal Borel transform is an endlessly continuable germ.

In this talk, we use 7 = 1/z rather than the usual variable z:
B: " B: V- THT(v) (Rev > 0).

P(€) € £°C{¢} is called endlessly continuable if one can follow its analytic
continuation along any finite path starting near 0 and avoiding a finite
subset of the Riemann surface of the log (no natural barrier, only isolated

singularities...)

Elementary examples: Meromorphic functions, algebraic functions.
In this talk: Q < 27iM~1Z,.



DEFINITION A resurgent function is any function which can be
obtained from a resurgent series by Borel-Laplace summation:

We £

|
: Q)(f ) endlessly continuable
|
|

Borel 8_—
Resurgent series ¢()

Resurgent function ¢(7)
I 4
|
|
|
I
¥

Recall that we use 7 = 1/z rather than the usual variable z:
B: " £/nl B: TV THT(v) (Rev > 0)

etf0

(1) = LOG(r) = fo B dE ~ § = BTG as T 0
Y= P B Y = o p

med med

y’mid is one of Ecalle’s average Borel-Laplace summation operators, which all map convergent

series to their usual sums, and which all map products to products.



Example with 6 = 0: The Borel transform of the Stirling series is

a6 =6 (Seoths —1) = 5~ S+ &S el

meromorphic, poles on 27iZ* ~~> 2wiZ*-continuable.
Its Laplace trsf is the log of the normalized Gamma function at z = 1/7:

_ r(z) N 1L 5 1
M(T)|Og< T > /L(T)712T 360" +1260T +...

2nz" " 2e”
A less elementary example: Denote by Wy(x) > W_1(x) the real
branches of the Lambert W fcn for x € (—e™1,0) (solving we” = x).

1 1/2 3/2 5/2

M) = 7(WO — Wa) (=) = gt e e o € €7°CHE)

3

is 2wiZ-continble, its Laplace transform is (hal.archives-ouvertes.fr/hal-03502909)
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“Hankel-Laplace” trsf of singular germs: from “minors” to “majors”

0 — 2w

P(€) integrable at 0, ¢(&) = o(1/[¢])
B(E) = PO~ HeM) — 2°0(r) = [ o) a2 ptr)
Examples:* 3(&) € C{¢} is the minor of ¢(&) = (&) (log &) /2mi

*$(€) € £°C{¢} s the min of ¢(¢) = G(€)/(1—e72™€) (c ¢ Z)

We can apply " to more general singular germs ¢: for example
7 5 _ ctl
Z [(1—e*2"ic)r(c+1)] =Tt
7,0 vOr (—1)nlq

5[27715] L, f[ i ”]_7-"_

2mign+l

even if Rec < —1,

. . ve ¥
« Extension of Borel-Laplace summation by ./ = " o %
» Adequate formalism to encode singularities via alien operators...



DEFINITION Alien operator Af, (coincides with the alien derivation A,,
in meromorphic case)

ALy = ,%’71[contr: (mln(;?gi))(w +¢&) mod C{¢}]

(T starts near 0, ends near w, circumvents intermediar sing to the right)

S ="p+ Y eIV §

m=1

PP — 7, (Id+ Z e_w”’/TA:m) (Stokes automorphism).

m=1



RESURGENCE IN PARTIAL THETA SERIES



For our partial theta series, we'll get
O(riv, f, M) = st (F)(T) % + ZL0%(r) + (#F7° - 75+) & (7)

« with difference of Borel-Laplace sums of a series ©~ depending only on
the even part of n+— a, = n”f(n), dictating modularity properties

»and median Borel-Laplace sum of a series 6+ depending only on the
odd part of n+— a,, dictating quantum-modularity properties.

Example: (1) = ©(7;0,x,12), 7j(r) = ©(7; 1, x,12)
n 1 5 7 11
x(n) 1 -1 -1 1

x even, (1) = (375 - 75+) O (1) modularity! (wt.1/2)
= Sor ()72 x(m) 727 = (3) 2 (=1/7).

For 7: now n+— a, is odd,

ii(r) = #2506 (1) = 3O (1) = L (FF 7 — .#F5) OF (1)

and sth similar happens with ©*, leading to quantum-modularity
(wt.3/2)

Dedekind eta function and its Eichler integral




Quantum-modularity was discovered by D. Zagier when considering j(7),
“strange identity” Topology 2001 (see also “resurgence of the
Kontsevich-Zagier series” [Costin-Garoufalidis 2011]),

n 1 11 19 29 31 41 49 59
fr(y 1.1 1 1 -1 -1 -1 -1
Lawrence-Zagier “Modular forms & quantum invariants of 3-mflds” 1999

and ©(7;0,f,60), £ odd

O(7;0, f,60) occurs as the GPPV = Gukov-Pei-Putrov-Vafa invariant
for the Poincaré homology sphere ¥(2,3,5), in connection with SU(2, C)
Chern-Simons theory.

Link with resurgence observed in [Gukov-Marifio-Putrov 2016], in the
case of ¥(2,3,5) and X(2,3,7).

[Andersen-Mistegard 2022], using [Gukov-Manolescu 2021], have
established this for any fibred Seifert homology sphere ¥X(py, ..., p,).

(For the quantum modularity of partial theta series, see also [Goswami-Osburn 2021].)



Treating [GPPV]/[GM]/[AM] as a black box:
3

Y(p1y... s pr) s 2(T) = Z O(r; v, f,,2p1 ... pr) with each n”f,(n) odd.

v=0

Fact: one can construct vector-valued strong quantum modular forms on
SL(2,Z) by considering f, and their DFT f, (higher depth for v = 2).

Interesting property of 6”t|Z: the Fourier numbers of the 2M-periodic
function k — ©"(—k) are related to SL(2,C) Chern-Simons actions,

O"(1/k) <~~> WRT (k), ©7(7) <=~ Ohtsuki series at 7 — 0.

To get the Fourier numbers, consider n€ Z — 4(n) == [ — %] e Q/Z
If supp(f) = 4~1(C), then ©(7 — k; v, f, M) = e>™k¢O(1; v, f, M),
hence @"(k) = ™ k¢@"(0): only one Fourier mode per ¥-fibre.

For Dedekind 7 and j: x = ¥, supp(x) < ¥~1(1/24).

For ¥(2,3,5): supp(fy) c 91(1/60), supp(f)  ¥~1({1/60,49/60}).

For general X(p1, ..., p), [AM] has identified the SL(2,C) Chern-Simons
actions: a certain subset of the range of ¢, which contains supp(f,).



1st result (implicit in [GMP], [AM]—cf. [Flajolet-Noy FPSAC 2000])

Let F(t) :=3],>;ane” ", holo & bounded in {Re t > c} (for any ¢ > 0)

and C := (%)1/26”/4. Then (&) = = Y2¢=12F(C €2) is holo for
3 <arg¢ < Zand O(r) =3ir"12 Sre e 8/7h(€) dé for all € HL.
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Proof just with Borel-Laplace: 71/2¢7°7 = %TTP+% e 7Y2C{r} is the
Laplace trsf of its Borel trsf in any direction, apply it with o2 = irn?/M.

o2 52P 1 _ _ 25£1/2)2p
%)(7.1/2e ) _ Z p!r(p+%)£p =1 1/25 1/22 ( ép)l)

\U(§1/2) — 7r*1/2£*1/2 o—208"?

= odd part of

hence 71/2¢7° ™ = 1 0" [Ww(el/2)] — Lof [w(—€2)] if 6+ ~ 6.
Choosing 6% = T + ¢ and using 7" [W(—€12)] = 207 ~27[w(£/2)];

3m

i (- RIS »
F1/2 0% _ %W—l/z (J _J )e—g/f 5—1/2 e27€" ¢
0 0

_ %W71/2J o8/ g1/ o206 dé.
le

Apply it with 02 = irn?/M, i.e. 20 = Cn, multiply by a, and check
uniform convergence (OK because I'. away from singular half-line)...

O



O(riv, f,M) =3, ane™ /M F(t) =Y, o ane ™
P(&) = nY2TRF(CEYR) yields ©(r) = 377 Y2 (. e ¥/7(¢) d¢
With a, = n”f(n) and f M-periodic, we find

F(t):(_c%) o(t), Zf _ntfl_e Mt Z F(0)e™"

n=1 IENAN Y
Decompose F(t) = Y52 1+ Fod(t) + F¥(t), F°Y/*(t) e C{t} odd/even.

Define ¢F (&) € C{¢} by Fod(t) = T2 L QE—(%) Fev(t) = nl/2 q3+(éiz)
Qg(f) = Wll/sz!éfu>+1 il 4 g &)+ 24+ &), $* meromorphic on C,

17TI1

all poles among &, = € iR~g. We end up with

L (2-T) 5 + 0 (11, f, M) + ©F (1,1, f, M)

1

O(r;v, f, M) = % (

o = [ e rin@ds ot [ et ag

€ =



Moving I'. upward, we get
O =7V x (i gi) LT = (SE - SO (1)

with é’(T) =2 :%’*1[%55*] and, in the case of O,

due to the change of branch of £7/2 from el(=F )R- to /(3 TR,

OF = Yk S(ZF 70+ 2[4 (9)] - 2LV (R)

é*(T) =712 %’71[571/26#(5)] = Z %L(_zp -, f)(%i>p7—p

p=0

V41

O(riv, f,M) = cst(Fy(Z)" 2 + (F27° - 757) 0 (1) + L2607 (1)

M-1
(Moreover, F§'(t) = —3£(0) + 1~ fod () et
=0
M—1
FOd(t) _ 17617/\4: fev(é) eflt
=0

yields the decomposition F(t) = ”t'<f1> + Fod(t) + F(¢).)
A



Each .#?6% is holomorphic in a domain containing H but much larger...

By varying 6 in the &-plane, .77 <@ (1) extends analytically from
0 < argT < 7 to negative values of arg 7:
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In the end, .2 ~¢8%(7) extends through Roq to —27 < arg7 < 7.
+

N

Similarly, . % ~<@*(r) extends through R to 0 < arg 7 < 3.

But (/2 ¢ —.7/5%9) 6 (r) and Ym%ed(:)Jr(T) are holo only in H!




Alien derivatives

DFT operator Uy : f — f, f(n) = Tlﬂ Z fF(0)e=2™/M for n e Z.
£ mod M

Res(Fg9(t), t = 20n) = M~2f*(n), Res(F§"(t),t = 287) =M~3Fd(n)

whence we get the polar parts of F°¢ and F¢', and those of gZAF and gZA>+.

From &+ = 771221124+ (¢)] and 6~ = 771228 1[Ld ], we get

=0 = A0 =277 n)r73, =1 = A0 =2ie’" nf(n)7 2
r=0 = AgnC:)* = ei%fe"(n)T*%, v=1 = Agné* = ieSiTwnde(n)T*%

and also, using A, L = (d +wT’2)Aw and

dr dr
O(ri2u, f) = (2 L)' 0(r:0.F), O(r:2u+1,f) = (£ L) 6(r:1,f),
v=2 = Ag 0" = -2n2f9(n)(T)"

and so on.



Bridge Equations: The directional alien derivative is
o —w/T _ —&m/T
Bs= D e¥lThA, = e T,

argw:% m>=1

(here, Stokes automorphism = Id + A « ).
2

For v = 0:
256" =207y O(-r 0. F) A6 = (1) e(-r k0, f)

For v =1:
A;8% —2i(3)le(—r L) A6 —i() le(—r ki)

Modularity (here with S(7) = 7! and both f and £, but one can also
get true modularity with f alone on ['(2M) = principal congruence

subgroup):
1F(0) + O(7;0,f) = O(r; f) = ()2 0(—r 1 F)

feven, O(1;f) =
fodd = O(r;1,f) =i(%)”

2 9(—771; 1, f)



Quantum modularity

Suppose {fy =0 and n+— a, odd, so ©(7;v,f) = ym%edé*'(T) is a
half-sum of Borel-Laplace lateral sums.

What about the difference D(7) := (/2 ¢ — 7% +¢) 6*7? Interest:

O(riv,f) = #57°0% —1D(r) = #5+6% + LD(r).
The Bridge Equation gives

N

{v=0and f odd} = D(r)=2(7)"20(-7"10,7)
{v=1and f even} = D(7) = 21({)’% o(—r741,f).
Rephrasing in terms of modular obstruction, with weight 1/2 or 3/2:

fodd = Gi(r):=0O(r;0,f)+ (I 20(—7%0,f) = #37 (1,0, 1)

right-hand sides clearly have analytic continuation through R to the right
or to the left of 0 and are asymptotic to ©* (1) as 7 — 0.



A consequence for the boundary function:

~

O"(a; v, f) exists if and only if ©"(—a~1; v, f) exists and
fodd = @(3:0,f) = —ie™ ¥ k20"(—k;0,7) + G, (}),

feven = O"(%;1,f) = e T KO —k; 1, f) — Agfr? k+ Gy (1),
with Gy (3) ~1 ©F (3 f) = 2 (~1)PHZE20 (1 (3)” as
p=0
k — +0o0, while the first terms of the right-hand sides contain periodic
functions of k with Fourier numbers depending on supp(f)

(& similar statement at —+ using G_).



Work in progress with Li HAN, Yong LI, Shanzhong SUN + Jgrgen
ANDERSEN, William MISTEGARD:

For the GPPV invariant of X(py,...,p,), we know by [AM2022] the
values of the SL(2,C) Chern-Simons actions and
O"(1/k; f) <~ WRT(k), ©7(r;f) <~ Ohtsuki series at 7 — 0

with f finite sum of functions n— n"f,(n).

Yong LI's talk:
Analyse the DFTs ;.

Their supports (= the Fourier numbers of the 2M-periodic function
k — ©"(—k; f)) are related to the SL(2,C) Chern-Simons actions —
more precisely to the SU(2) Chern-Simons actions...
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