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Classical theory

© Spacetime: 2-D Minkowski space My = (R2, ), with signature (+, —). Light-cone
coordinates (7, &) are expressed in terms of cartesian coordinates (¢, x) by

- %(ﬂ b, ¢— %(z_ ).

© Configurations: ¢ € &(My) := (M, + E = My x R) = C*°(M,).
© Lagrangian: horizontal 2-form on JXE with scalar density given by

1
L= Lg+Lin = 5 [(8t<p)2 — (8;@)2]+cos(ag0) «— L =qprpetcos(ap), a>0.
© Euler-Lagrange equation: also called sine-Gordon equation

—0Op — asin(ap) = — (8? — 6)2?) @ —asin(ap) =0 <+— g — asin(ap) = 0.

#" Remark: Subscripts ; and ¢ indicate partial derivation.



Conservation laws

W~ Fact: From the theory of integrable systems, it is well-known that the sine-Gordon
model admits an infinite number of on-shell conserved currents.

An on-shell conserved current is (in this setting) a horizontal 1-form p = p1d7 + p2d€ on JXE, for
some k € N, such that

d ((“¢)*p) =0, (1)

whenever ¢ is a solution of the sine-Gordon equation. Equation (1) is called an on-shell
conservation law.
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Backlund transformations

¢’ € &(M,) is obtained from a given ¢ € &(M,) by a Bicklund transformation B, of parameter
a € R, in notation ¢’ = B, ¢, if ¢ satisfies the parametric system of first order PDEs:

1 . (a
(@' + ¢)e = —sin [f

a2 -9l @)

#" Remark: Bicklund transformations relate solutions of the sine-Gordon equation!

N

¢’ € &(Mby) is obtained from a given ¢ € &(Ma) by an extended Backlund transformation B, of
parameter « € R, in notation ¢’ = B, if ¢’ satisfies (2).




The higher conserved currents

Extended Backlund transformations can be interpreted as “Lagrangian symmetries”. The
application of Noether's Theorem yields a family of on-shell conserved currents.

Proposition
The components of the on-shell conserved currents sV = sNd7 + sld¢, N € N, have the form:

no . AMN—p)
Al AZ(Nf;,l)le

3)2(/4+1)

n()! coe n2(,\,,u)!




The higher conserved currents

Proposition

m
> g
n1!
m,...,mn >0

m+--+my=28
1-n+---+2N-noy=2N

- 3\ 28+1 A
23 (-1 (3) >,
|...
B=0 2 ny,...,non>0 i

mt-enoyy=2B+1
1-ni+---4+2N-nyy=2N

where the coefficient of sin(ay) is defined only for N > 1.




A notion of degree

s¥ = —2cos(ap), st = @2 cos(ap) + 2pge sin(ap),
9 = ¢, S} = 398+ Beveee + 205

Consider ¢ € C*°(M,). Assign a degree to the k-th derivative w.r.t. £, by:

deg(pkg) =k, VkeN.

Extend to monomials in the derivatives of ¢ by additivity. A polynomial in the derivatives of ¢ is
homogeneous of degree d if all its terms have degree d.

Proposition

The components of sV have homogeneous degrees deg(s]) = 2N and deg(s)) = 2(N + 1).
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The general philosophy of pAQFT

A classical field theory is essentially described by its Lagrangian L = Ly + Ljnt.

free classical fields interacting classical fields
Ly ~ “geometry/kinematics” A Lo + ALjnt ~ “dynamics”
(A7'7{7 }’*) (AII/\Ilﬂ'v{a }a*)
h ;?
y
free quantum fields A interacting quantum fields
(AlR] % [ 17) (AR, AL * [ ")

©® Fh-deformation — (Formal) Deformation quantization.

© A-deformation — Perturbation.



(Formal) Deformation quantization

; — © Classical product: commutative
ree classical fields VF,GEASF-Ge A

A ={F: &M, C, pcausal
(A0 2 © el (F-G)lgl = FlplGly], ¢ € &(Ma).

h
ee apari Tk © Star product: non-commutative
Al[h]]:{zzioAnhn‘AneA} VF,GEAﬁF*GEAﬂh]]
FxG— F-G.
h—0

Microlocal analysis: imposing special requirements on the wavefront sets, define

(FxG)el = 3 (FOLe] (Won) « 6O}, W e 2/(p).

n=0

W Fact: Deformation of Poisson x-algebras (A[A], %, [, ]«,*) — (A, {, },*).



Perturbation

free classical fields A interacting classical fields
A={F: £M,) — C, ucausal} AN = {35020 AnA™ | An € A}
w
h |7
y
free quantum fields A interacting quantum fields
AL] = {520 Adh” | Ar € A) [ AL

© S-matrix: S(Lint) € A[A]((7)) encodes the notion of
“Heisenberg interaction picture” F(pret) = (F)ret(¢)
in a perturbative way, by Bogoliubov formula:

h d

ret — ~
i dk

F — (F) (S(ALint)* "% S(ALint +5F))

HZO'



Interaction picture: time-ordered products

The time-ordered products are multilinear maps ~ T,: A®" — A[A], that satisfy
certain (physically motivated) axioms, and are used to define:

S(ALint) _1+Z ( > (L2

If Lint is a regular field, then T, (L27) = Lint xaF -+ *aF Lint,  where

(F xar O)lel = 3 o (FOlg], (AF)2 5 6]
n=0

Problem: What happens if L, is not a regular field?



The renormalization problem

For a general interaction Lagrangian Liy: € A, one could naively try to compute

-\I/-n(Lint(Xl) ®--® Lint(Xn)) r=" Lint(Xl) K*AF CkAF Lint(Xn)

n—times

!
(AF)™(x — %) (AF)™ (xq — x3) - -+ (AF)™ (2 — x3) - -+

These products are defined, by Hormander's sufficient criterion, only on:
M5 = {(x1,...,xn) EMJ | x; # x;,V1<i<j<n}.

- Fact: Renormalization is the inductive (on n > 1) construction of T,(L3/):

o

© by inductive hypotesis (and axioms), T,(L27) is defined on M3 \ Ap;

int
© to complete the inductive step, 7V_,, is extended to the whole M.

-



Scaling degree of distributions

The scaling degree of t € 2/(R9\ {0}) in Ois:  sd(t) =inf{r € R |lim,0p t(px)=0}.

Theorem (Brunetti, Fredenhagen, Epstein, Glaser,...)
Let t° € 2/(RY\ {0}). Then:
If sd(t°) <d = 3! extension t € Z'(RY) s.t. sd(t) = sd(°).

If d <sd(t) <oo =  There are several extensions t € 2'(RY) s.t. sd(t) = sd(t°).
Given a particular extension , the general extension t is of the form

t=1t+ C,0%, C,eC.
|a|<sd(ty)—d




Renormalizability of interacting fields

Unrenormalized retarded functionals are given by Bogoliubov formula, on M5\ A, y1:

h d — A" X an
(F)ree = = (S(\Lint) ™ * S(ALint + 1F)) Kv:ozzn!h’an(L,ft,F)

The unrenormalized retarded products R, are then inductively extended to M"+1 Vn> 1.

Consider (,’V-_)ret as above. Let N(Liy, F,-): N — N be defined as: ~ N(Ljy:, F,0) =0,

N(Lint,F,n):max{O,sd( e F))f2n7N(Lint,F,n71)+1}, n>1.

int ?

The unrenormalized retarded functional (F).., is:

ret

(a) renormalizable by power counting if N(L., F,-) is bounded;

(b) super-renormalizable by power counting if the number of non-vanishing values of
N(Line, F,-) is finite.




The sine-Gordon model in pAQFT

Interaction Lagrangian:

©)

P
¢

pAQFT
—

Liny = cos(ap) = (ei"‘p + e_i"‘p) %(Va +V_,) e A

N —

Vertex operators:  V,: (g € CX (M), p € g(MZ)) = Va(g)le] = sz eiagag_

© S-matrix:

©)

S(ALi) _1+Zj| (51) To(Vea 88 Vi) € AP,

n—times

Observables: components of sN = (sMV)d7 + (s))d¢ act in the following way

©)

sl (g € C(Ma), ¢ € E(My)) — sty(g)le] = /M (o).
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First main result

We consider the unrenormalized retarded components

5 hd . 1 x — A" % on
(37%)ret = 7%(5()\Lint) % S(ALint + £51)) L:O => IET Ro(Lins s12)-
n=0
Theorem

The scaling degree of the unrenormalized retarded products above is uniformly bounded by the
degree of the components. More specifically, for every n > 1 it holds:

sd (Ra(LED, s]')) = deg(s))

int

sd (Ra (L, s)))

int




Super-renormalizability

Corollary

The unrenormalized retarded components (3%, ), are super-renormalizable by power counting.

Q Idea: The uniform bound on the scaling degree of the retarded products implies:

int )S

N(Lint, sV, )—sd( (L7, s )) — 21— N(Ling,sM, n — 1) +1
= 2N — 20— N(Lint, 51, n — 1) + 1 < 2N —2n + 1,
and

N(Lint, s, n) = sd (R (LEn ! )) — 20— N(Line,s¥, n—1) + 1

|nt’

=2(N+41)—2n— N(Lint,s,n—1) + 1 <2(N+1) —2n+ 1.



The sine-Gordon model in perspective V

Backlund
transformations

Classical theory

Noether’s
Theorem

Renormalization

sine-Gordon
model

Summability



Gaussian states and summability of the S-matrix

Fix a configuration ¢ € &(M;). The Gaussian state w,, is the evaluation map:

wy: AR, A] — C[h, A]
F =  wu(F)=Flg]

Theorem (Bahns, Rejzner)

Under proper technical conditions, there exists a constant C = C(~, f), f € &(MS}), such that for
all n, the expectation value of the n-th order contribution to the S-matrix of sine-Gordon model in

the state w,, satisfies the following inequality:

e
(EDE

|we (Sn(Lint)(£))] =




Second main result

1
nlhn

Rn(l-intvs{\{g)

Consider the renormalized retarded components  (5]',)ret = > oo g A"

Rn(LE? 512).

int ?

Theorem

Under the same hypothesis as above, there exist two pairs of constants Inylf‘a,“N, nyl_f and

K2 ¢ n.n» C3 such that for all n > 1, the expectation values w,, (Ran(Lint, si%)(f)) satisfy the
inequalities:

) n+1 2 2N C51 n
"Rn(Lint‘sl’V)(f) | < ’&fff,am,%~

[Ra(Lints YO < K21 o




Some future research directions

©)

Conservation and involutivity: Classically, the higher currents are conserved on-shell.
Also, they are in involution w.r.t. the Peierl's bracket. In pAQFT, can
renormalization be done in such a way to preserve conservation and involutivity?

Q@ Idea: Adopt the point of view of Bahns and Wrochna in the analysis of the
extensions of distributions satisfying a given set of PDEs.

Symmetries: Is it possible to formulate the mechanism of production of the
(classical) higher currents in a more general mathematical framework?

Q Idea: Noether's Theorem for actions of Lie groupoids of symmetries,
multisymplectic geometry ...



“The art of doing mathematics consists in
finding that special case which contains all
the germs of generality.”

David Hilbert




