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Gravitation 1s a manifestation of the curvature of the

spacetime geometry
A. Einstein (1915)



The problem with quantum gravity 1s classical: we don’t
know what it 1s we want to “quantize”

7 = f dX exp{LI[X]}

What is X? What is I[?



1. Spacetime Geometry




General Relativity: Dynamics of the spacetime geometry

e Spacetime M is a differentiable manifold
(up to 1solated singularities: sets of zero-measure).

* M admits a tangent space T at each point.

D-dimensional
spacetime manifold

* An open set around any point x 1s diffeomorphic to an
open set 1n the tangent.



Geometry has two ingredients:
* Metric structure (length/area/volume, scale)

 Affine structure (parallel transport, congruence)




2. The two ingredients of
Spacetime Geometry




First ingredient of Geometry: Metric Structure

* Each tangent space T, is isomorphic to Minkowski space
dz® = e (x)dx* = e
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( e%: local orthonormal frame, “vielbein”, “soldering form™)



* Since Minkowski space 1s endowed with the Lorentzian metric 1,4y,
the diffeomorphism induces a metric structure on M:

ds? = 1gp dz%dz" =ngp efdx* eldxV = g,y dx*dx”

Yuv (X) = Nap e/,CLl(x) 811/) (x) > Metric on M



Einstein’s interpretation:
Existence of tangent space T , isomorphic to Minkowski space at every point of spacetime

0

Locally, nature can be described as if the fundamental laws of physics are those of a
Lorentz-invariant flat spacetime (~ Special Relativity)

0

The laws of physics can be locally cast in a Lorentz-invariant form:
This 1s what a freely falling observer experiences



The laws of physics can be locally cast in a Lorentz-invariant form:
This 1s what a freely falling observer experiences

0

Going into a freely falling reference frame eliminates gravity.
Conversely, acceleration is locally indistinguishable from gravity.

Principle of Equivalence

“The happiest thought of my life”
A.E.



The Equivalence Principle has two important consequences:

1. Covariance: Tensors in M can be related to tensors in T,

T = ef(x) Ef (x) T,

Inverse vielbein

Tensorin T, Tensor in M

Forces, electromagnetic fields, energy, momentum,... and their relations, can be determined
by measurements either on M or in T, . The laws of nature must be invariant under changes
of frames: General coordinate invariance

This feature can be used to express every physical quantity as measured in T,



2. Local Lorentz invariance: Since the tangent space 1s invariant under the
Lorentz group, 1t must be possible to formulate the Laws of nature in a
Lorentz-invariant language. Physical observables must transform locally
as representations of the Lorentz group.

Consider a vector field u%(x) at a point x € M. Under a Lorentz
transformation,

wWe(x) = Aab (%) ub (x) Element. of the Loreptz
- group acting at the point x

(Fiber bundle structure)



Second ingredient of geometry: Affine Structure (parallelism)

The affine structure is the rule to compare objects at different points in M.

Consider a field u®(x) that transforms as a vector,
W (x) = A% (%) ub (%)

In order to compare the value of u® at x and at x + dx one must transport
the vector between those two points and this requires a rule (recipe).



Parallelism:
Recipe to compare objects at different points in M.

Let uﬁ(x + dx) the parallel transported vector from x + dx to x, where

ul(x +dx - x) = u®(x + dx) +w% ,(x) dx* u? (x)
| bu

Recipe for parallel transport
(connection)




This notion of parallel transport allows to define a
e Covariant derivative:
Du®(x) = ujj(x + dx - x) — u®(x)
= u(x + dx) — u®(x) +w%, (x) dx* u® (x)
= dx*[0,u® +w%, (x)u’]

| Du% = du® + w®ul |




b

* Under local Lorentz transformations Du® = du® + w®,u® must transform

like u%:

u®(x) - uw'(x) = A% ()ul(x), A% e S0(,D—1)
Du® - (Du%)’ = A% (x)Du?,

This requires @ — @’ = Aflw + d |A™1 Lorentz connection



e Metric structure (length/area/volume, scale) — E
a

 Affine structure (parallel transport, congruence) —> |V b




3. Spacetime Recipe




Hilbert’s 1dea: The equations that govern the spacetime geometry must be
obtained from an action principle. The equations should be the stationarity

condition for the action functional, 6/ = 0

Action: I[e, w] = fL(e, w)
M

51=f[5L5e+5L5w] =0 =<

What is L(e, w) ?

6L B
Se Einstein’s
SL equations
=0
_dw



The covariant derivative defines the curvature and torsion 2-forms:

e Lorentz curvature: DDu® = R%, uP

a __ a a C
R% =dw"”) + 0%, 0"y

o Torsion: T® = De® = de® + a)ab eb

Dnab — dnab 4+ a)aCT]Cb 1+ wbcnac =0=w*® + wba,_{wab — —ba }

Everything that has been said about Lorentz symmetry is true for SO(n,D — n)



Taking additional covariant derivative does not produce new geometric objects

D(R% u?) = R% Du?,= DR% =0

} Bianchi/Jacobi identities
DT® = R% e®

From e® and w®, and their derivatives, a very limited number of objects can be
produced: e, w%,, R%, T?.

« The most general gravity action must involve these elements only.



4. Mixing and cooking procedure




Pure gravity action in D-dimensions ~ I]|e, w] = f L(e, w)

M
L must be a D-form constructed only out of exterior products and derivatives of
1.5 _ e = e[} dxt Vector
~1OTIS. a)ab — a)ab U dxlt Connection
o . Rab — %Rab Mvdx” N dxv Tensor
-forms: a4 1°ma U y
= T,uv dx"* Ndx Vector

O-forms: Nab » Ealaz“‘aD Invariant tensors



One way to make sure that the resulting equations express the same relations
under Lorentz transformations is to demand that L(e, w) be Lorentz invariant

With these restrictions there 1s a very limited number of possibilities for L in
cach dimension.

D=2:
Ly=ae€g e Ne® + Bep,RY mmd [ (e, 0) =a V(M) + By(M)
Volume form Euler density /
( "V1gl + B Igl R) d?x Euler characteristic: does not vary under
continuous deformations of the geometry




L=oagey.e%e’ e+ ajey,. R e+ L e T,

If torsion is discarded (as Finstein did), L ~ +/|g|[A + k R]d3x

Einstein-Hilbert action



D = 4:

L=oageqpqe®e? e e+ aje g e®e? R + aye peq R REY +

+,8R?bRab +yT*T,+ AR, e% el

. Euler form
Pontryagin form

T%T, — R, pe%e? = Nieh-Yan topological invariant
If torsion is discarded (Einstein), L ~ /|g|[A + k¥ R]d*x  Einstein-Hilbert



+(Euler) + (Pontryagin) + (Nieh — Yan). +(Torsional terms)

EZTL — Eal---aZnRalaz ... RA2n-102n Euler form
— p% pdz | p%k Pon in form
Py = R“ R ...R% ontryagin forms

Ny, = [R?*2]*PT, T, — [R**~1]%e e,  Nieh-Yan forms



5. More exotic recipes




In odd dimensions there 1s a surprise. For each topological invariant density
in D=2n, there exists in addition to the Lorentz invariant terms, quasi-
invariant ones that also give rise to Lorentz-invariant equations.

This happens because those densities can be locally written as the exterior
derivative of a Chern-Simons term.



Consider the Euler and Pontryagin densities in D=4:
Ey = €gpcaRPR* =dCy P, =R% R°;=dC3

where C5 & C¥ are 3-forms that define geometric actions for 3-dimensional

geometries. (And similarly in dimensions 5, 7, 9,...)

What are these Lorentz quasi-invariant actions?



D=3: Combine the SO(1,2) connection w?? and 3-dimensional vielbein e

into a connection for a larger group, w

0
—W
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50(1,2)
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mm) SO(1,3) [or SO(2,2)]




The SO(1,3) [or SO(2,2)] connection w4EB defines an SO(1,3) [or SO(2,2)] curvature
out of SO(1,2) geometric ingredients:

ab __ a, b a :S0(1,3
[R oele T],G=i1{+ (1.3)

—TP —.50(2,2)
The signs % correspond to the 2 possible choices:

0 .
Nap = [77819 a] =diag(—1,1,1,0)

FAB = dw4B + w4, wty =

Euler and Pontryagin invariants can be defined using I AB



Euler form: E, = €5cpFABFP = 4€4, (R + e®e?)T*
= 4 d[egp.(R™e€ + le®ePe”)]

N J
e

Euler Chern-Simons 3-form C3

This CS form can be included as a piece of the Lagrangian in 3 dimensions
+  (5is SO(1,2) invariant (Lorentz scalar)

* It changes by a locally exact form (boundary term) under SO(1,3) [ SO(2,2)]



Pontryagin form: P, = FABFg, = (R + e%e?)(Rp, t epey) F 2T%T,
= R*®Rp, T 2(R? eye, + T°T,)
— d[dwabwba + 2w 0w’ w° aJ + Zdw

Pontryagin E[-S 3-form Nieh-Yan %/S
for SO(1,2) C¥ 3-form C3

These CS forms can also be included in the in the 3-D Lagrangian.

« (3" islocal Lorentz invariant
- C¥ is quasi invariant (it changes by a boundary term)



What’s going on?

Let U be a characteristic class: [ U = 1(M) € Z is a topological invariant of M.

Since U is closed, locally can be written as U = dC. (“Boundary term™)

U is also invariant under local SO(2,2n-2) transformations, 0 = §U = §(dC) = d(6C),
= 0C 1s also locally exact, §C = d(something).

Hence, C changes under SO(2,2n-2) by a boundary term: it 1s quasi-invariant at most.



Characteristic Forms and Geometric Invariants

Shiing-Shen Chern; James Simons

: The Annals of Mathematics, 2nd Ser., Vol. 9, No. 1 (Jan., 1974), 48-69. 7 H: Simons 1938

(Received June 13, 1972)

This work, originally announced in [4], grew out of an attempt to
derive a purely combinatorial formula for the first Pontrjagin number of a
4-manifold.

This process got stuck by the emergence of alboundary term|which did not
yield to a simple combinatorial analysis. The boundary term seemed interest-
ing in its own right and it and its generalization are the subject of this

paper.
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General recipe: For every characteristic class in a given dimension 2 11 there is
an associated CS Lagrangian in D = 2n — 1.

The CS form contributing to the Lagrangian in D = 2n — 1 are quasi-invariant
under local Lorentz transformations, which 1s sufficient to make the resulting
theory Lorentz invariant.



The most general Lagrangian for three-dimensional gravity

Ly =ay€eqp. e e? e + ajeq. R® e€ +

+ e T,+ y[da)“ba)ba -+ %w“bwbc w° a]

°  Quasi-invariant under local SO(1,2) transformations
° Fora; = 3ay and f = —2y the action 1s quasi-invariant under local SO(2,2)

mmm) Symmetry enhancement at the CS point
—



6. Summary and scope




Spacetime can be conceived as a fiber bundle

FLocally, }=Mx G

N

>
o

\,F ibers (Lorentz group G)

Spacetime manifold




* The most general pure gravity action 1s a functional of the metric and
affine structures e, w

Ile, w] = fL(e, w)

M
where L 1s a D-form invariant or quasi invariant under local Lorentz

transformations. In general, for D = 2n — 1,

Con-1 =@ €q,a,, "1+ a1 3R + a,e®"°R% 4+ -+ ;1 eR™ ]

\ I /

fixed, dimensionless combinatorial coefficients




* In odd dimensions I can, by a judicious choice of coefficients, be made
quasi invariant under local SO(1, D) [or SO(2,D — 1)] transformations.

*  Symmetry enhancement: SO(1,D — 1) - SO(1,D)

* Fewer arbitrary parameters, protected by the gauge symmetry

* Dimensionless Lagrangian parameters, scale-invariant action principle
* Supersymmetric extensions

*  Built-in conformal symmetry

*  Dualities?



Thanks!
Sylvie, Bin & Li for the warm hospitality,

... and to all of you for your patience!




