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Gravitation is a manifestation of the curvature of the
spacetime geometry

A. Einstein (1915)



The problem with quantum gravity is classical: we don’t
know what it is we want to “quantize”

What is ? What is ?



1. Spacetime Geometry



Spacetime M is a differentiable manifold 
(up to isolated singularities: sets of zero-measure).

Tx

M admits a tangent space Tx at each point.

M

An open set around any point x is diffeomorphic to an 
open set in the tangent.

General Relativity: Dynamics of the spacetime geometry

D-dimensional 
spacetime manifold



Geometry has two ingredients:

• Metric structure (length/area/volume, scale)

• Affine structure (parallel transport, congruence)



2. The two ingredients of 
Spacetime Geometry



Each tangent space Tx is isomorphic to Minkowski space

( : local orthonormal frame, “vielbein”, “soldering form”)

First ingredient of Geometry: Metric Structure



Since Minkowski space is endowed with the Lorentzian metric , 
the diffeomorphism induces a metric structure on M:

Metric on M 



Einstein’s interpretation: 
Existence of tangent space Tx , isomorphic to Minkowski space at every point of spacetime

Locally,  nature can be described as if the fundamental laws of physics are those of  a 
Lorentz-invariant flat spacetime  (~ Special Relativity)

The laws of physics can be locally cast in a Lorentz-invariant form:
This is what a freely falling observer experiences



Principle of Equivalence

The laws of physics can be locally cast in a Lorentz-invariant form:
This is what a freely falling observer experiences

Going into a freely falling reference frame eliminates gravity. 
Conversely, acceleration is locally indistinguishable from gravity.

“The happiest thought of my life”
A.E.



The Equivalence Principle has two important consequences:

1. Covariance: Tensors in M can be related to tensors in Tx

`

Forces, electromagnetic fields, energy, momentum,... and their relations, can be determined 
by measurements either on M or in Tx . The laws of nature must be invariant under changes 
of  frames: General coordinate invariance

This feature can be used to express every physical quantity as measured in Tx

Tensor in MTensor in Tx

Inverse vielbein



2. Local Lorentz invariance: Since the tangent space is invariant under the 
Lorentz group, it must be possible to formulate the Laws of nature in a 
Lorentz-invariant language. Physical observables must transform locally 
as representations of the Lorentz group.

Consider a vector field at a point . Under a Lorentz 
transformation,

Element of the Lorentz 
group acting at the point x

(Fiber bundle structure)



Second ingredient of geometry: Affine Structure (parallelism)

The affine structure is the rule to compare objects at different points in M.

Consider a field that transforms as a vector,

In order to compare the value of at and at one must transport 
the vector between those two points and this requires a rule (recipe). 



Parallelism:

Recipe to compare objects at different points in M.

Let the parallel transported vector from to where

Recipe for parallel transport
(connection)



This notion of parallel transport allows to define a

ovariant derivative:



Under local Lorentz transformations must transform
like :

,

This requires Lorentz connection



• Metric structure (length/area/volume, scale)

• Affine structure (parallel transport, congruence) wa
b

ea



3. Spacetime Recipe



Hilbert’s idea: The equations that govern the spacetime geometry must be 
obtained from an action principle. The equations should be the stationarity 
condition for the action functional, 

 
M

Action:

Einstein’s 
equations

What is  ?



The covariant derivative defines the curvature and torsion 2-forms:

Everything that has been said about Lorentz symmetry is true for

Lorentz curvature:

Torsion:



Taking additional covariant derivative does not produce new geometric objects

Bianchi/Jacobi identities

From and and their derivatives, a very limited number of objects can be
produced: , , , .

• The most general gravity action must involve these elements only.



4. Mixing and cooking procedure
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1-forms:

2-forms:

0-forms:

Vector

Connection

Vector

Tensor

Invariant tensors

must be a D-form constructed only out of exterior products and derivatives of

Pure gravity action in D-dimensions 



One way to make sure that the resulting equations express the same relations 
under Lorentz transformations is to demand that be Lorentz invariant  

With these restrictions there is a very limited number of possibilities for    in 
each dimension. 

Volume form Euler density

Euler characteristic: does not vary under 
continuous deformations of the geometry

:

ଶ



:  

If torsion is discarded (as Einstein did), 
Einstein-Hilbert action



:  

If torsion is discarded (Einstein), Einstein-Hilbert 

Nieh-Yan topological invariant

Euler form
Pontryagin form
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Euler form

Nieh-Yan forms



5. More exotic recipes



In odd dimensions there is a surprise. For each topological invariant density
in D=2n, there exists in addition to the Lorentz invariant terms, quasi-
invariant ones that also give rise to Lorentz-invariant equations.

This happens because those densities can be locally written as the exterior
derivative of a Chern-Simons term.



Consider the Euler and Pontryagin densities in D=4:

where & are 3-forms that define geometric actions for 3-dimensional

geometries.  (And similarly in dimensions 5, 7, 9,...)

What are these Lorentz quasi-invariant actions?



D=3: Combine the SO(1,2) connection and 3-dimensional vielbein

,   

into a connection for a larger group, : 

[or ]



The SO(1,3) [or SO(2,2)] connection defines an SO(1,3) [or SO(2,2)] curvature 

out of SO(1,2) geometric ingredients:

The signs correspond to the 2 possible choices:

Euler and Pontryagin invariants can be defined using 



భ

య
]

Euler form:

Euler Chern-Simons 3-form

This CS form can be included as a piece of the Lagrangian in 3 dimensions

• is SO(1,2) invariant (Lorentz scalar)

• It changes by a locally exact form (boundary term) under SO(1,3) [ SO(2,2)]
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Pontryagin C-S 3-form
for SO(1,2)

Nieh-Yan C-S
3-form

ଷ
௉

ଷ
ே௒

These CS forms can also be included in the in the 3-D Lagrangian.

• is local Lorentz invariant  
• is quasi invariant (it changes by a boundary term)ଷ

௉
ଷ
ே௒



What’s going on?

Let be a characteristic class: is a topological invariant of M.

Since is closed, locally can be written as . (“Boundary term”)

is also invariant under local SO(2,2n-2) transformations, ,

is also locally exact, . 

Hence, changes under SO(2,2n-2) by a boundary term: it is quasi-invariant at most.



(Received June 13, 1972)

S.-S. Chern 1911-2004
J. H. Simons 1938
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General recipe: For every characteristic class in a given dimension there is 
an associated CS Lagrangian in .

The CS form contributing to the Lagrangian in are quasi-invariant 
under local Lorentz transformations, which is sufficient to make the resulting 
theory Lorentz invariant.



The most general Lagrangian for three-dimensional gravity

• Quasi-invariant under local transformations

• For ଵ ଴ and the action is quasi-invariant under local 

Symmetry enhancement at the CS point
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6. Summary and scope



• Spacetime can be conceived as a fiber bundle

Spacetime manifold

Fibers (Lorentz group G)

F : Locally, F =M x G



• The most general pure gravity action is a functional of the metric and    
affine structures 

where L is a -form invariant or quasi invariant under local Lorentz   
transformations.  In general, for ,

భ మ೙షభ

 
M

fixed, dimensionless combinatorial coefficients



• In odd dimensions can, by a judicious choice of coefficients, be made  
quasi invariant under local [or ] transformations.

• Symmetry enhancement: 
• Fewer arbitrary parameters, protected by the gauge symmetry
• Dimensionless Lagrangian parameters, scale-invariant action principle
• Supersymmetric extensions
• Built-in conformal symmetry  
• Dualities? 
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