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Tensor field theories
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o After Wick contraction, it generates (d + 1)-edge-colored Feynman graphs.
@ (d + 1)-edge-colored graphs (also, called graph encoding manifolds (GEM))
are dual to simplicial triangulations of piecewise linear (PL) d-dimensional
pseudo-manifolds [Bandieri, Gagliardi 1982; Ferri, Gagliardi, Grasselli 1986].
@ Relevant for random geometric (path integral) approach to quantum gravity
in dimensions d > 3.

@ Lower dimensional counterpart, matrix models generate the Brownian sphere
at criticality and are rigorously proven to be equivalent to 2-dimensional
Liouville quantum gravity [Le Gall, Miermont 2011; Miller, Scheffield 2015].



tensor models

Melons dominate and they are branched polymers.

[V. Bonzom, R. Gurau, A. Riello, V. Rivasseau "Critical behav-
ior of colored tensor models in the large N limit," Nucl. Phys.

B 853, 174 (2011)]

[R. Gurau, J Ryan "Melons are branched polymers," Annales
Henri Poincare 15, no. 11, 2085 (2014).]
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The melonic 2-point function admits the following expansion:
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where Fuss-Catalan numbers
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tensor models

Fuss-Catalan numbers FC{*™ (d =1 is Catalan) correspond to
@ the number of planar (d 4 1)-ary trees with n vertices and with dn+ 1 leaves.
@ the number of non-crossing partitions of the set {1,2,--- , d n} that contain
only subsets of size d, etc

A Alaloon 4,y

Enhanced tensor models

[V.Bonzom, T. Delepouve, V. Rivasseau, "Enhancing non-melonic triangulations: A
tensor model mixing melonic and planar maps," Nucl. Phys. B 895, 161 (2015)]

Introduced a non-melonic interaction (necklace) properly scaled in N along with a
melonic interaction, and recovered the string suceptibility exponent of pure
2-dimensional gravity v = —1/2, v = 1/2 (trees/branched polymers), and

~v = 1/3 (a proliferation of baby universes).

’ Goal: enhance non-melons. ‘




Tensor field theory models

o Consider a field theory defined by a complex field ¢ : G — C, where

G =U(1)P.
@ The Fourier transform of ¢ yields an order-d complex tensor ¢p!, with
P = (p1,p2,...,pd) a multi-index, where p1, po, ..., ps are also multi-indices

lZs - (ps,lv Ps,2y - aps,D) y Ps,i €Z.
@ ¢p denotes its complex conjugate.

The action _ S ‘ o
s[¢7 (b] — Skmctlc[(b’ ¢)] 4 Slntcractlon [¢7 ¢]7
is given by convolutions of tensors
SHInB, ¢] = ZTro(4 - K - ¢) + p Tra(67)
with

Tra(¢%) = Z¢P¢P7 Tra(¢-K-¢) = Y dp K(P;P') e,

PP’

where Tr,, are sums over all indices p; ; of P on ng tensors ¢ and ¢.

1Considering ¢p as a tensor is a slight abuse because the modes Ps,i range up to infinity. We
cut off at N, then ¢p transforms under the fundamental representation of U(N)P*9, and hence
a tensor.



where the kinetic term kernel can be simply given by
K(P;P’) = dp,p/ P?*,
] d D d D
with dppr = Hs:l Hi:l 5ps,;,p;,-v P2 = 25:1 Zi:l |Ps7i|2b-

Then, denote Tr2(¢_>~ K-¢)= Tr2(P2b¢2) .

Remark

In ordinary QFT on RY, the restriction b < 1 ensures the Osterwalder-Schrader
positivity axiom (to satisfy Wightman axioms on Minkowski), however, here a
priori we have no such restriction but we still restrict b to be a positive real
number.

Partition function is given by

7 / dl/C((E, ¢) eisinteraction[(’gy(ﬁ] ’

where dvc(¢, ¢) is a Gaussian measure with covariance C given by the inverse of

the kinetic term: ]
C(P;P)= ——— dpp.
( ) pr2b + 12 PP



Our enhanced quartic models
(D,d,a,b) e Nx N xR, xRy. ¢is a tensor field with d number of indices.
SHnetie = ZyTra(p?P¢?) + uTra(¢%)
@ model +
ginteration[7 ] — fTr4( 4)+—+Tr (0% &%) + Z,Tra(p%2¢2)

@ model x
Ay
Slnteratlon [¢ (25] N TI‘4(¢4) + 7 Tr ([p2ap/2a] ¢4 Z ZgTrz(P2§¢2)
£=a,2a
where
Tra(¢*) 1=, prezo 912...d P123..d Pv23..ar Pr23..a + Sym(l = 2 = -+ = d)

Tra(p** ¢*) := 30, pezo P11 12,0 Gr23..d P23 .a G123 +Sym(l — 2 — -+ — d),

Tra([p*?p"*°] ¢*) = 2, preae (\P1\23|P/1|2a)¢12md Gr23..d Pv23 . D123
+Sym (1 -2 —--- — d).



Enhanced model +
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Enhanced model x

— 3—"
N— N
%A ZCR

3

SE13,0] = 5 Tra(6*) + 2 Tra((5p>] %) +

Siinetic[q;’ ¢ = ZbTrz(P2b¢2) + uTr2(¢2) )

P2
P

s

Z Ze Tro(p* ¢%)

£=a,2a

W



Advertisement

Amplitudes for illustration d = 3, in the enhanced model +,

A non-melonic Feynman graph

A melonic Feynman graph
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Power counting theorems

The amplitude of a Feynman graph G(V, £) with a set of vertices VV and a set of
propagator lines £, in perturbation theory:

Ag {pcxt} ZH Col vap H( \ (PV))
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where G, is a propagator with line index /, V,(P,) is a given vertex weight that
contains a coupling constant but also a momentum weight if the vertex v is
enhanced. Superficial degrees of divergence are given by,

@ model +

@ model x

Wd;x(g)

wa+(9) = —Q9) — D(Cog — 1)

—2[(D(d —1) = 2b)Nexy — 2D (d — 1))
+1[-2D(d - 1)+ (D(d —1) — 2b)n] - V
+2ap, + 23,02;3 + 2bp2;b .

—Q(G) — D(Cog — 1)
—1[(D(d — 1) = 2b)New, — 2D (d — 1)]
+3[-2D(d — 1)+ (D (d — 1) = 2b)n] - V + 2apx + S, 20 26P2:¢ -



We will focus on enhanced model +.



Power counting theorem for model +

Theorem

The enhanced model +

Skinetic — 7, Ty (p?2¢?) 4+ pTra(¢?)

i rationf[ 7 A A a d
Sftm t [¢’ ¢] _ E Tr4((b4) 4 7“‘ Tr4(P2 ¢4) + ZaTrz(p2 ¢2)

with parameters a = $D(d — 2), b = 3D(d — 3) for arbitrary order d > 3 and
dimension D > 0 is just-renormalisable at all orders of perturbation theory.
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Values of a and b for potentially just-
renormalisable theories with d < 4 and
D < 4.

(Impose wa;+(G)| .26 < 0 and wa;1(G)
is independent of numbers of 4-pt vertices
with wd;+(gn0n—melon)|NCXt:4 — O)




Power counting theorem for model +

Proposition (List of divergent graphs for the model +)

The enhanced model + with parameters a = 3D(d —2),b= 2D(d — 2) for two
integers d > 2 and D > 0, has divergent graphs

classg Next Vaia Vs P+ Q(9) wa;+(9)
(4-pt \) 4 0 0 Via 1 0

/ (mass) 2 0 0 Via 1 D/2

1 (2-pt Z,) 2 0 0 Vig—1 0 D/2

1 (mass) 2 0 1 Via 0 D/2

v (mass) 2 1 0 Vi 1 0

% (2-pt Z,) 2 1 0 Via—1 0 0

% (mass) 2 1 1 Vig 0 0

List of divergent graphs of the enhanced model +. © = 0 is melonic, and Q2 =1 is
nonmelonic.




Moves (enhanced model +)

@ An enhanced melonic insertion has Awgy.+ = 0.

______ — g

@ An enhanced d-dipole insertion has Awg, = —2.

______ =Y

C



Divergent graphs for 4-pt coupling A\ (model +)

@ 4-point divergent graphs (non-melonic graphs) with wy. = 0. They
renormalise 4-pt coupling A Trq(¢?).

00 00
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@ their boundary graph is

N .
c@



Divergent graphs (nonmelonic) for mass (model +) A
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Renormalise mass /Tra(¢?). 2-pt divergent graphs with wy . = g. Class | (non-melonic
graphs). We can insert one d-dipole anywhere on a propagator; one d-dipole with either
color 1 enhanced on a blue dotted propagator, or one d-dipole with any color 1, 2, or 3
enhanced on a red dotted propagator. Then w4 = 0 and they belong to the class IV
(non-melonic graphs) and renormalise mass.



Divergent graphs (melonic) for mass (model +)

Renormalise mass /Tra(¢?). 2-pt divergent graphs with wy . = g. Class 11l (melonic
graphs). We can insert one d-dipole anywhere on a propagator; one d-dipole with either
colors 1 or 3 enhanced on a blue dotted propagator, or one d-dipole with any color 1, 2,
or 3 enhanced on a red dotted propagator. Then, wg.; = 0 and they belong to the class
VI (melonic graphs) and renormalise mass.



Divergent graphs for 2-pt coupling Z, (model +) s

Renormalise Z,Tra(p??¢?). 2-pt divergent graphs with wy . = g. Class Il (melonic
graphs). We can insert one d-dipole anywhere on a propagator; one d-dipole with either
colors 1 or 3 enhanced on a blue dotted propagator, or one d-dipole with any color 1, 2,
or 3 enhanced on a red dotted propagator. Then, wg.; = 0 and they belong to the class
V' (melonic graphs) and renormalise Z,Tr>(p*?¢?).



Effective Action via multiscale analysis

We slice our covariance in a discrete sum of contributions, each corresponding to
an energy sector (scale), i a nonnegative integer,

C(P;P)=C(P)dpp. C(P) = P2b+u ZC(P
i=0

with M > 1 positive real number, and in Schwinger parametrisation,

—2b(i—1)

M 00
G(P) = /M _ dae T G(P) = /1 dov e (P,

— Start by integrating out the fields at high scales > i and include their effects in
the effective action W'.

i /d’jcs;(d_kn f<i) e 5" O99) | where  C<i(P;P') = dp p > G(P)

J<i



Effective Action

— Continue integrating out another layer down to lower scale i — 1 (Wilsonian
renormalisation group). Decompose covariance C<; = G + C<i1 and the

corresponding fields ¢<; = ;i + d<i—1 (¢<i = ¥i + P<i—1)-

‘= /dVC§f71($§ifla peig)e™ W @Psimndsiza),

where the effective action at scale i — 1 is given by
Wi p<io1, p<io1) = |°g/ dvc, (i, ¢i)efsm'amn(’z"“gﬁfﬂ’“"’WSH) i

If the theory is renormalisable, one can assert the effective action at any scale
takes the same form as the initial bare action, therefore

3 - - 1
~W N p<io1, p<io1) = Tra(d<io1 - T - p<iz1) + ETM( 2ii1-Ta) + R(o<i-1),

o X ({p}) is the sum over all amputated 1PI 2-pt graphs,
e [4({p}) is the sum of 1PI 4-pt graphs following the pattern of Trs(¢*),

@ and R(¢<i_1) is the rest of the terms containing 1PR graphs (they do not
contribute to the iteration process) and the finite terms.



Effective 2-pt function (model +)

Expand the 2-pt function contribution,

T({ph) = TUON+ D el 22 o + D 1Pel* Doz 1y

@ mass renormalisation X({0}) is divergent with wy.. = D/2 (classes | and Ill)
and wg.+ = 0 (classes IV and VI).

-} i)\pc 21,2\{ 0.

p}=0 -

® Ojp 2T (py=o= T3 ({0}) is divergent.

1pe|?T$) ({p}) is the sum of all amputated 1P| 2pt-functions following the
pattern of Tra(p2?¢?) on their boundary graphs as dictated by class ||
(wg.r = D/2) and class V (wg.4 = 0).

@ --- are finite.

a=1D(d—2),b=13D(d -

Nlw
~



Effective 4-pt function (model +)

Similarly, expand the 4-point function contribution,

_ (c) 2a . (c)‘ 2b ¢ . (o) | T
Ta({p) = 2o {TO60D) + el 0| o0 00| ]

= = Py

° > . FEC)({O})E T'4({0}) is the sum of all amputated 1P| 4pt-functions
following the pattern of Trq(¢*) on their boundary graphs, and is divergent
(wg;+ = 0).

° Jjp, |zar = I‘(CJ)F({O}) are all amputated 1Pl 4pt-functions following

|{p} 0

the pattern of Trs..(p??¢*) having a boundary with external
|p|?2-enhancement. In fact, there is only the leading order O(\,)

contribution in I‘ffJ)r({O}) and there are no contributions from higher orders
in perturbation theory in A, .

® Jp 2 rﬁf)\{p}fo is finite.

@ .- are finite.



Effective Gaussian measure (model +)

The effective Gaussian measure at the scale i — 1 is given by
dVC”;71(¢§,_71) exp |:):,',1({0})TI‘2(¢2§,-_1) + XC(U“)( 252 {,;},0),;11‘12(/72/)(1 1):| 9

with actually 0, 2DZ‘JP} , = 0. The new covariance for the above Gaussian
(p)=

measure will be
—2b(i—2)

1 / Y dove=olp o) = _ 1 -1y
ae ren,i—1) — p).
Zp,i—1 Jp—26-1) Zp,i-1

o the wave function renormalisation Zb i-1=1+(0), ‘ZI)Z} (o) O) 1.

@ the renormalised mass fiyen j—1 = Zb = (,u, 1 — %;-1({0})).

With a field rescaling ¢<i—1 — /2 i—1¢<i—1 (actually here Z, ;_; = 1) the
effective theory for ¢<;_1 can be recast:



Effective action (model +)

/dVé,-_l(%i—l)

r(C)

, . i-1({0})
exp[ 2Zb1 . Troc (P 9% 1) + Z 4222 Trac(6%_1)
= b,i—1

4;+7i—1({0}) . - P
> a7z, P L) ROV 2 a0 )]

c
Now we can identify the effective couplings at scale i — 1,

EYR(() ri (o) __r oy

Za,' 1= ——— , )\(C) = — . =
= i i—1 2 ? +;i—1 2
Zb1,71 Zb,ifl Zb,ifl

So, compute I's)_ ({0}), TS, ({0}), T ;1 ({0}), and T;_1({0}), and let us
fix the group dimension D = 1 in the following.




Renormalisation of model +

We write the -function for a coupling g as
Be(k) = kokg(k) = 0:8(t),

where k is a momentum scale, and t = log(k/ko).

The momentum scale must be compared to the multiscale slice range k/ko ~ M',
M > 1.



p-functions in dimensionless couplings (model +)

@ Scaling dimension {g} of a coupling g can be read from the degree of
divergence as the coefficient of the corresponding vertex number V (e.g.,
Peskin and Schroeder).

o Recall the degree of divergence for model +,
wir(@lomt = ~Q(G) — (Cog — 1)~ 3 [((d — 1) — 25)Nexe —2(d — 1)
+1[-2(d — 1)+ ((d — 1) = 2b)n] - V,, + 2ap + 2apa, + 2bpays ,
where n-V =4V, + 4V, 4 + 2V, + 2V5.

{AM} = 0 (marginal)  — AL = Ay _
(A} = d—2 (relevant) — X=k92)\
{p} = d- g (relevant) — = K9=3g

1 ~

{Z,} 5 (relevant) — Z,= k:Z,

where we dressed with ~ dimensionless quantities (they do not have scaling
behavior in t nor k).

a=1D(d—2),b=1D(d—2) and d > 3 for tensors



p-function of 4-pt coupling A (model +)

{P} ZK © S o ({r}),

99
where K o) is a combinatorial factor and 5 ({p}) is a formal amplitude sum.

The sum over g4 | runs over a list of 4pt—graphs obeying the multiscale power
counting analysis. Up to one-loop, we have the following two graphs:

H K 0/ 2

One-loop divergent graph, n,(f) at d = 3 contributing to the
flow of A. K () =2,

4
_)\(C) 2 2a 2a
Sep ) =3(5) Z. mers oo

9c (Ipe2P+[qc|2b+4) (IPLI2P+[qc|2P+1)

Zero-loop divergent
graph at d = 3.




S-functions of 4-pt couplings A and A, (model +)

B 2

The S-functions of the 4-pt couplings up to one-loop are (set all couplings to
A© =) and A = A, to simplify),

A-Q—,ren - )\+ 5
Arem = A — S(00)2S0 =3 g
ren 4 ; - (

|4a
—s > 0.
|q[? + pi)?

Observations

@ )\, does not run! and defines a fixed point at all orders of perturbation.
@ X and A} never coincide and could not be set at an equal value (leads to
inconsistency).

Now, we are going to compute...



p-functions of A and A, in multiscale analysis (model +)

2
In the multiscale analysis with discrete scale i, the system can be written as
Lo
Abic1 = Apis Aic1 = A — Z)\+,f So,i

where using Schwinger parameterisation,

Nj—2b—1) A—2b(—1)
Sos = }:\qﬁa/ dae—a(|q|2b+ui)/ dol e~ (g +pm)
q

b

M—2bi M—2bi
and explicit dimensions (with ~ dimensionless quantities),
q=k§, qel
a=k?a.
Then, using Euler-Maclauren formula

T 1, (M?41)?
__ L4a+1;,—4b _ _
50,,' =k k 507,' = 507,' = E |Og W

> 0 (recall M > 1).

FO(M =P log(M~2P))



p-function of A (model +)

In the multiscale formulation, rewriting in a suggestive way
LY
~0i

1., =
—(Aim1 = N) = 1/\17; So,i -

We write the S-function for a coupling g as (k) = kOkg(k) = 0:g(t), where k
is @ momentum scale, and t = log(k/ko) (or k = koe®). The momentum scale
must be compared to the slice range k/ko ~ M'. So, t = log(k/kg) ~ ilog M.

B-function of \ is

O\ 1 log (M* '2/”2
=0 A(t) = B =——4M°
alog M)y — 0N = Ad Ba=g—aan >0

where )\ does not run.
Recalling that \ is dimensionful, A\ = k9=2)\ = kgeld=2)t), integrate and
Mt) = cofar2 e =Dt — tg) + N(tp) e~ (dDEt0)

where the initial condition was set at some IR scale e® < A/kg = e* with ¢y some
constant.



Running of X in enhanced model + and its discussion

g B
Ay = const.

X(t) = ¢ B )\3_ ei(diz)t(t = to) + X(to) ef(d*2)(f*fn)

@ There is no pole in the solution at first order (no Landau pole, not like
ordinary ¢3 model).

o - In the UV (t — o0), A(t) is suppressed by the exponential factors (ordinary
behavior of a relevant coupling). One may be tempted to conclude to
asymptotic freedom, however, A, is constant and does not run to zero.

- In the IR (t — —00), A grows; we may expect phase transition in this
regime.

o It differs from the ¢*-TFT model with only ordinary A coupling, where a
different class of graphs (i.e., melons) dominate yielding asymptotic freedom.

o At d = 2, something special happens; it is an (enhanced) matrix model which
enhances some planar graphs. This deserves a full-fledged investigation.



Renormalisation of 2-pt coupling Z, (model +)

PP TEPY) = D Koo Sg (6)),

gZ:a;L

where the sum is over all amputated 1Pl 2-pt graphs at 1-loop whose boundaries
are in the form of Tr2 y(p*2$?). Up to the first order in perturbation theory, we

have g§ {zé(,c), mes }

! \
\ |
/
< c
/d ; ~
s N
’ N

Z§c) mgc)
1
ZGw = T =242
ooy (Gl + 1)

Furthermore, set the couplings to be independent of colors.



Renormalisation of self energy and mass (model +)

Compute the self energy,

Yo({p}) Z Z Kgse g<c) ({r}),

c=1 gzﬁ

where Qécb) € {m(c), n(c)}c:m _____ 4 up to one loop.

Y 5({p}) corresponds to the part X({0}) + >_. |pc\2b3|pc‘zb2|{p}:0 of total
self-energy function ({p}). However, 8|pc‘zb2’{p}:0 = 0, we only focus on the
contribution ¥ ({0}), namely the contribution to the mass renormalisation.

// \\‘ N \
\ / @ ' c /‘ c
@ @ ~

The graph m'®) in the case d = 3. The  The Feynman graph n( for d = 3.
degree of divergence wd;+(m(°)) = g. wd;+(n(°)) = g.



Summary of perturbative renormalisation S-functions for
model + up to first order

0r Ay =0 Ay = const.

A A(t) = —(d — 2)A(t) + ol Ba|A2e @72t | X(1) = e=(4=2)t(y|Br| A2 t + const.)

Be Zy(t) = =3 Z:(t) — 1Bz, A+ Z,(t) = c1e /2 = 2|8z, Ay
B Ai(t) = —(d = 3)A(t) = |Bual A(2) fi(t) =2 @2~ |8y t + const.e (4D 4 )
—|coBal Aye (4 v = 1]t +2) ~ (181X (o)€@ 2% + Bzl As)

@ A.. It does not run and is constant (nonzero).

° X(t) There is no pole in the solution at first order (no Landau pole, not like
ordinary ¢} model). In the IR, X grows. In the UV, X(t) is suppressed by the
exponential factors (ordinary behavior of a relevant coupling).

@ 1. Common behavior of any relevant mass coupling; In the UV, 1i goes to 0
whereas in the IR the mass exponentially increases.

° Z,(t). Ordinary behavior of a relevant coupling; decreases exponentially in
the UV and suppressed up until it reaches a constant. In the IR, it blows up.



Higher order corrections for model +

SE 2;@

w = 0. 4-pt A renorm.

w = D/2, class Il, 2-pt Z, renorm.

@)

q /
L Q Sl
w = D/2, class |, w = D/2, class Ill,

mass renorm. mass renorm.

/

7= ’@
T A

w =0, class V, 2-pt Z, renorm.

= ¢ r=)
5 =

w =0, class IV,
mass renorm.

n\O)

AN

w =0, class VI,
mass renorm.



to all orders in perturbation (model +)

o No diverging amplitudes contributing to the renormalisation of A, at all
orders in perturbation. A\, is constant at all orders.

e To arbitrary n'" order,
OA(t) = Pa(Ay),
() e =Dt Py(A\y) + const.),
0:Z:(t) = e/2Qun(My) + t Za(t) Qun(A1),
uu(t) = e (A() Run(As) + Ran(s))
+12,(6) (M©) Ran(As) + Rin(A1))
where P,(A1) = BuA2 + ..., Rin(A1), and Q;n(A4) are all polynomials in

A+ and some constants.
o Still, A(t) vanishes in the UV.

@ Apart from ), the solution of these equations requires more knowledge before
interpreting the asymptotic behavior of the model. For instance, the behavior
of Z, strongly depends on Qy., that is yet unknown.



Conclusions

We have explicitly computed the one-loop S-functions of the couplings of two
enhanced TFTs, the model + and the model x, at first order of perturbation
theory.

The system of RG flow equations can be explicitly solved. Both models + and x
have a constant wave function renormalization (Z, = 1). Nevertheless, we have
obtained some nontrivial RG flows of the couplings.

For the model +,
@ To first order in perturbation, one marginal direction A\, = @ is kept fixed and
there are three relevant operators (\, i, Z;) with dimensionless counterparts
(X, 1L, Z,) flowing to (0,0, c#) in UV. Suggests asymptotic safety.

@ To all orders in perturbation, still A, = @ is kept fixed but apart from by

asymptotic behaviors of the other couplings are unknown, but possibly can be
resummable and computed.



Summary of perturbative S-functions for model x

We give a summary of the 1-loop RG flow equations for the model x and their
solutions.

at )\>< =0 >\>< =C

AA(t) = —2 (1) Mt)=ce 2t

Br i(t) = =2 i(t) — Bu1 A(t) a(t)=(—cafuit+c)e ™
Or Zo(t) = —Z,(t) — co Bz, Ax €7t | Zus(t) = o — Bz, Axt+ ca)e ™"
0r Zoa(t) = —Bz,, Ax Za(t) = =Bz, Ax t + G5

1, G, C3, Ca, C5 are all constants.
,Bmli 2dm > 0, ﬁza:2>07 BZZa: 27 > 0.

@ The mass, the 4-point coupling A, and the 2-point coupling Z, are ordinary
relevant couplings, exponentially decaying to a constant, zero and zero
respectively in the UV.

@ The enhanced 4-point coupling A\« does not run.
@ Z5, in the model x grows linearly in t in its magnitude.

Actually, to all orders in perturbation theory, such behaviors persist.




Conclusions, continued

Finally, comparing the RG flow equations between the conventional models and
these enhanced TFT, + or x models, shows drastic differences. In the present
context, they are simple enough to exhibit explicit solutions.

@ These models may not give rise to quantum gravity, but possibly a new kind
of exhotic ¢* models.

@ Solve for higher orders. The model may be resummable.



the end






Illustration below of d-simplices in d = 2, 3, 4 dimensions, where we embedded
(d + 1)-edge-colored graphs.
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(Stranded representation.)
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