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« Osterwalder-Schrader reconstruction theorem ('75):

Quantum Field Theory Euclidean Quantum Field Theory

Defined on M, ~R"x RY"" teit Defined on R?

“—>
Wick rotation
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« EQFT: Certain Probability measures v on the space of distributions S'(R?).

1
norm.

EuO]= [ 4 O@)V(d@) = [ O(p)e " ()"

where “p(d@) =exp(-Q(¢, ¢))d¢” is the Gaussian free field,

Qp.0) =5 [, (Mp(x)P+ Vo (x)P)dx V() =2[ U(p(x))dx

positive quadratic form U:R?Y— R bounded from below



Simplest case: Gaussian Free Field

For A1=0,

“n(de) =e=dg”,
Siee(#) = Q0. 0) = (9. (M= ) ) =5 [, (g () +IVp(x)P)dx,
formally corresponds to a Gaussian measure on S’ (R%) with
Cov (k) = (m*=A)"",

and supp(u) c H*(RY) for any a<%d
— only for d =1 supported on functions.

— Starting point for more interesting EQFTs



Gibbsian pertubations of the GFF

“v(de)=

e Wu(de)” where V(g)-= /\LRdU((p(x) Ydx

norm.

Some possible starting points to obtain non-Gaussian models:

e ind=2:
2p-1
U(x)=x%+ Z ax’ forany p>0,
l
U(x) =exp(px),
U(x) =cos(px),
e ind=2,3:

U(x)=x*-bx™



Euclidean Quantum Field Theories

Goal: Make sense of

1 -S(g)

v(0) - o [ Q@)@ dg
B /lf[RdU o(x))dx
_norm.fS'(er)O((‘D) p(de)”,

with p the Gaussian free field, some U:R — R and

S(p) = [ S (V)P + mip(x)?) + U(p(x) )dx
Problems:

Large Scales: No decay in space: S(¢) =0 at best (non-sense at worst)

Small Scales: iz not supported on function spaces but only on distributions

— U(p(x)) ill-defined



Approximate Measures

With V(o) = [,U(@(x))dx, define approximations

e Ppu(de)

Large Scale Problem
[ U(@(x))dx =007

cut-off in space p€ C°(RY):

VE(@) = [rap(x) U(@(x))dx

e " uE(dg),

Small Scale Problem
@(x)=22? for peHZ 2~ (Rd)

Regularise the measure:
pE—
1¢ supported on a function space
Additionally:
Choose V¢ depending on ¢



The Game of EQFT

Question: Can we recover a EQFT?

1

ps€ - -VPi(e) €

VPE(O) = oo [ Q@) P (dg)
43 _ 1 _V((p) 2]
V(O) = o [ e Q@) Wn(dop) ™

Problem: v is not absolutely continuous w.r.t. the Gaussian free field p

— Move to different characterisations for v”>¢ that do not rely on absolute continuity



Stochastic Quantisation: Basic ldea

Starting point:
Given a Gaussian (here p) and two cut-offs p, >0 we can construct v**
(namely as the Gibbsian perturbation of the GFF)

Think of a map

“PrEpur>vPE” peCP(R?), e>0.

Idea: Study the maps ¢ to learn about the measures v”¢ and (ideally) remove both
regularisations p, ¢.

Examples: Parabolic &£ =0,- A or elliptic £ =-A SQ

Fo=E-V'(¢) foraspace time white noise &

[G. Parisi, Y. Wu - Perturbation theory without gauge fixing - Sci. Sin. - 1981]



The FBSDE SQ-equation

Input:
- a scale decomposition (fOtCSds)t>0=: (Gy) =0 of the covariance of the GFF
Geo=(m?*-A)"!
. a cylindrical Brownian motion (B;), on L*(R?)
Output:

Mod suitable UV and IR regularisations, a measure

v(de) = L e V(@ pu(de), where y:=Law(meC;/2dBt)~GFF.

norm.

as v:=Law(¢«), where ¢ is the solution to

t. t.
0= | GE[-DV(po)lds+W,, W= [ G%dB,,  te[0,e0] (1)



For V=0,

pi=W,= [ GI*dB,  p=law(W)

is a martingale: Given the small scale description W,,, we can recover an effective descrip-
tion

W;=I[E;[W,] for any scale t=0.




Interpretation as RG-flow: Interacting case

For V +0,

t. t .
0! = [ GE[-DV(ps)]ds+ [ G)2dB,,

is no longer a martingale under P, but ¢, € %, for any t=0.

That is

(z!, W)= ([ GE[-DV(pd))ds, [ GIdB,),

provides a scale-by-scale coupling and an effective description of the field ¢ at any
scale t=0.

— The FBSDE describes the dynamics of changing between scales.



Why this approach; aka why listen to me talk?

- Better (physical) interpretability: Explicit description at every scale without reference to
a limiting procedure (c.f. (5cc - wilsonto fields... arxiv:2307.11580])

+ Pathwise, scale-by-scale coupling of the GFF and the EQFT
« No reference to the potential V required, sufficient to study the force F=-DV

- precise control over v from p (e.g. decay of correlations, singularity, OS-axioms, LDP,
etc)

« Fully non-perturbative: Approximate solutions to the renormalisation flow equation

o.F, + %Tr(GSDZFS) + DFSGSFS =0, Fo=-DV.,

are sufficient (if you can control the resulting FBSDE).



A case study: sine-Gordon in the first few regions



Stochastic Quantisation Equation: Mod suitable renormalisation, the FBSDE,
o= [[GE[F(pu)]ds+ W, W= [ GldB,, (2)
with the cosine interaction (in d = 2)

V(p)=A[ cos(Bo(x))dx;  F():=-DV(p)=ABsin(p(x)).

oAV (®)

is a stochastic quantisation equation for “vsg(dg) =
full space R? via

u(de)” for p?<6m<8m, AER on the

norm.

Law (@) = VsG.

Moreover: The FBSDE (2) can be effectively used to study properties of the infinite volume
measure Vsg.



Effect of S2€[0,87)

Formally,

[cos(Bpw)] = [cos(B(Ze+ W) ] = [cos(BWe)[cos(BZx) - [sin(fWe) [sin(fZe),

and
[cos(BW.s)] € C P4 = [cos(B(¢))] well-defined only for 2<4s.
sin(BZ.) € C*F/4x
treshholds
2<47T Da Pl’atO-DebUSSChe re ime (_C.f. [N.Barashkov - A stochastic control... arXiv:2203.06626]
8
ﬁ2< 67T What thIS WOl‘k covers (_C.f. [M.Gubinelli-SJ.M.- The FBSDE approach...arXiv:2401.13648]
Bi=8m criticality




Problems to overcome:

1. Regularisation: for the large scales p€ C°(RY) and the small scales T €[0, o) and
instead study a family of approximate fields (¢! "):cjo.r) and pass to the limit.

(— Will be hidden in this talk; sorry)

2. Dependence on ¢..: The equation at scale t <co depends on all small-scale information
(pooa

0= [[CE[F(po)]ds+ W, W= [[Gl2dB,
In other words, we are looking for a solution (¢, Y, n) to an FBSDE

Qi = J:GSYSdS_’_ W, solved forward from ;=0
Y= F(¢o) - f:oqsd W,, solved backwards from Y= F(¢c)



Why is 2. a problem?

B t . B t . 12
@t—foGSES[F(¢m)]d5+M, Wt_focs dB.. (3)

Recall ¢.,~ W.,€ B*(RY) for a<—$s0 is a distribution

i.e. F(¢o)(x)=ABsin(Be(x)) makes no sense/ will diverge
However: [E,[F(¢.)]€F lives at scale s<oco, meaning it should be a function.

Upshot: Need a way to bring down the scale of the force F(¢.) from oo~ s.



How to bring down the scale?

Or= jOtGSES[F(wm)]d5+ Wi, Wi- fotc';/zdss,
For a generic scale dependent functional (F;);s by Ito's formula,
Foo(pes) = Fe() + | :°<85F5 + %Tr(CSDZFS) + DFSCSFS) (ps)ds+ [ “DFy(ps)dW,
Therefore if (F;)¢s is a solution to the (backward) RG-flow equation,

Hf :=9,F,+ %Tr( GsD?F;) + DF;GsFs=0, Fuo=F
we find

[ES[F((pOO)] = [ES[FOO((POO)] = Fs((Ps)'

and instead of an FBSDE we have the SDE

t .
Qi = fOGSFS((pS)ds+ W;.



There's a catch...

o,F, + %Tr(GSDZFS) +DF,G,F,=0 F.=F

is a nonlinear and infinite dimensional PDE for a function

F: S (RY) — S'(RY), t€[0,00].
Asking for exact solutions may be too much!
Instead: Can we find approximate solutions (f;)c[o ] such that F.=F,

Hf =8,F, + %Tr(GSDzFS) +DF,G,F,~0,

is small (in some sense)?



The approximation error

Given any (F;)e[o,] define

HE:=o,F, + %Tr(CSDZFS) +DFGF, Fo.=F
and
Ri:=E[ Foo( @) = Fi(@:)] with Ro=0.
to obtain the FBSDE

t .
Qr= fOGS(FS((pS) + Rs)d5+ M/t
R, = Etfthf(¢5)ds+ [EtftooDFS(q)s)Csdes.

Note: Hf =0= R=0, and we recover the SDE as before; but R allows more freedom in the
choice of (F)tefo,00)-



Two related sub-problems

Reformulated equation: ¢;=Z;+ W;

Z,= [ Gu(Fi(p) + R)ds

t€[0,00] (4)
Rt—[Ef (s d5+[Ef DF,(¢,)GsR.ds,

Now the problem comes down to two (related) steps

1. Find a “good enough” approximation (F;)c[o) to the flow equation which allows for
good estimates of || F;( ;)| uniformly in the (surpressed) regularisation.

2. Show well-posedness for the FBSDE (4) and obtain uniform a-priori estimates which
allow to remove the regularisations.



Theorem 1. Let f><6m. There is a choice (F;)c[o,00) such that Fr(W;) = ApB[sin(W;)] + O(A?) and there
is a solution (Z,R) € L= (dP; L*(R?)) x L®(dP, L°(R?)) to the FBSDE

Zt—jG s(@s) + Rs)ds

. t€[0,00].
Rt=[EtL H! ((ps)ds+[EtL DF;(s) GsRsds,

Moreover,
o If [Al<1 or p€ CZ(R?), then this solution is unique.

« Regularity: For any €>0, and p€ [ 1,00] there is a version of the unregularised solution s.t.
Z=Z,€Ll™(dP; By ,({x)7%)), a=2-p*/4Ar-¢,

« Stochastic quantisation: It holds that

vsG = Law (Ze + Weo) =Law (o).

Here [-] denotes the usual Wick-ordering and B, ,(w) are the usual weigthed Besov spaces.



The FBSDE can define vsg = Law(Z,+ W.,) on the full space for f? <6 without reference
to a limiting procedure

t .
Zt= fO GS(FS((PS) + RS)dS,
Rt = [Etf:oHs((Ps)dS + [Etf:oDFs((Ps) GsdeSa

and Z,+ W, is an effective description at scale t.

— Can try to transport properties of the GFF W, ~ 11 to the sine-Gordon field Z,+ W~ vsg
along the FBSDE.



OS-Axioms: Verify OS-Axioms from FBSDE (3) + the limit is not Gaussian

Decay of correlations: For two compactly supported observables O,, O,,
Cov, (0, 0;)<e™™' [:=d(supp(O;),supp(0,)),

where the implicit constant depends only on regularity constants of O;, O, and y =
y(m).

Singularity: For 7= 4, v{; is not absolutely continuous w.r.t. the GFF even in finite
volume.

Variational description & LDP: The Laplace-transform of the infinite volume
measure satisfies a Boue-Dupuis type variational problem (& LDP as a result)

W(f)i=-log [ ., e Psa(de)

= lHi2mc n[E[f((Poo(F+v))+7/5((p(v+r_),(p(F))+5(V,F)].
vEH?((x)")



The effective force: Approximate solutions to the flow equation



Recall: The two related sub-problems

Reformulated equation: ¢;=Z;+ W;

Z- ftCS(FS(%) +R)ds
0 00 00 . te [0,00)
R, = [Etft HE (@y)ds+ [Etft DF,(¢s) GRds,

HF:=a,F, + %Tr(GtDth) + DF,G,F,, (5)

Now the problem comes down to two steps

1. Find a “good enough” approximation F to the flow equation (5) which allows
for good estimates of ||F,(¢,)|~ uniformly in the UV and IR cut-offs.

2. Show well-posedness for the FBSDE and obtain uniform a-priori estimates which allow
to remove the UV and IR regularisations.



Aim: Systematic way to find “good” approximate solutions to
1 - .
atFt+ ETI’(GtDZFt) + DFthth 0, Foo((,b) = F(()b) = Aﬂﬂs‘n(ﬁ¢)ﬂ
Ansatz: Picard iterations starting from FL% =0, define inductively

o FL + —Tr G.D?F! Z DF £>0,

U+t"=t

with terminal conditions Fo[o” - F and F'=0 for the levels ¢> 1.
Then, with F;:= Z{, 0 I we compute the remainder

Y DRIGH]

0. <t
C+07 >t



Heuristics: What bounds to expect

For concreteness, suppose that G, =t 2 (") 5o that

Gl < (£) 2.

Heuristically, the bounds

2
IF (@) |+ IDFE (@) |15 (5T where &= _ﬂ_n

propagate: they are compatible with

aFL + —Tr (G,D?F}! Z DF
C+t'=¢
since

IR @olle< Y [ dsIDA @ AG ]I (@o)-= [ ds (s sty

U+t'=t



Heuristics: Why should this approximation work?

Assuming for the moment,

IF @0+ IDF 055! where 5=1-£- ©)

since Ry=1E, [, HE Y (p,)ds + [Etf:oDFS[sF]CSRSds we require

f:\—
0+ 1

IHE T @oles Y IDAT @0 Gl FE (@) (2 Ve (R,) < B2< fRi=——8

U+ >t
Problems to overcome:
« for ¢< (", we cannot propagate the bounds along the flow from oo,
— this is solved by localisation+renormalisation

« The bounds on F\") and H="Vin general depend polynomially on V¢ (degree depending
on ¢, ).



Set-up for the SG-flow equation

Starting point: /(@) =-A,Bsin(fo(x)) = [ Po(x) _ e=¢)] and thus

3.FL + Tr(G,D2F} Z DF ¢>0, FM=Fand F1=0 for the levels > 1.

U+t"=t

Naturally reproduces functionals of the form

FL‘[[]((P)(XO = Z fdxz...de[ﬁ[{](X1,,._,X[)eimﬁ‘.ﬂ(xl)”-eimﬁ(p(xr).

O1,... 0p€{£1}

— flow equation for the coefficients f1), try to estimate these kernels in a suitable norm
and recover estimates for FL*]

Fully inductive procedure: produces bounds in the full subcritical regime.



Where's the catch?

Finding approximate solutions to the flow equation is only the first step:

One still needs to show well-posedness for the resulting FBSDE,

t .
o= [ Go(FE(ps) +R )ds+jc”2d35,
Rt—[Ef HL (ps)ds+[Ef DF16,R ds.

In general, the argument described yields, for 6=1-%/8x

IF(@)l= = Y (P (14 (t) IVl + <) IV @Il

t<t”

which becomes more and more nonlinear as f?— 87, and ¢ = ¢*(f§) — oo.



Some interesting problems: sine-Gordon

Can we cover a wider parameter range f€ [0, 8°) for some (f")*>67?

« For f%€(0,8): model is known to be renormalisable but with infinitely many thresh-
hOIdS l’equil’ing additional I‘enormalisations. [G. Benfatto, G. Gallavotti, F. Nicolo, et al.- On the massive sine-Gordon

equation in {the first few/ higher/ all} regions of collapse - Comm. math. phys. {1982/ 1983/ 1986}]

« Many partial results, valid for different ranges of A, § or finite/infinite volume. But:
No works covering the full subcritical regime on the full space for all A.

Smaller questions
Can we remove some of the smallness assumptions on the coupling constant A?

i.e. Variational problem for any A? OS-Axioms for any A?



Some interesting questions: The FBSDE approach

More generally:
« Can we make this approach work also for other models, e.g. ¢3?

— Requires global solutions for the resulting FBSDE and thus strong a priori estimates
for FBSDEs

« The FBSDE only uses the force F=-DV; we never need to reference the potential V,
—> Can we consider non-scalar models, where the potential does not make sense?

« General solution theory for these kinds of FBSDEs? Are there more general conditions
about the existence/uniqueness of solutions?



Variational description on R*

The Laplace transform

W(f)i=-log [ e Pvsa(do),

satisfies

W)= inf E[f(@u(F+v))+ [ T[#:(@s(F+v)) - Fo(@s(v)]ds+E (v, P)],

veH2((x)")
where

. & is a quadratic form on [?(RR?),

« # is a function of V, formally given by

. 1 .
71() = (21 TH(GDVE) +3DUGD V) (o).

« @(v) is the solution to

Pe(v) = [ [ dsGy(Fy(@s(v))) + [ dsQuus+ W

o 3= C;/th where R; is the solution to the FBSDE.



Laplace principle for i — 0:

Let 1" be Gaussian with Cov(u) =A(m?-A)~" and (formally) define

vo(dg) - 22V @) o g,

Then, vi; satisfies a Laplace principle with good rate function

— l 2_ 1/m?2
()= /\fRz(cos(,B(p) 1)+ 2LRZ(,D(m A) e, for o€ H'(R?)
00 otherwise.

lim ~filog via(e™ /) = inf {f(¢)+1(¢)}.
—0 QEH



