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e Posets and Lorentzian geometry: an introduction
e Causal Sets: A route to quantising spacetime

* The quantum partition function: entropy versus action

® Sequential growth dynamics and quantum vector measures
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Posets and Lorentzian Geometry

® Spacetime is a Lorentzian manifold (M, g), where g has signature (—,+,+,+)

Example: Minkowski/Flat Spacetime

® ds* = g, dx"dx" can be positive, negative or zero |

ds? = — df* + dx* + dy? + dz*

® At every point p € M, the vectors in T,M are arranged in "lightcones” to the past and the future.

® \/ectors are either
» future or past timelike (ds?* < 0)
» future or past null/lightlike (ds* = 0)

» spacelike (ds® > 0)




Posets and Lorentzian Geometry

Defines an order relations on M : < (causality relation) and << (chronology relation)

® x < y if there exists a curve y from x to y whose tangent everywhere is future-directed and noS}—
spacelike.

® < istransitive:ifx<zand z<y=>x<y
® |f (M, g)is a causal spacetime, <isacyclic:x<y=y £x

Principle of Causality

» (M, <) is a partially ordered set

| Acycliccx<y=>y K x

| Transitive: x <y, y<z=>x<2z{

Future lightcone

7 (—,—,+,+)has
no associated poset

Past lightcone
Robb, 1914, "A theory of time and space”



A quick review of terminology

» Causal relation < : Tangent to y from x to y is everywhere either timelike or null
» Chronological relation << : Tangent to y from x to y is everywhere timelike

» Both (M, <) and (M, <<) are posets

® Causal Futureand Past: Jt(x) = {ye M|x<y}, J x)={ye M|y < x}

® Chronological Future and Past: IT(x) = {yeM|x <<y}, I"x)={ye M|y << x}

Open Sets

Requires g, to be at least C?



What part of (M, g) is (M, < )?

Under conformal transformations:

g, =Q% . ds?=0=ds* > M, <)=M, <)



A Flat Spacetime Result
d-1

» M? d dimensional Minkowski spacetime, ds* = — dt* + Z dx?
i=1

» Chronological Automorphism f: M? - M9, x << y & f(x) << f(y),V x,y € M?.

» Conformal transformations: Lorentz group + local dilatations.

E== — . = = ——— ——___ ———— —‘h
‘ Theorem: The group of chronologlcal automorphisms is |somorphlc to the group of )'

! conformal transformations on M9 . --- Alexandrov and Ovchinnikova, 1953, Zeeman, 1964




Causal Structure as the "Essence” of Lorentzian Geometry

® let(M,,g),(M,,g,) be two causal spacetimes

® et (M,, <<;),(M;, <,) be their respective chronological and causal posets

® Chronological Bijection: f: (M, <<, ) = (M,, <<, ), [f(x) <<, f(y) ©x <<, y,Vx,y €M,
® Causal Bijection: f: (M|, <;) = (M,,<,), f(x) <, f(y)) ©x<,y,Vx,y €M,

® Future and past distinguishing spacetimes: I7(x) = I7(y) or 7 (x) =" (y) = x =y,

-- Hawking and Ellis, Penrose

® Chronological Bijection = Causal Bijection if they are future and past distinguishing

— Kronheimer and Penrose, 1967

® Conformal Isometry : F: (M,,g)) = (M, 8,), & = Q281

| — — __ __ _ — - — ———— e ————— —— — *:—_—*f——“
| Theorem: If a chronological bijection exists between two future and past distinguishing }»\
 spacetimes then they are conformally isometric |
| --- Hawking, King, McCarthy, 1976, Malament, 1977 |




Causal Structure as the “Essence” of Lorentzian Geometry

—Hawking, King, McCarthy: 1976
—Malament: 1977
-- Kronheimer and Penrose, 1967

HKMMKP theorem: (M, ) =

Local Volume Element

“Causal Structure is 9/10th of the spacetime” -- Finkelstein, 1969

» This decomposition of spacetime is unique to signature (—,+,+,+,...,+)
» Suggests a non-Riemannian way of thinking about spacetime topology and geometry

» Alexandrov intervals I(x, y) = I"(x) N I~(y) are open sets

» Alexandrov interval topology = Manifold topology in strongly causal spacetimes

» Chronological bijection = dimension and the topology (for special distinguishing spts) is the

same. -- Malament, 1977, Parrikar and Surya, 2011
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Discretising the “Essence”:

“To admit structures which can be very different
from a manifold. The possibility arises, for example,
of a locally countable or discrete event-space

equipped with causal relations macroscopically
similar to those of a space-time continuum.”

|deas of discrete Causal Structure

| &

| &

| &

Axiomatic Approach to Causal Structure

“Extract from (M, g) its causal essence”

-- Kronheimer and Penrose 1967

Kronheimer and Penrose 1967

Finkelstein, 1969

‘tHooft, 1979

Hemion, 1980



Discrete Posets or Causal Sets: A route to quantum spacetime

HKMMKP theorem: (M, g) =

Continuum  Continuum-Discreteness correspondence Discrete



. -- Myrheim, 1978
Th e Ca uSa | Set H ypOth €315 -- Bombelli, Lee, Meyer and Sorkin, 1987

1. Causal Sets are the fine grained structure of spacetime

Ord




The continuum approximation M,g) ~ C j
| » Order < <> Causal Order, <, |

e n « V cannot be implemented covariantly on a regular lattice

(pV)"
n!

e (n) x V, viaa Poisson sprinkling: Py(n) = eV, pl=V

» Lorentz Invariance is preserved for C =~ M¢“

» Non-locality: resulting graph does not have a fixed/finite valency

ean random lattic

' Very different from a regular lattice or eve

ﬂ — = S— r— e —— -




Geometric Reconstruction: spacetime from causal sets

e Fundamental Conjecture: It C =, (M}, ) and C &, (M,, &), then (M}, g,) ~, (M, &)

:i; (My, 81) ~, (M5, 8,): When are two Lorentzian Spacetimes Close .

—

¢ |ndirect evidence:

e Timelike distance — Myrheim, Myer, Sorkin, Glaser, Surya, ..

* Spacetime dimension — Brightwell, Gregory

* Spatial homology —Major, Rideout, Surya

e D'Alembertian — Sorkin, Henson, Benincasa, Dowker, Glaser

e Scalar curvature --Benincasa, Dowker, Glaser

e Einstein-Hilbert Action --Benincasa, Dowker, Glaser

e Gibbons-Hawking-York boundary terms — Buck, Dowker, Jubb & Surya
e |ocality and Interval Abundance — Glaser & Surya

e Spatial and Spacelike Distance — Rideout & Wallden, Eichhorn, Mizera & Surya, Eichhorn, Surya, Versteegen
® Horizon area —Dou & Sorkin, Barton, Counsell, Dowker, Gould & Jubb, ..

e Scalar Field theory —Johnston, Sorkin, Dowker, Yazdi, Surya, Nomaan X, Jubb, Rejzner, et al.

e Entanglement Entropy —Sorkin, Yazdi, Surya, Nomaan X



Quantum Dynamics for Causal Sets

“Causal Sets are the fine grained structure of spacetime”

e In the continuum the gravitational path integral is: Z =

* Continuum replaced by discrete structure: g = ¢ "

e Lorentzian Path Sum: Z = Z ¢ 7 58pG(¢)
c€Q,

» Q is the sample space of all n element posets

» Spp(c) is the Benincasa-Dowker-Glaser action

e Large n (thermodynamic limit): Z = lim Z,

n—oo




Discrete Einstein-Hilbert Action: — Benincasa & Dowker, 2010,

. . — Dowker & Glaser, 2012,
The Benincasa-Dowker-Glaser Action(s) — Glaser, 2014

A discrete interval is an intersection of an up-set with a down-set

TN T AN
LN N\

N; = # of J-element intervals

1 / d-2 ,B Jax
¢ —SD ()= -« <—> <n+—dZCdN>
° ° BDG d J Y
l : h fp ad =0
f A . : ) fp: Planck Length, £: discreteness scale, ay, B, Cf: known
) consts.
1 @ 4
, E9: For d =4, %SBDG=% n— Ny+ 9N, — 16N, + 8N,
J (p) is "foliated” by the the e e
J — element intervals to the past of | :(
p € M? | im —(Sppi) = Spy + bdry terms “[

| P ?“



“Causal Sets are the fine grained structure of spacetime”

Q2 : sample space of all n-element causal sets

| Qn | ~ 2”72+37”+0(n)

- Kleitman and Rothschild, Trans AMS, 1975

Typical causal sets are Kleitmann-Rothschild (KR):

e elements of L, form an antichain

~nl2
n
. Vee[l_l,ElvanO-Ofe € L, such that e <. €, W;@M

n
e Veels, EINZ no.of ¢’ € L, such that e’ <. e

e Veel,,eel;, e<e

| Q| ~ 2500

Onset of asymptotic regime n ~ 100

-- J. Henson, D. Rideout, R. Sorkin and S.Surya, JEM, 2015



A KR poset is not continuum-like mnm
~nl2

e Does not arise from a typical Poisson sprinkling into any continuum (M, g)

e Myrheim-Myer Continuum Dimension is fractional :

(R) _T@+DI@/2) | Tdgp+ DM@yl2) _ 3

n? 41°(3d/2) AT'(Bdyr/2) 16

e Maximal time-like distance Hgp = 3

¢ |nterval Abundances are not like the continuum:
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The layered hierarchy
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e K-layered poset: C =L, UL,...Lg:e<e,e€l,e €l =>k<Kk

o |QE)| ~ 2eImHol) - (KY) < 1/4,,

b

e Dominant hierarchy: |Q,(13)| > |Q§lz)| > |Q,(14)| > |Q,(,15)|

-- D. Dhar, JMP, 1978
-- Promel, Steger, Taraz 2001

\
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e For K <« n none of these are like continuumlike

0.05 0:1 0.15 O:Z 0.25 0.3

FIG. 5. c(d) in the range [0.05, 0.32].



. . -- Sorkin, unpublished,
The contribution from layered posets R o 2017

-- A.Anand Singh, A.Mathur and Surya, 2021
-- P. Carlip, S. Carlip and S. Surya, 2022

> ZKR — Z eiSBDG(C)/h -- P. Carlip, S. Carlip and S. Surya, 2023
cEQp
> Number of links: Ny = pNy* = pn2 W |

IS¢ = //t<n — Ny + 9M—16%+8y3> |

Combinatorial

Enumeration argument

> SggG = upn’* + o(n?)

. » S;: Link Action
> = ZKR — Z F(No) elSL/h t

N, » ['(N,y): Density of states

» Forall K<« naswell, Zpy = Z C(N,) eSi/h
NO

'[Ny = pNy**] < h(p) = —plnp — (1 — p)In(1 — p) — Dhar’s Entropy function.

1/2 Bilayer calculation

> Ly~ eiM”J dp exp [n2 (i/Mo pl2 + h(2p) /4) + 0(,,2)] —Loomis and Carlip, 2017
0



— e — _ _— - = ——— e ——— - i — ﬁ
l

' Theorem: If £ > the BDG action suppresses all K-layer orders when |
I‘ K < < n, in any dimension. )

min’

® in is dimension dependent, 1.13 < (¢,;,/¢}) <2.33, (Eg:d =4, ¢, =1.1367)

n

o/ = Z ¢7S8pG(©) Bilayer calculation of

n . -
ceQ \QK) —Loomis and Carlip, 2017

e \What about continuumlike causal sets?

e Ongoing work suggests that causal sets ~ (M, g) are NOT suppressed..

- What are other (non-layer

O = S

— —_— —

model of causal set dynamics




— Rideout & Sorkin,2000-2001
— O’Connor, Martin, Rideout & Sorkin, 2001
. . — Brightwell, Dowker, Garcia, Henson, Rideout & Sorkin, 2003
The Sequential Growth Paradigm  Zgiightwel, Georgiou, 2010,
— Brightwell and Luczak, 2011-2012,
— Dowker, Johnston & Surya 2011,
— Surya & Zalel 2020
— Dowker, Imambaccus, Owens, Sorkin & Zalel, 2020....

Stochastic triple (Q, 2, u) p q

Colour represents coordinate time
> Internal temporality: new

P4q

element can never be to n=2
the past of an existing
element

> u(ch) = pu(cl) if thereis
an order isomorphism

between ¢, and ¢/

> “Bell causality” or
spectator independence

Classical Stochastic triple (Q, 2, y) — =——————  Quantum Stochastic triple (€, 2, u,)



Dynamics as a Measure Space (€2, <, )

>

>

>

— Brightwell, Dowker, Garcia, Henson, Rideout & Sorkin

Q2: Space of countable past finite causal sets
Cylinder sets: cyl(c,) = {c € Q|c| =c,}
<. Event Algebra generated by

generate the finite time “labelled” algebra

cyl( @ )

 is closed under finite unions, intersections and complements

Q Q

g v

» u: A — X a colour” invariant measure

» But & is not covariant!

&

A



Covariant Events in &

r
oe
1""11

<

=
>

Stem Event Post Event

Originary Event

» Analogues of the “return to the origin” event in the random walk
» Sigma algebra completion : & — &()

» Quotient sigma algebra S = &/ ~ is covariant.

» Does y extendto &() ?

» If 4 is a probability measure, then the Kolmogorov-Caratheodary-Hahn extension theorem

guarantees this for any choice of u



Quantum Sequential Growth — Dowker, Johnston & Surya 2011,
---Surya & Zalel, 2020

Classical Stochastic triple (2,2, }i) w—————) Quantum Stochastic triple (€2, 2, u,)

_:4
|

| Histories Hilbert Space

e V:Freevectorspace:f:d — C
(f.e)= ). fH@g(BD(a.p)

i a, feA
L lim1f-gll, =02 (£} ~ (g

[—00

e X=Vi~, {fNEX

L D@ p)

| ° Hermitian,

e u=Ilx,leE
o (py(),u, ()= D(a,p)

e D(a,f}): decoherence functional

| * Biadditive

e Strongly Positive

— Dowker, Johnston & Surya, 2010
— Dowker, Johnston & Sorkin,2010

| Caratheodary-Hahn-Kluvnek theorem:
| U, extendsto ©(&) only under special convergence conditions

- ~ e ———————— —— — — —— — e = — = — ———— — — _—




Experiments with Quantum Sequential Growth

e peC, D(c,c,) =A*(c;)A(c,) does not extend to &(H)

— Dowker, Johnston, Surya 2010

e Simple examples of Commutative Dynamics (# =~ C) @
n=2

which extend to © () — Surya & Zalel, 2020 = .
. . p rq ;
e Non-Commutative Dynamics, # ~C",m > 1 pq )
q
» Transfer Operators:

et ) =Allc), = 2 Al =1 =3
i€l(c,) @ @

» Color independence: Ay = Ay,, ify ~vy,

where Ay is a product of a sequence of

transfer operators — ongoing work




In Conclusion..

e Causal set theory is strongly motivated by Lorentzian geometry

e Continuum spacetime can be reconstructed from causal sets : lots of evidence!
* There is an intimate interplay between causality/order and dynamics

 Causal set theory is a discrete playground for mathematicians to explore!

e Combinatorics: enumeration of (sub)®-dominant posets ?
e Quantum Stochastic Growth:

» Transfer Operator Algebras

» Vector Measure and its Extension

» Recent comparison of Classical SG with Hopf-Algebras

® ... --Yates, Zalel, 2023

Thank you!



