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Stokes phenomenon

• Stokes phenomenon：confluent hypergeometric
function、Airy function、Bessel function and so on.

Example

e1/z as z → 0.

Example

1F1(a, b; z) =
∑∞

n≥0
a(n)

b(n)
z−n

n! , with a(n) := a(a+ 1) · · · (a+ n− 1).

1F1(a, b; z) ∼
Γ(b)

Γ(a)
e−zzb−a +

Γ(b)

Γ(b− a)
(−z)a, as z → 0.

• A fundamental subject in differential equations, special
functions, integrable systems. It has deep relation with
Gromov-Witten theory, stability conditions, symplectic and
complex geometry, cluster algebras, TQTF and so on. However,
very hard to study.
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Stokes matrices of ODEs with second order poles

• Consider the linear system on z-plane

dF

dz
=

(
u

z2
+

A

z

)
F,

where F (z) ∈ gln, u = diag(u1, ..., un), and A ∈ gln.
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Idea: study the transcendental Stokes phenomenon via
quantum algebras

4 / 20



Part I

Quantum group and the Stokes phenomenon at
second order pole
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Quantum groups and canonical basis

Uq(gln) is an associative algebra with generators qhi , ej , fj

for each 1 ≤ i, j ≤ n− 1,

[ei, fj ] = δij
qhi−hi+1 − q−hi+hi+1

q − q−1
;

for |i− j| = 1,

e2i ej − (q + q−1)eiejei + eje
2
i = 0.

As q → 1, it becomes U(gln).

• Find a basis B of U(gln) such that for any representation
ρ : U(gln) → End(L(λ)), the set ρ(B) ⊂ L(λ) is a basis. Solved
by taking q → 0 or ∞ as in Uq(gln). The combinatorics is
• (Crystal basis) A finite set Bλ equipped with operators ẽi and
f̃i model on a canonical weight basis of L(λ): if v ∈ Lµ, then
ẽi(v) ∈ Lµ+αi .
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ẽi(v) ∈ Lµ+αi .

6 / 20



Quantum groups and canonical basis

Uq(gln) is an associative algebra with generators qhi , ej , fj

for each 1 ≤ i, j ≤ n− 1,

[ei, fj ] = δij
qhi−hi+1 − q−hi+hi+1

q − q−1
;

for |i− j| = 1,

e2i ej − (q + q−1)eiejei + eje
2
i = 0.

As q → 1, it becomes U(gln).

• Find a basis B of U(gln) such that for any representation
ρ : U(gln) → End(L(λ)), the set ρ(B) ⊂ L(λ) is a basis. Solved
by taking q → 0 or ∞ as in Uq(gln). The combinatorics is
• (Crystal basis) A finite set Bλ equipped with operators ẽi and
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Stokes matrices of ODEs in noncommutative rings

• U(gln): generator {eij}, relation [eij , ekl] = δjkeil − δliekj .

• n by n matrix T = (Tij) with entries valued in U(gln)

Tij = eij , for 1 ≤ i, j ≤ n.

• For any u ∈ hreg(R) n by n diagonal matrices with distinct
real eigenvalues, any representation L(λ) of U(gln), consider

dF

dz
= h

( u

z2
+

T

z

)
· F,

for a function F (z) ∈ Matn ⊗ End(L(λ)).

• The quantum Stokes matrices Sh±(u) = (Sh±(u)ij), with
entries Sh±(u)ij in End(L(λ)).
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Representations of quantum group from Stokes matrices

Theorem (Xu)

For any fixed h ∈ C∗ and u ∈ hreg, the map (with q = eh/2)

Sq(u) : Uq(gln) → End(L(λ)) ; ei 7→ Sh+(u)i,i+1, fi 7→ Sh−(u)i+1,i

defines a representation of the Drinfeld-Jimbo quantum group
Uq(gln) on the vector space L(λ).

• Equivalently, take standard R-matrix
R ∈ End(Cn)⊗ End(Cn),

R =
n∑

i ̸=j,i,j=1

Eii⊗Ejj+eπih
n∑

i=1

Eii⊗Eii+(eπih−e−πih)
∑

1≤j<i≤n

Eij⊗Eji.

Then
R12S±

(1)S±
(2) = S±

(2)S±
(1).
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A dictionary

Table: A dictionary

Stokes phenomenon at 2nd order pole Quantum group Uq(gln) with q = eπih

1 Nonresonant case h /∈ Q Realization of Uq(gln) at a generic q
2 Resonant case h ∈ Q Representation at roots of unity
3 WKB approximation as h → ∞ gln-Crystals
4 Wall-crossing in WKB approximation Cactus group actions on crystals
5 Whitham dynamics HKRW covers on eigenbasis
6 Analytic branching rules Braching rules/ Gelfand-Tsetlin theory
7 Asymptotic Riemann-Hilbert problem An explicit Drinfeld isomorphism
8 Involution of equations Quantum symmetric pairs
9 Formal power series solutions Yangians/ Trigonometric R-matrix
10 Semiclassical limit Dual Poisson Lie groups
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WKB approximation and crystal limits

• A gln-crystal is a finite set which models a weight basis for a
representation of gln, and crystal operators ẽi and f̃i indicate
the leading order behaviour of the simple root vectors on the
basis under the crystal limit q → 0 in quantum group Uq(gln)
(q = eh/2).

1

h

dF

dz
=

( u

z2
+

T

z

)
· F

• The WKB method, named after Wentzel, Kramers, and
Brillouin, is for approximating solutions of a differential
equation whose highest derivative is multiplied by a small
parameter 1/h.
• to study the limits of q-Stokes matrices Sh±(u) = (Sh±(u)ij)
as h → −∞, where Sh±(u)ij ∈ End(L(λ)).
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WKB analysis and crystals

• The algebraic characterization of the h → ∞ asymptotics of

Sh±(u) ∈ End(L(λ))⊗ End(Cn) of 1
h
dF
dz =

(
u
z2

+ T
z

)
· F .

• The action of the off-diagonal entry Sh+(u)k,k+1 on certain
canonical basis {vi(u)}i∈I of L(λ) has,

Sh+(u)k,k+1 · vi(u) =
∑
j∈I

ehϕ
(k)
ij (u)+

√
−1g

(k)
ij (u,h)(vj(u) +O(h−1)

)
,

where ϕ
(k)
ij (u), g

(k)
ij (u, h) are real valued functions for all

1 ≤ i, j ≤ k ≤ n− 1.

• The WKB approximation of Sh+(u)k,k+1 naturally defines an
operator ẽk by picking the unique leading term

ẽk(vi(u)) := vj(u), if ϕ
(k)
ij (u) = max{ϕ(k)

il (u) | l ∈ I}.
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A transcendental realization of crystals

Conjecture (Xu, Proved under the WKB asmptotic assumption)

For any u ∈ hreg(R), there exists a canonical basis {vI(u)} of
L(λ), operators ẽk(u) and f̃k(u) for k = 1, ..., n− 1 such that
there exists constants c, c′

lim
q=eπih→0

qcSh+(u)k,k+1 · vI(u) = ẽk(vI(u)),

lim
q=eπih→0

qc
′
Sh−(u)k+1,k · vI(u) = f̃k(vI(u)).

Furthermore, the datum ({vI(u)}, ẽk(u), f̃k(u)) is a gln−crystal.

Theorem (Xu)

The conjecture is true as un ≫ un−1 ≫ · · · ≫ u1. And the
WKB datum coincides with the known gln-crystal structure on
semistandard Young tableaux.
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Part II

Arbitrary order pole and quantization of
Riemann-Hilbert mpas
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Quantum Stokes matrices at pole of order k + 1

• The universal enveloping algebra U
(
gln(C[t]/tk)

)
generated

by {eijtm−1} for i, j = 1, ..., n and m = 1, ..., k subject to the
relation

[eijt
a, eklt

b] =

{
δjkeilt

a+b − δliekjt
a+b, if a+ b ≤ k

0, if a+ b > k.

• Consider the equation

dF

dz
= h

(
u

zk+1
+

T[k]

zk
+ · · ·+

T[2]

z2
+

T[1]

z

)
· F,

where u ∈ hreg, h is a complex parameter, each T[m] is an n× n

matrix with entries valued in U
(
gln(C[t]/tk)

)
(T[m])ij = eijt

m−1, for 1 ≤ i, j ≤ n, 1 ≤ m ≤ k.

• 2k quantum Stokes matrices

Si(u) ∈ Û
(
gln(C[t]/tk)

)
⊗ End(Cn) for i = 1, ..., 2k

Here S2i+1 is upper triangular and S2i is lower triangular.
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• Take the standard R-matrix R ∈ End(Cn)⊗ End(Cn),

R =

n∑
i ̸=j,i,j=1

Eii⊗Ejj+eπih
n∑

i=1

Eii⊗Eii+(eπih−e−πih)
∑

1≤j<i≤n

Eij⊗Eji.

• Introduce

S(1)[i] := S
(1)
1 S

(1)
2 · · ·S(1)

i ∈ Û
(
gln(C[t]/tk)

)
⊗ End(Cn)⊗ End(Cn),

S(2)[i] := S
(2)
i+1S

(2)
i+2 · · ·S

(2)
2k ∈ Û

(
gln(C[t]/tk)

)
⊗ End(Cn)⊗ End(Cn).

Here the indices are taken modulo 2k.

Theorem (Xu)

For any u ∈ hreg, the quantum Stokes matrices satisfy the
algebraic relations (RL...L = L...LR)

R12S(1)[i] S
(2)
[i] = S(2)[i] S

(1)
[i] R

12, i = 1, ..., 2k − 1.

15 / 20



Part III

Quantization of Riemann-Hilbert maps
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Irregular Riemann-Hilbert maps at pole of order k + 1

• Consider the differential equations for a function f(z) ∈ GLn

df

dz
=

(
u

zk+1
+

Ak

zk
+ · · ·+ A2

z2
+

A1

z

)
· f,

where u ∈ hreg, and Ai ∈ gln.
• For fixed u, the moduli space is the dual A(t) ∈ gln(C[t]/tk)∗

A(t) = A1 +A2t+ · · ·+Akt
k−1.

• The space of Stokes matrices is M(k) := {(U− × U+)
k}.

Theorem (Boalch)

For fixed u ∈ hreg, the irregular Riemann-Hilbert map

S(u) : gln(C[t]/tk)∗ → M(k) ; A(t) 7→ (S1, ..., S2k)

is a locally analytic Poisson isomorphism.

• Each Si(A(t);u) is in Ŝym(gln(C[t]/ta))⊗ End(Cn).
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Quantum RH maps at arbitrary order poles

For the case of pole of order k + 1, we have the commutative
diagram

U
(k)
ℏ

q-Stokes matrices {Si}−−−−−−−−−−−−−−→ U(gln(C[t]/tk))[[ℏ]]

h → 0

y h → 0

y
Fun(M(k))

ν(u)∗−−−−→ Sym(gln(C[t]/tk))

Here recall

ν(u) : gln(C[t]/tk)∗ → M(k) ; A(z) 7→ (S1, ..., S2k).
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Quantum RH maps at a second order pole

Associative algebra Uℏ
q-Riemann-Hilbert map−−−−−−−−−−−−−−→ Underformed algebra U

h → 0

y h → 0

y
Fun(MBetti)

Pull back of RH map−−−−−−−−−−−−−→ Fun(MdeRham)

Here in some context, Fun(MdeRham) is the Poisson algebra of
functions on the moduli space of connections, Fun(MBetti) is the
Poisson algebra of functions on space of monodromy data.

In a very special case, MBetti is the dual Poisson Lie group, Uℏ the
quantum group and MBetti = g∗ the dual Lie algebra, and U = U(g).
Theorem 1.2 states that the RH map is a Poisson map. Thus a
quantum analog of Theorem 1.2 would be an associated algebra
isomorphism between U(g) and Uℏ(g), constructed in a transendental
way (from a study of some quantum differential equation).
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Thank you very much!
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