Yang-Baxter relations and Stokes phenomenon

Xiaomeng Xu

Peking University

Algebraic, analytic, geometric structures emerging from
quantum field theory
29 Feb—16 Mar, 2024, Sichuan University

meng Xu Peking iversity Algebraic, : Yang-Baxter relations and Stokes phenomenon



Stokes phenomenon

e Stokes phenomenon: confluent hypergeometric
function ~ Airy function - Bessel function and so on.
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Stokes phenomenon

e Stokes phenomenon: confluent hypergeometric
function ~ Airy function - Bessel function and so on.

el/z gs 2 — 0.

1Fi(a,b;52) =303 %%, with a™ = a(a+1)---(a+n—1).

F(b) 7zzb7a F(b)

1Fi(a, b;2) ~ T(a)© Th—a)

(—2)%, asz—0.

e A fundamental subject in differential equations, special
functions, integrable systems. It has deep relation with
Gromov-Witten theory, stability conditions, symplectic and
complex geometry, cluster algebras, TQTF and so on. However,
very hard to study.
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Stokes matrices of ODEs with second order poles

e Consider the linear system on z-plane

where F(z) € gl,,, v = diag(u1, ..., u,), and A € gl,.
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Stokes matrices of ODEs with second order poles

e Consider the linear system on z-plane

where F(z) € gl,,, v = diag(u1, ..., u,), and A € gl,.
o Any fundamental solution F(z) € GL,, has asymptotics

u 1 — - == F(Z)
e;?:_H--F( )~Ty asz— Oinleft/right planes Hy., ,’ StokesiEfE
I
| /\
> ~> ];i o F L+ =
o The different asymptotics of F(z) are measured by the ratio Z=0

for some invertible constant matrices T'x. /

Si(Au)=T, -T7",

called Stokes matrix, similarly define S_(A, u).
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Idea: study the transcendental Stokes phenomenon via
quantum algebras
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Quantum group and the Stokes phenomenon at
second order pole
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Quantum groups and canonical basis

Uy(gl,,) is an associative algebra with generators g, €5y £
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Quantum groups and canonical basis

U,(gl,) is an associative algebra with generators ¢", e;, f;
o foreach 1 <i,j<n-—1,

hi—hi1 —hi+hit1

1 )

—4q
q9—q

les, f5] = 5ijq
e for |i — j| =1,
efe; — (¢ +q Heiejei + ejef =0,
As g — 1, it becomes U(gl,,).

e Find a basis B of U(gl,,) such that for any representation
p:U(gl,) — End(L(\)), the set p(B) C L(A) is a basis.
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Quantum groups and canonical basis

Uy(gl,,) is an associative algebra with generators g, €5y £

o foreach 1 <i,j<n-—1,
hi—hit1 —hithit1

1 )

—4q
q9—q

q
[es, f3] = 04
e for |i —j| =1,
e?e; — (¢ +q Veieje; + eje? = 0.

As g — 1, it becomes U(gl,,).

e Find a basis B of U(gl,,) such that for any representation
p:U(gl,) — End(L(\)), the set p(B) C L(\) is a basis. Solved
by taking ¢ — 0 or oo as in U,(gl,,). The combinatorics is

e (Crystal basis) A finite set By equipped with operators é; and
fi model on a canonical weight basis of L(\): if v € L, then
€i(v) € Lya,-
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Stokes matrices of ODEs in noncommutative rings

o U(gl,): generator {e;;}, relation [e;;, ex] = 0;jreq — dien;-
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Stokes matrices of ODEs in noncommutative rings

o U(gl,): generator {e;;}, relation [e;;, ex] = 0;jreq — dien;-
e n by n matrix T' = (T;;) with entries valued in U(gl,,)

Tij:eij, forlgi,jﬁn.

e For any u € byeg(R) n by n diagonal matrices with distinct
real eigenvalues, any representation L(\) of U(gl,,), consider

SR

for a function F(z) € Mat,, ® End(L(\)).
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Stokes matrices of ODEs in noncommutative rings

o U(gl,): generator {e;;}, relation [e;;, ex] = 0;jreq — dien;-
e n by n matrix T' = (T;;) with entries valued in U(gl,,)

Tij:eij, forlgi,jﬁn.

e For any u € byeg(R) n by n diagonal matrices with distinct
real eigenvalues, any representation L(\) of U(gl,,), consider

dF v T

Y (LY F
dz h(z2 * z) ’

for a function F(z) € Mat,, ® End(L(\)).

e The quantum Stokes matrices Sp4(u) = (Sp+(u)i;), with
entries Sp4(u)i; in End(L(X)).
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Representations of quantum group from Stokes matrices

Theorem (Xu)

For any fired h € C* and u € byeg, the map (with ¢ = ehl?)

=0

Sq(u) : Ug(gl,) = End(L(X)) 5 €; = Spy(w)iit1, fi = Sh—(w)it1

defines a representation of the Drinfeld-Jimbo quantum group
U,(gl,) on the vector space L(X).
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Representations of quantum group from Stokes matrices

Theorem (Xu)

For any fired h € C* and u € byeg, the map (with ¢ = ehl?)

Sq(u) : Ug(gl,) = End(L(X)) 5 €; = Spy(w)iit1, fi = Sh—(w)it1

=0

defines a representation of the Drinfeld-Jimbo quantum group
U,(gl,) on the vector space L(X).

e Equivalently, take standard R-matrix
R € End(C") ® End(C"),

n n
R = Z Eii@Ejj+€7rih Z Eiz‘@Eii—i-(emh—e_Wih) Z E;;QF;;.
i#5,1,5=1 i=1 1<j<i<n
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Representations of quantum group from Stokes matrices

Theorem (Xu)

For any fired h € C* and u € byeg, the map (with ¢ = ehl?)

=0

Sq(u) : Ug(gl,) = End(L(X)) 5 €; = Spy(w)iit1, fi = Sh—(w)it1

defines a representation of the Drinfeld-Jimbo quantum group
U,(gl,) on the vector space L(X).

e Equivalently, take standard R-matrix
R € End(C") ® End(C"),

n n
R = Z Eii@Ejj+€7rih Z Eiz‘@Eii—i-(emh—e_Wih) Z E;;QF;;.
i#5,1,5=1 i=1 1<j<i<n

Then
IRMsI) s EIRE el @) g

8/20



A dictionary

Table: A dictionary

Stokes phenomenon at 2nd order pole | Quantum group Ug(gl,) with ¢ = e
1 Nonresonant case h ¢ Q Realization of Uq(gl,,) at a generic ¢
2 Resonant case h € Q Representation at roots of unity
3 WKB approximation as h — oo gl,,-Crystals
4 Wall-crossing in WKB approximation Cactus group actions on crystals
5 Whitham dynamics HKRW covers on eigenbasis
6 Analytic branching rules Braching rules/ Gelfand-Tsetlin theory
7 | Asymptotic Riemann-Hilbert problem An explicit Drinfeld isomorphism
8 Involution of equations Quantum symmetric pairs
9 Formal power series solutions Yangians/ Trigonometric R-matrix
10 Semiclassical limit Dual Poisson Lie groups
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WKB approximation and crystal limits

e A gl -crystal is a finite set which models a weight basis for a
representation of gl,, and crystal operators €; and f; indicate
the leading order behaviour of the simple root vectors on the
basis under the crystal limit ¢ — 0 in quantum group Uy(gl,,)
(g =e"?).
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WKB approximation and crystal limits

e A gl -crystal is a finite set which models a weight basis for a
representation of gl,, and crystal operators €; and fz indicate
the leading order behaviour of the simple root vectors on the
basis under the crystal limit ¢ — 0 in quantum group Uy(gl,,)
(g =e"?).

1dFt ru T 7

nar =7 t3)
e The WKB method, named after Wentzel, Kramers, and
Brillouin, is for approximating solutions of a differential
equation whose highest derivative is multiplied by a small
parameter 1/h.

10/ 20



WKB approximation and crystal limits

e A gl -crystal is a finite set which models a weight basis for a
representation of gl,, and crystal operators €; and fz indicate
the leading order behaviour of the simple root vectors on the
basis under the crystal limit ¢ — 0 in quantum group Uy(gl,,)
(g =e"?).

1dFt ru T 7
nar =7 t3)
e The WKB method, named after Wentzel, Kramers, and
Brillouin, is for approximating solutions of a differential
equation whose highest derivative is multiplied by a small
parameter 1/h.
e to study the limits of q-Stokes matrices Sp4(u) = (Sp+(u)ij)
as h — —oo, where Sy (u);; € End(L(X)).
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WKB analysis and crystals

e The algebraic characterization of the h — oo asymptotics of

Shar(u) € End(L()) ® End(C") of 14 = (% + 1) . F.
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WKB analysis and crystals

e The algebraic characterization of the h — oo asymptotics of
Shar(u) € End(L()) ® End(C") of 14 = (% + 1) . F.

e The action of the off-diagonal entry Sp4 () k41 on certain
canonical basis {v;(u)}ier of L(\) has,

k) ), _
Sh_i_(u)]{;,k;_t'_l . Ul(u) —_ Z eh(bij (’LO“F\/TQU ( ,h) (U_] (U) ue O(h 1))’
J€elI

where gbg-c) (u), gg;) (u, h) are real valued functions for all
1<ij<k<n—l.
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WKB analysis and crystals

e The algebraic characterization of the h — oo asymptotics of
Shar(u) € End(L()) ® End(C") of 14 = (% + 1) . F.

e The action of the off-diagonal entry Sp4 () k41 on certain
canonical basis {v;(u)}ier of L(\) has,

(k) —1,%) (4, _
Sht (W1 - vilw) = Y M FVIIIED (40) + O(RTY)),
J€elI

where gbg-c) (u), gg;) (u, h) are real valued functions for all
1<ij<k<n—l.

e The WKB approximation of Sy (u)k k41 naturally defines an
operator € by picking the unique leading term

Er(vs(w)) = vj(u), if ¢\ (u) = max{s}) (u) | { € I}.
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A transcendental realization of crystals

Conjecture (Xu, Proved under the WKB asmptotic assumption)

For any u € breg(R), there exists a canomnical basis {vr(u)} of
L(X), operators éx(u) and fr(u) for k=1,....,n — 1 such that
there exists constants c, ¢

lim q°Sht (W) g k1 - vr(u) = éx(vr(u)),
q=e™"—0

lim % Sp (Wit - vr(w) = fu(vr(w)).

g=e™ih—0

Furthermore, the datum ({vr(u)},éx(w), fu(w)) is a gl,—crystal.
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A transcendental realization of crystals

Conjecture (Xu, Proved under the WKB asmptotic assumption)

For any u € breg(R), there exists a canomnical basis {vr(u)} of
L(X), operators éx(u) and fr(u) for k=1,....,n — 1 such that
there exists constants c, ¢

lim q°Sht (W) g k1 - vr(u) = éx(vr(u)),
q=e™"—0

Hm ¢ Sho (g1 - vr(w) = fro(vr(w)).

g=e™ih—0

Furthermore, the datum ({vr(u)},éx(w), fu(w)) is a gl,—crystal.

Theorem (Xu)

The conjecture is true as Uy > Up—1 > -+ > uy. And the
WKB datum coincides with the known gl,,-crystal structure on
semistandard Young tableauz.

= = = = =
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Arbitrary order pole and quantization of
Riemann-Hilbert mpas
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Quantum Stokes matrices at pole of order k + 1

e The universal enveloping algebra U (gl,,(C[t]/t*)) generated
by {eijtm_l} fori,j =1,...,mand m = 1, ..., k subject to the
relation

5jk€ilta+b = 5li6kjta+b, ifa+b<k

.. a b p—
[ewt 7ek:lt ] { 0’ 1f0,+b > k.
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Quantum Stokes matrices at pole of order k + 1

e The universal enveloping algebra U (gl,,(C[t]/t*)) generated
by {eijtm_l} fori,j =1,...,mand m = 1, ..., k subject to the
relation

eat0tb 8. o, a+b g <
[es°, et?] = AT Ouekt™",  Hatb<k
0, ifa+b>k.

e Consider the equation

dF e
:h< +ﬂ+ +3+L”)-E

dz Zk+1

where u € Breg, h is a complex parameter, each Tj,,; is an n X n
matrix with entries valued in U (gl,,(C[t]/t*))

(Tim))ij = €it™ ", for 1<i,j<n, 1<m<k
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Quantum Stokes matrices at pole of order k + 1

e The universal enveloping algebra U (gl,,(C[t]/t*)) generated
by {eijtm_l} fori,j =1,...,mand m = 1, ..., k subject to the

relation
[est%, exit?] = Sjkeat™™? — duer;t**,  ifa+b <k
R 0, ifa+b>k.

e Consider the equation

dF e
:h< +ﬂ+ +3+L”)-E

dz Zk+1

where u € Breg, h is a complex parameter, each Tj,,; is an n X n
matrix with entries valued in U (gl,,(C[t]/t*))

(Tim))ij = €it™ ", for 1<i,j<n, 1<m<k
e 2k quantum Stokes matrices
Si(u) € U(gl,(C[t]/t*)) ® End(C™) fori=1,...,2k

Here S9;11 is upper triangular and So; is lower triangular. ,
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EEE———————.
e Take the standard R-matrix R € End(C") ® End(C"),

Z E11®E]g+ethEu®Eu+ Tih e 71'1h Z Ezg®
1#£j,0,5=1 i=1 1<j<i<n

e Introduce

sty = 8Vs8Y - sV e U (gl (ClH]/t*)) ® Bnd(C") ® End(C™),

St = S50 - S5 € U (g1, (Cl1)/#+)) ® End(C") ® End(C™).

Here the indices are taken modulo 2k.

Theorem (Xu)

For any u € breg, the quantum Stokes matrices satisfy the
algebraic relations (RL...L = L...LR)

RHSE])SS) Sﬁ)SE])R” i=1,..2k—1.

= = = = =



Quantization of Riemann-Hilbert maps
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Irregular Riemann-Hilbert maps at pole of order k£ + 1

e Consider the differential equations for a function f(z) € GL,

df U Ay Ay Ay
- =z .. -,
z z

where u € breg, and A; € gl,,.
e For fixed u, the moduli space is the dual A(t) € gl,, (C[t]/t*)*

A(t) = Ay + Aot + - + AptFL,
e The space of Stokes matrices is M®*) := {(U_ x U, )F}.

Theorem (Boalch)

For fized u € breg, the irreqular Riemann-Hilbert map
S(u) : gl (C[t]/t*) — MPB  At) — (S, ..., Sar)

18 a locally analytic Poisson isomorphism.

e Each S;(A(t);u) is in Sym(gl, (C[]/t%)) ® End(C™).
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Quantum RH maps at arbitrary order poles

For the case of pole of order k + 1, we have the commutative
diagram

q-Stokes matrices {S;}

g

iL4>0l }14>0l
Fun(M®) — Sym(gl,(C[t]/t*))

Here recall

v(u) : gl, (ClE]/t*)* = M®) s A(z) — (Sy, ..., Sog).
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Quantum RH maps at a second order pole

g-Riemann-Hilbert map

Associative algebra Uy, Underformed algebra U

h%Ol hﬁol

Pull back of RH
Fun(M pgett;) —— - Fun(MdeRham)

Here in some context, Fun(Mgerham) is the Poisson algebra of
functions on the moduli space of connections, Fun(M pet;) is the
Poisson algebra of functions on space of monodromy data.

In a very special case, M g is the dual Poisson Lie group, Uy the
quantum group and M pget; = g* the dual Lie algebra, and U = U(g).
Theorem 1.2 states that the RH map is a Poisson map. Thus a
quantum analog of Theorem 1.2 would be an associated algebra
isomorphism between U(g) and Ux(g), constructed in a transendental
way (from a study of some quantum differential equation).
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Thank you very much!
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