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What is a (set) species?



Species

André Joyal, Alain Connes, Olivia

Caramello and Laurent Lafforgue,

IHES (2015)

The theory of combinatorial species

was introduced by André Joyal in

1980. Species can be seen as a

categorification of generating

functions. It provides a categorical

foundation for enumerative

combinatorics.

2



Species 101

A set species P consists of the following data.

• For each finite set I, a set P[I].

• For each bijection σ : I → J , a map

P[σ] : P[I]→ P[J ].

These should be such that

P[σ ◦ τ ] = P[σ] ◦ P[τ ] and P[id] = id.

In other word, a species P is a functor

P : FSetbij → Set,

from the category of finite sets and bijection FSetbij and the category of

arbitrary sets and arbitrary functions Set.

It follows that each map P[σ] is invertible, with inverse P[σ−1].
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Species

An element x ∈ P[I] is called a structure (of species P) on the set I, or

P-structure on I.

We refer to map P[σ] as a relabeling of structures.

Two P-structures x ∈ P[I] and y ∈ P[J ] are isomorphic if there exists a

bijection σ : I → J such that P[σ](x) = y.

A set species P is connected if P[∅] is a singleton; that is, if there is only

one structure on the empty set.

A morphism f : P→ Q between set species P and Q is a collection of

maps

fI : P[I]→ Q[I]

which satisfy the following naturality axiom: for each bijection σ : I → J ,

fJ ◦ P[σ] = Q[σ] ◦ fI .
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First example: species of linear orders

Let I be a finite set of size n. A linear order on I is a bijection

ℓ : [n]→ I.

Equivalently, ℓ is the ordered list ℓ1, . . . , ℓn in which each element of I

appears once.

The species of linear orders L is defined as follows:

• L[I] := { linear orders ℓ : [n]→ I on I}.
• If ℓ is a linear order on I and σ : I → J is a bijection, then L[σ](ℓ)

is the list obtained by replacing each i ∈ I for σ(i) ∈ J :

L[σ] := σ ◦ ℓ.
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Species of linear orders

For example,

L[a, b, c] = {abc, bac, acb, bca, cab, cba}.

If σ : {a, b, c} → {x, y, z} is

a

��

b

��

c

��
y z x ,

then L[σ] : L[a, b, c]→ L[x, y, z] is

abc

��

bac

��

acb

��

bca

��

cab

��

cba

��
yzx zyx yxz zxy xyz xzy .

The species L is connected, as there is a unique linear order on the empty

set.

When defining species, we often omit the specification of relabeling maps.
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Partitions and compositions

Let I be a finite set.

A partition of a set I is a collection X of disjoint nonempty subsets of I

whose union is I. The subsets in the collection X are the blocks of the

partition. We write X ⊢ I to indicate that X is a partition of I.

A composition1 of I is a sequence of disjoint nonempty subsets of I

whose union is I. We write F ⊨ I to indicate that F is a composition of

I. For example, if I = {a, b, c, d, e, f, g, h},
X = {{a, c, d}, {b, g}, {e, f, h}} ⊢ I , F =

(
{a, c, d}, {b, g}, {e, f, h}

)
⊨ I.

Exercise: Let Π[I] be the set of all partitions of I. Show that the

“obvious” definition for relabeling partitions induces a species Π.

We call Π the species of partitions.

1Set compositions are also called surjections, packed words, ordered set partitions,

multipermutations, ballots, or preferential arrangements.
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Partitions and compositions

The species Σ of set compositions is defined similarly.

Let I be a finite set. Consider the map πI : Σ[I]→ Π[I] given by

πI(F ) := set partition obtained by forgetting the order of F.

If F ⊨ I, we can relabel the elements of F and then forget the order

among the blocks, or vice versa, with the same result:

πJ ◦ Σ[σ](F ) = Π[σ] ◦ πI(F ),

for every bijection σ : I → J . This is a naturality axiom. Therefore,

forgetting the order among the blocks of a composition induces a

surjective morphism

π : Σ ↠ Π.

There is also an injective morphism L ↪→ Σ obtained by identifying a

linear order wits a composition into singletons.
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Exponential species

The exponential species is a simple and ubiquitous object in the theory of

combinatorial species.

Let I be a finite set. The exponential set species E is defined by

E[I] = {∗I}.

Proposition
For every set species P, there is a unique morphism of species P→ E.

Proof.

If I is a finite set, there is only one possible map P[I]→ E[I].

Species and morphisms of species form a category Sp, in which E is

terminal.
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Generating function associated

to a species



“Following a slow (and forced)

evolution in the history of

mathematics, the modern notion of

function (due to Dirichlet, 1837) has

been made independent of any

actual description format. A similar

process has led André Joyal to

introduce in combinatorics the

notion of ‘Species’ to make the

description of structures

independent of any specific format.

The theory serves as an elegant

‘explanation’ for the surprising power

of generating function uses for the

solution of structure enumeration. ”

– François Bergeron, Gilbert Labelle,

Pierre Leroux.
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Generating function associated to a species

A species P is finite if each set P[I] is finite, for every finite set I.

The exponential generating function of P is

P(z) =
∑
n≥0

|P[n]|z
n

n!
.

Here P[n] = P[[n]] where [n] = {1, 2, . . . , n}, and |S| denotes the
cardinality of a set S.

For example,

E(z) =
∑
n≥0

1
zn

n!
= ez and L(z) =

∑
n≥0

n!
zn

n!
=

1

1− z
.
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1

1− z
.
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Generating function associated to a species

Recall that a morphism f : P→ Q between set species P and Q is a

collection of maps

fI : P[I]→ Q[I]

which satisfy the following naturality axiom: for each bijection σ : I → J ,

fJ ◦ P[σ] = Q[σ] ◦ fI .

The species P and Q are isomorphic if each fI is a bijection. In this case,

we write P = Q.

Lemma
Let P and Q be two finite species. Then

P = Q =⇒ P(z) = Q(z).

The reciprocal is not true in general. We will see an example in a

moment.

12
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Combinatorial operations



Cauchy product

Given set species P and Q, their Cauchy product is the set species P ·Q
defined by (

P ·Q
)
[I] =

∐
S⊔T=I

P[S]×Q[T ]

for each finite set I.

Explicitly, a structure of species P ·Q on a set I consists of:

• a decomposition S ⊔ T = I;

• a P-structure on S ;

• a Q-structure on T .

Given (x, y) ∈ P[S]×Q[T ], its relabeling under a bijection σ : I → J is

the
(
P ·Q

)
-structure

(x′, y′) ∈ P[S′]×Q[T ′],

where S′ = σ(S), T ′ = σ(T ), and x′ and y′ are obtained by relabeling x

and y under the restricted bijections σ|S : S → S′ and σ|T : T → T ′,

respectively.

13
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Cauchy product

The Cauchy product is associative (up to isomorphism) and we may

consider iterated products

P1 · · · · · Pk.

A structure of type P1 · · · · · Pk on a set I consists of an ordered

decomposition S1 ⊔ · · · ⊔ Sk = I and a structure of species Pi on Si, for

each i.

The species 1 is defined by

1[I] =

{
{∗} (a singleton) if I = ∅,
∅ otherwise.

It is the unit for the Cauchy product: for any set species P, there are

canonical isomorphisms for which

1 · P = P = P · 1.

14
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Cauchy product

The generating function of the Cauchy product is the product of the

respective generating functions:

Proposition
For any finite set species P and Q, we have

(P ·Q)(z) = P(z)Q(z).

Proof.

Exercise.

Recall that∑
n≥0

an
zn

n!

 ·
∑

n≥0

bn
zn

n!

 =
∑
n≥0

(
n∑

k=0

(
n

k

)
akbn−k

)
zn

n!
.
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Example: the subset species

A structure of species E · E on I is simply a subset S of I.

More generally, a structure of species E·k on I is simply a function

f : I → [k], for each nonnegative integer k. Indeed, we may identify such

a function with the following decomposition

f : I → [k] ←→ f−1(1) ⊔ · · · ⊔ f−1(k) = I.

From the previous proposition,

(E · E)(z) = e2z and (E·k)(z) = ekz.

Expanding these power series we recover the facts that the number of

subsets of [n] is 2n and the number of functions [n]→ [k] is kn.
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Derangements and bijections

A derangement on a finite set I is a bijection with no fixed points.

Derangements and bijections on finite sets define species D and B,

respectively.

Any bijection is uniquely determined

by the subset of fixed points and the

induced derangement on the

complement. Therefore,

B = E ·D.

Since |B[n]| = n!, we have B(z) = 1
1−z , which implies

1

1− z
= ez ·D(z) =⇒ D(z) =

e−z

1− z

and then that the number of derangements of [n] is n!
n∑

i=0

(−1)i

i!
.

Notices that |B[n]| = n! = |L[n]|, for each n ≥ 0.
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Let P be a set species. For each n ≥ 0, the symmetric group Sn acts on

the set P[n] by

σ · x := P[σ](x).

Therefore, every species is equivalent to a sequence of S-sets; more

precisely,

P←→ (P[0],P[1],P[2], . . .),

where P[n] is a Sn-set, for every n ≥ 0. Moreover, if f : P→ Q is a

morphism of set species, the map f[n] : P[n]→ Q[n] is a morphism of

Sn-sets:

f[n](σ · x) = σ · f[n](x)
for all x ∈ P[n] and σ ∈ Sn.

Exercise: Show that the action of Sn on L[n] has one orbit, while the

action on B[n] has as many orbits as integer partitions of n. Deduce that

L and B are not isomorphic.

Linear orders and permutations are not transported in the same manner

along bijections

18
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Substitution

Let Q be a set species with Q[∅] = ∅ and P an arbitrary set species. The

substitution of P into Q is the set species P ◦Q defined by

(
P ◦Q

)
[I] =

∐
X⊢I

(
P[X]×

∏
B∈X

Q[B]

)
for each finite set I.

More precisely, a
(
P ◦Q

)
-structure on a set I consists of

• a partition X of I;

• a P-structure on the set X (that is, the set of blocks of X);

• a Q-structure on each of the blocks (which are subsets of I).
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Substitution

Substitution is associative and unital. The unit is the singleton species X

defined by

X[I] =

{
{∗I} if I is a singleton,

∅ otherwise.

Proposition
Let P and Q be finite set species with Q[∅] = ∅. Then

(P ◦Q)(z) = P
(
Q(z)

)
.

Corollary (The exponential formula)

(E ◦Q)(z) = eQ(z).

A structure of species E ◦Q on I consists of a partition of I together

with a Q-structure on each block of the partition.
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Given a set species Q, its positive part is the species Q+ defined by

Q+[I] =

{
∅ if I = ∅,
Q[I] otherwise.

Substitutions of the form P ◦Q+ are always defined, since Q+[∅] = ∅.

A set species Q is positive if Q = Q+ (i.e., Q[∅] = ∅).

A structure of type E ◦ E+ on I is simply a partition of I. Thus,

E ◦ E+ = Π.

From the previous proposition, we have

Π(z) = ee
z−1.

A structure of type L ◦ E+ on I is simply a partition of I, endowed with

a total order on the set of its blocks.Hence,

L ◦ E+ = Σ,

which implies

Σ(z) =
1

2− ez
.
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Addition

The addition of two species P and Q is the new species P+Q defined by(
P +Q

)
[I] = P[I]

∐
Q[I],

for each finite set I. The operation of addition is associative and

commutative, up to isomorphism.

The empty species 0, defined by

0[I] := ∅,

for all finite set I, is a neutral element for addition. For any set species

P, there are canonical isomorphisms for which

0+ P = P = P+ 0.
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Addition

Proposition
For any finite set species P and Q, we have

(P+Q)(z) = P(z) + Q(z).

Let Eeven (resp. Eodd) be the species of sets containing an even number

(resp. odd number). Then E = Eeven + Eodd and

ez = cosh(z) + sinh(z).

A family (Pλ)λ∈Λ is said to be summable if for any finite set I,

Pλ[I] = ∅, except for a finite number of indices λ ∈ Λ. The sum of a

summable family (Pλ)λ∈Λ is the species
∑

λ∈Λ Pλ defined by(∑
λ∈Λ

Pλ

)
[I] :=

∐
λ∈Λ

Pλ[I].

Notices that the disjoint union is finite. Each species P gives rise

canonically to a summable family (Pn)n≥0.
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Addition

Given a set species P and a positive integer n, consider the new species

Pn defined by

Pn[I] =

{
P[I] if |I| = n,

∅ otherwise.

The family (Pn)n≥0 is summable:

P = P0 + P1 + P2 + · · · .

The power Xn of the singleton species X is isomorphic to the lists of

lentgth n. The family (Xn)n≥0 is summable and we have the identity

L = X0 +X1 +X2 +X3 + · · · .
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Derivative

Let P be a finite species. The derivative of the generating function P(z)

is

(P(z))′ =
∑
n≥0

|P[n+ 1]|z
n

n!
.

The derivative of P is defined accordingly, by adding a “ghost vertex”

which is usually not in the original vertex set. More precisely, for each

finite set I define I+ := I ⊔ {∗I}. Then, we define

P′[I] := P[I+].

Given a bijection σ : I → J , consider the map σ+ : I+ → J+ given by

σ+(i) := σ(i) for i ∈ I and σ+(∗I) := ∗J .

Then, we define P′[σ] : P′[I]→ P′[J ] as

P′[σ] := P[σ+].
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Derivative

Let C be the species of cycles. Formally:

C[I] := {σ : I
∼−→ I |σ is a cycle }.

Removing an element from a cycle

allows to obtain a linear order.

Therefore,

C′ = L.

Since

C(z) =
∑
n≥0

|C[n]|z
n

n!
=
∑
n≥0

(n− 1)!
zn

n!
= log

1

1− z
,

we get

(C(z))′ =

(
log

1

1− z

)′

=
1

1− z
= L(z).

Proposition
Let P be a species. Then (P(z))′ = P′(z).
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Derivative

Exercise: proof the following “combinatorial rules of calculus”.

1. (P ·Q)′ = P′ ·Q+ P ·Q′.

2. (P ◦Q)′ = Q′ · (P′ ◦Q).

3. (P + Q)′ = P′ +Q′.

4. 1′ = 0.
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Implicit equations

Some species are defined by means of an implicit equation.

Let A be the species of rooted trees (A is for “arborescence”).

We can define A recursively: a rooted tree with node set I consists of

the choice of:

- a node r ∈ I (the root);

- a partition X of I \ {r} (whose
blocks consist of the nodes in

the branches stemming out of

r);

- a rooted tree with node set S

for each S ∈ X.

Therefore, A = X · (E ◦A). This is well defined, since A[∅] = ∅. In
particular,

A(z) = zeA(z) = z + 2
x2

2!
+ 9

z3

3!
+ 64

z4

4!
+ 625

z5

5!
+ · · · .
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Implicit equations

Exercise: in a rooted tree with root r, the children of a node s are those

nodes adjacent to s that are not between s and r. A planar rooted tree is

a rooted tree in which the children of each node are given a linear order.

Let
−→
A denote the species of planar rooted trees.

(a) Show that
−→
A = X · (L ◦ −→A).

(b) Deduce that

−→
A(x) =

x

1−
−→
A(x)

and
−→
A(x) =

1−
√
1− 4x

2
.

Thus the number of planar rooted trees on n nodes is n!Cn−1,

where Cn = 1
n+1

(
2n
n

)
is the n-th Catalan number.
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More tree-like structures

Let a be the species of non-rooted trees (a is for “arbre”). An element is

a[I] is just an acyclic graph (with vertex set I), without the choice of a

vertex.

Removing a vertex of a non-rooted

tree leads to a set of rooted trees.

Hence,

a′ = E ◦A.

The species F := E ◦A is called the species of forests.
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Questions?
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