
Introduction to combinatorial species

Lectures 3 and 4

Yannic VARGAS

Algebraic, analytic and geometric structures emerging from quantum field theory

4-16 March 2024, Chengdu, China

Content

1. Hopf algebras

2. Species

3. Algebraic structures on Sp

4. The Tits monoid of set compositions

5. Back to species

1

Hopf algebras

Hopf algebras

Classical Hopf algebras: Borel, Cartier, Hopf (1940-1950).

Motivation: algebraic topology, homological algebra, study of loop

spaces, algebras of operations (Steenrod), homology of

Eilenberg–MacLane spaces.

Joni-Rota: “A great many problems in combinatorics are concerned in

assembling, or disassembling, large objects out of pieces of prescribed

shape, as in the familiar board puzzles. ”

(Joni, S. A., & Rota, G. C. (1979). Coalgebras and bialgebras in combinatorics.

Studies in Applied Mathematics, 61(2), 93-139.)

2

Hopf algebras

A Hopf algebra (H,m, ι,∆, ε, S) consists of

• an associative algebra (H,m, ι);

• a coassociative coalgebra (H,∆, ε);

• compatibility between the product and the coproduct;

• the identity map id : H → H is invertible in the convolution

algebra (End(H), ∗), where

f ∗ g := m ◦ (f ⊗ g) ◦∆.

The inverse of id, denoted by S, is called the antipode of H.

Finding an optimal formula for the antipode is not easy. It provides a

rich information about hidden combinatorial structures on H.

3

A (graded, connected) Hopf-algebraic square

QSym

Sym
-

;;

SSym

dddd

NSym
, �

::cccc

• QSym: quasisymmetric functions (compositions)

• Sym: symmetric functions (partitions)

• SSym: free quasisymmetric functions (permutations)

• NSym: non-commutative symmetric functions (compositions)

4

A (graded, connected) Hopf-algebraic square

QSym

Sym
-

;;

SSym

dddd

NSym
, �

::cccc

• QSym: quasisymmetric functions (compositions)

• Sym: symmetric functions (partitions)

• SSym: free quasisymmetric functions (permutations)

• NSym: non-commutative symmetric functions (compositions)

4

A (combinatorial) Hopf-algebraic square

(QSym, ζ0)

(Sym, ζ1)
+ �

88

(SSym, ζ2)

gggg

(NSym, ζ3)
*

77ffff

• Sym ↪−→ QSym ↪−→ K[x1, x2, . . .] and

NSym ↪−→ SSym ↪−→ K⟨x1, x2, . . .⟩
• Every ζ : H → K is a character

• ζ0 : QSym→ K is defined as ζ0(f(x1, x2, . . .)) := f(1, 0, . . .)

• Theorem (Aguiar, Bergeron, Sottile): (QSym, ζ0) is terminal.

5

A (combinatorial) Hopf-algebraic square

(QSym, ζ0)

(Sym, ζ1)
+ �

88

(SSym, ζ2)

gggg

(NSym, ζ3)
*

77ffff

• Sym ↪−→ QSym ↪−→ K[x1, x2, . . .] and

NSym ↪−→ SSym ↪−→ K⟨x1, x2, . . .⟩

• Every ζ : H → K is a character

• ζ0 : QSym→ K is defined as ζ0(f(x1, x2, . . .)) := f(1, 0, . . .)

• Theorem (Aguiar, Bergeron, Sottile): (QSym, ζ0) is terminal.

5

A (combinatorial) Hopf-algebraic square

(QSym, ζ0)

(Sym, ζ1)
+ �

88

(SSym, ζ2)

gggg

(NSym, ζ3)
*

77ffff

• Sym ↪−→ QSym ↪−→ K[x1, x2, . . .] and

NSym ↪−→ SSym ↪−→ K⟨x1, x2, . . .⟩
• Every ζ : H → K is a character

• ζ0 : QSym→ K is defined as ζ0(f(x1, x2, . . .)) := f(1, 0, . . .)

• Theorem (Aguiar, Bergeron, Sottile): (QSym, ζ0) is terminal.

5

A (combinatorial) Hopf-algebraic square

(QSym, ζ0)

(Sym, ζ1)
+ �

88

(SSym, ζ2)

gggg

(NSym, ζ3)
*

77ffff

• Sym ↪−→ QSym ↪−→ K[x1, x2, . . .] and

NSym ↪−→ SSym ↪−→ K⟨x1, x2, . . .⟩
• Every ζ : H → K is a character

• ζ0 : QSym→ K is defined as ζ0(f(x1, x2, . . .)) := f(1, 0, . . .)

• Theorem (Aguiar, Bergeron, Sottile): (QSym, ζ0) is terminal.

5

A (combinatorial) Hopf-algebraic square

(QSym, ζ0)

(Sym, ζ1)
+ �

88

(SSym, ζ2)

gggg

(NSym, ζ3)
*

77ffff

• Sym ↪−→ QSym ↪−→ K[x1, x2, . . .] and

NSym ↪−→ SSym ↪−→ K⟨x1, x2, . . .⟩
• Every ζ : H → K is a character

• ζ0 : QSym→ K is defined as ζ0(f(x1, x2, . . .)) := f(1, 0, . . .)

• Theorem (Aguiar, Bergeron, Sottile): (QSym, ζ0) is terminal.

5

A (combinatorial) Hopf algebras square

The map Ψ : (H, ζ)→ (QSym, ζ0)

H

ζ
��

Ψ // QSym

ζ0
||

K

is defined, for every h ∈ Hn and n ≥ 0, as

Ψ(h) =
∑

c composition of n

ζc(h)Mc,

where, for c = (c1, c2, . . . , ck), ζc is the composite

H
∆(k−1)

// H⊗k // // Hc1 ⊗ · · · ⊗Hck

ζ⊗k

// K .

The map Ψ explains the “ubiquity” of quasisymmetric functions as generating

functions in combinatorics.

6

A (combinatorial) Hopf algebras square

The map Ψ : (H, ζ)→ (QSym, ζ0)

H

ζ
��

Ψ // QSym

ζ0
||

K

is defined, for every h ∈ Hn and n ≥ 0, as

Ψ(h) =
∑

c composition of n

ζc(h)Mc,

where, for c = (c1, c2, . . . , ck), ζc is the composite

H
∆(k−1)

// H⊗k // // Hc1 ⊗ · · · ⊗Hck

ζ⊗k

// K .

The map Ψ explains the “ubiquity” of quasisymmetric functions as generating

functions in combinatorics.

6

A combinatorial example

Let G be a simple graph, with vertices V (G) and edges E(G).

A proper coloring of G is a function col : V (G)→ {1, 2, . . .} such that

col(v) ̸= col(w), whenever v and w are adjacent.

The chromatic symmetric function of G is

X(G) = X(G;x1, x2, . . .) :=
∑
col

∏
v ∈V (G)

xcol(v),

where the sum is over the set of proper colorings of G.

• If n = |V (G)|, then X(G) is homogeneous of degree n.

• X(G) is symmetric (X(G) ∈ Sym).

• Under xi ← 1, for 1 ≤ i ≤ t, and xi ← 0, for i < t, written x = 1t,

then X(G; 1t) is the (classical) chromatic polynomial on t.

7

A combinatorial example

Let G be a simple graph, with vertices V (G) and edges E(G).

A proper coloring of G is a function col : V (G)→ {1, 2, . . .} such that

col(v) ̸= col(w), whenever v and w are adjacent.

The chromatic symmetric function of G is

X(G) = X(G;x1, x2, . . .) :=
∑
col

∏
v ∈V (G)

xcol(v),

where the sum is over the set of proper colorings of G.

• If n = |V (G)|, then X(G) is homogeneous of degree n.

• X(G) is symmetric (X(G) ∈ Sym).

• Under xi ← 1, for 1 ≤ i ≤ t, and xi ← 0, for i < t, written x = 1t,

then X(G; 1t) is the (classical) chromatic polynomial on t.

7

A combinatorial example

Let G be a simple graph, with vertices V (G) and edges E(G).

A proper coloring of G is a function col : V (G)→ {1, 2, . . .} such that

col(v) ̸= col(w), whenever v and w are adjacent.

The chromatic symmetric function of G is

X(G) = X(G;x1, x2, . . .) :=
∑
col

∏
v ∈V (G)

xcol(v),

where the sum is over the set of proper colorings of G.

• If n = |V (G)|, then X(G) is homogeneous of degree n.

• X(G) is symmetric (X(G) ∈ Sym).

• Under xi ← 1, for 1 ≤ i ≤ t, and xi ← 0, for i < t, written x = 1t,

then X(G; 1t) is the (classical) chromatic polynomial on t.

7

A combinatorial example

Let G be a simple graph, with vertices V (G) and edges E(G).

A proper coloring of G is a function col : V (G)→ {1, 2, . . .} such that

col(v) ̸= col(w), whenever v and w are adjacent.

The chromatic symmetric function of G is

X(G) = X(G;x1, x2, . . .) :=
∑
col

∏
v ∈V (G)

xcol(v),

where the sum is over the set of proper colorings of G.

• If n = |V (G)|, then X(G) is homogeneous of degree n.

• X(G) is symmetric (X(G) ∈ Sym).

• Under xi ← 1, for 1 ≤ i ≤ t, and xi ← 0, for i < t, written x = 1t,

then X(G; 1t) is the (classical) chromatic polynomial on t.

7

A combinatorial example

Let G be a simple graph, with vertices V (G) and edges E(G).

A proper coloring of G is a function col : V (G)→ {1, 2, . . .} such that

col(v) ̸= col(w), whenever v and w are adjacent.

The chromatic symmetric function of G is

X(G) = X(G;x1, x2, . . .) :=
∑
col

∏
v ∈V (G)

xcol(v),

where the sum is over the set of proper colorings of G.

• If n = |V (G)|, then X(G) is homogeneous of degree n.

• X(G) is symmetric (X(G) ∈ Sym).

• Under xi ← 1, for 1 ≤ i ≤ t, and xi ← 0, for i < t, written x = 1t,

then X(G; 1t) is the (classical) chromatic polynomial on t.

7

A combinatorial example

Let G be a simple graph, with vertices V (G) and edges E(G).

A proper coloring of G is a function col : V (G)→ {1, 2, . . .} such that

col(v) ̸= col(w), whenever v and w are adjacent.

The chromatic symmetric function of G is

X(G) = X(G;x1, x2, . . .) :=
∑
col

∏
v ∈V (G)

xcol(v),

where the sum is over the set of proper colorings of G.

• If n = |V (G)|, then X(G) is homogeneous of degree n.

• X(G) is symmetric (X(G) ∈ Sym).

• Under xi ← 1, for 1 ≤ i ≤ t, and xi ← 0, for i < t, written x = 1t,

then X(G; 1t) is the (classical) chromatic polynomial on t.

7

Using the universal property

Let G = K{ isomophism classes of finite (unonriented) graphs }.

If G,H ∈ G, let G ·H := G ⊔H the disjoint union. Also, let

∆(G) :=
∑

S⊆V (G)

G|S ⊗G|V (G)\S .

Then, (G, ·,∆) is a graded Hopf algebra (Schmitt).

Consider now the

character ζ : G → K given by

ζ(G) =

{
1, if G has no edges,

0, otherwise

Theorem: Ψ(G) is the chromatic symmetric function.

(G, ·,∆) is called the chromatic Hopf algebra of graphs.

8

Using the universal property

Let G = K{ isomophism classes of finite (unonriented) graphs }.

If G,H ∈ G, let G ·H := G ⊔H the disjoint union. Also, let

∆(G) :=
∑

S⊆V (G)

G|S ⊗G|V (G)\S .

Then, (G, ·,∆) is a graded Hopf algebra (Schmitt). Consider now the

character ζ : G → K given by

ζ(G) =

{
1, if G has no edges,

0, otherwise

Theorem: Ψ(G) is the chromatic symmetric function.

(G, ·,∆) is called the chromatic Hopf algebra of graphs.

8

Using the universal property

Let G = K{ isomophism classes of finite (unonriented) graphs }.

If G,H ∈ G, let G ·H := G ⊔H the disjoint union. Also, let

∆(G) :=
∑

S⊆V (G)

G|S ⊗G|V (G)\S .

Then, (G, ·,∆) is a graded Hopf algebra (Schmitt). Consider now the

character ζ : G → K given by

ζ(G) =

{
1, if G has no edges,

0, otherwise

Theorem: Ψ(G) is the chromatic symmetric function.

(G, ·,∆) is called the chromatic Hopf algebra of graphs.

8

Species

Let I be a finite set.

Let Σ[I] the vector space generated by all compositions of I and let SI

be the group of permutations on I.

The vector space Σ[I] is a right SI -module, where the action permutes

the elements of I.

This action extends to a (covariant) functor

Σ : FinSet→ Vect,

where

• I 7→ Σ[I];

• (I
σ−→ J) 7→ (Σ[I]

Σ[σ]−−−→ Σ[J]).

The construction Σ is an example of a vector species.

9

Let I be a finite set.

Let Σ[I] the vector space generated by all compositions of I and let SI

be the group of permutations on I.

The vector space Σ[I] is a right SI -module, where the action permutes

the elements of I.

This action extends to a (covariant) functor

Σ : FinSet→ Vect,

where

• I 7→ Σ[I];

• (I
σ−→ J) 7→ (Σ[I]

Σ[σ]−−−→ Σ[J]).

The construction Σ is an example of a vector species.

9

Let I be a finite set.

Let Σ[I] the vector space generated by all compositions of I and let SI

be the group of permutations on I.

The vector space Σ[I] is a right SI -module, where the action permutes

the elements of I.

This action extends to a (covariant) functor

Σ : FinSet→ Vect,

where

• I 7→ Σ[I];

• (I
σ−→ J) 7→ (Σ[I]

Σ[σ]−−−→ Σ[J]).

The construction Σ is an example of a vector species.

9

Let I be a finite set.

Let Σ[I] the vector space generated by all compositions of I and let SI

be the group of permutations on I.

The vector space Σ[I] is a right SI -module, where the action permutes

the elements of I.

This action extends to a (covariant) functor

Σ : FinSet→ Vect,

where

• I 7→ Σ[I];

• (I
σ−→ J) 7→ (Σ[I]

Σ[σ]−−−→ Σ[J]).

The construction Σ is an example of a vector species.

9

Let I be a finite set.

Let Σ[I] the vector space generated by all compositions of I and let SI

be the group of permutations on I.

The vector space Σ[I] is a right SI -module, where the action permutes

the elements of I.

This action extends to a (covariant) functor

Σ : FinSet→ Vect,

where

• I 7→ Σ[I];

• (I
σ−→ J) 7→ (Σ[I]

Σ[σ]−−−→ Σ[J]).

The construction Σ is an example of a vector species.

9

Species

A vector species is a functor

p : FinSet→ Vect.

By functoriality,

I
α−→ J

β−→ K =⇒ p[β ◦ α] = p[β] ◦ p[α],

I
idI−−→ I =⇒ p[idI] = idp[I].

In particular, p[σ]−1 = p[σ−1] for every I
σ−→ J .

For every n ∈ N, Sn acts on p[n] via σ · x := p[σ](x). Therefore,

species p←→ V = (Vn)n≥0, Vn is a Sn-module.

10

Species

A vector species is a functor

p : FinSet→ Vect.

By functoriality,

I
α−→ J

β−→ K =⇒ p[β ◦ α] = p[β] ◦ p[α],

I
idI−−→ I =⇒ p[idI] = idp[I].

In particular, p[σ]−1 = p[σ−1] for every I
σ−→ J .

For every n ∈ N, Sn acts on p[n] via σ · x := p[σ](x). Therefore,

species p←→ V = (Vn)n≥0, Vn is a Sn-module.

10

Species

A vector species is a functor

p : FinSet→ Vect.

By functoriality,

I
α−→ J

β−→ K =⇒ p[β ◦ α] = p[β] ◦ p[α],

I
idI−−→ I =⇒ p[idI] = idp[I].

In particular, p[σ]−1 = p[σ−1] for every I
σ−→ J .

For every n ∈ N, Sn acts on p[n] via σ · x := p[σ](x). Therefore,

species p←→ V = (Vn)n≥0, Vn is a Sn-module.

10

Species

A vector species is a functor

p : FinSet→ Vect.

By functoriality,

I
α−→ J

β−→ K =⇒ p[β ◦ α] = p[β] ◦ p[α],

I
idI−−→ I =⇒ p[idI] = idp[I].

In particular, p[σ]−1 = p[σ−1] for every I
σ−→ J .

For every n ∈ N, Sn acts on p[n] via σ · x := p[σ](x).

Therefore,

species p←→ V = (Vn)n≥0, Vn is a Sn-module.

10

Species

A vector species is a functor

p : FinSet→ Vect.

By functoriality,

I
α−→ J

β−→ K =⇒ p[β ◦ α] = p[β] ◦ p[α],

I
idI−−→ I =⇒ p[idI] = idp[I].

In particular, p[σ]−1 = p[σ−1] for every I
σ−→ J .

For every n ∈ N, Sn acts on p[n] via σ · x := p[σ](x). Therefore,

species p←→ V = (Vn)n≥0, Vn is a Sn-module.

10

Examples of species

• Species E of sets:

E[I] := K{∗I}.

• Species En of n-sets:

En[I] :=

{
K{∗I}, if |I| = n;

(0), if |I| ≠ n.

• Species X := E1 of sets of one element.

• Species 1 := E0.

• Species G of graphs:

G[I] := K{ finite graphs with vertices in I }.

11

Examples of species

• Species Π of partitions.

• Species L of linear orders.

• Species Σ of set compositions.

• Species B of binary trees.

• Species S of permutations.

• Species Braid of braid hyperplane arrangements.

...

12

Operations on species

• Sum of species

(p+ q)[I] := p[I]⊕ q[I].

• Product of species (Cauchy product)

(p · q)[I] :=
⊕

I=S⊔T

p[S]⊗ q[T].

13

Operations on species

• Composition of species

(p ◦ q)[I] :=
⊕

π∈Π[I]

p[π]⊗
⊗
B ∈π

q[B].

14

Generating function of a species

To every species p it is associated its exponential generating function:

p(x) :=
∑
n≥0

dimK p[n]
xn

n!
.

We have:

(p+ q)(x) = p(x) + q(x),

(p · q)(x) = p(x) · q(x),

(p ◦ q)(x) = p(x) ◦ q(x).

For the last identity, q[∅] := (0).

15

The category Sp of vector species

A morphism of species p
f−→ q is a collection f = (fI) of linear maps

such that

p[I]
fI //

p[σ]

��

q[I]

q[σ]

��

p[J]
fJ

// q[J]

for every I
σ−→ J . This defines the category Sp of species.

16

Recall that the Cauchy product of two species p and q is given by

(p · q)[I] =
⊕

I=S⊔T

p[S]⊗ q[T].

Endowed with this operation, Sp is symmetric monoidal: we can speak of

monoids (µ : p · p→ p), comonoids (∆ : p→ p · p), ..., in species.

p[S]⊗ p[T]
µS,T

// p[I] p[I]
∆S,T

// p[S]⊗ p[T].

17

Recall that the Cauchy product of two species p and q is given by

(p · q)[I] =
⊕

I=S⊔T

p[S]⊗ q[T].

Endowed with this operation, Sp is symmetric monoidal: we can speak of

monoids (µ : p · p→ p), comonoids (∆ : p→ p · p), ..., in species.

p[S]⊗ p[T]
µS,T

// p[I] p[I]
∆S,T

// p[S]⊗ p[T].

17

Algebraic structures on Sp

Algebraic structures in Sp

A monoid in Sp is given by (a, µ, ι), where a is a species and

µ : a · a→ a , ι : 1→ a.

Explicitly, if I = S ⊔ T then

µS,T : a[S]⊗ a[T]→ a[I].

The map ι is uniquely determined by its component ι∅ : K→ a[∅].

The maps µ and ι must satisfy associativity, unitality and naturality

axioms.

18

Algebraic structures in Sp

A monoid in Sp is given by (a, µ, ι), where a is a species and

µ : a · a→ a , ι : 1→ a.

Explicitly, if I = S ⊔ T then

µS,T : a[S]⊗ a[T]→ a[I].

The map ι is uniquely determined by its component ι∅ : K→ a[∅].

The maps µ and ι must satisfy associativity, unitality and naturality

axioms.

18

Algebraic structures in Sp

A comonoid in Sp is given by (c,∆, ε), where c is a species and

∆ : c→ c · c , ε : c→ 1.

Explicitly, if I = S ⊔ T then

∆S,T : c[I]→ c[S]⊗ c[T].

The map ε is uniquely determined by its component ε∅ : c[∅]→ K.

The maps ∆ and ε must satisfy coassociativity, counitality and naturality

axioms.

Notions of bimonoids and Hopf monoids exist, analogues to bialgebras

and Hopf algebras.

19

Algebraic structures in Sp

A comonoid in Sp is given by (c,∆, ε), where c is a species and

∆ : c→ c · c , ε : c→ 1.

Explicitly, if I = S ⊔ T then

∆S,T : c[I]→ c[S]⊗ c[T].

The map ε is uniquely determined by its component ε∅ : c[∅]→ K.

The maps ∆ and ε must satisfy coassociativity, counitality and naturality

axioms.

Notions of bimonoids and Hopf monoids exist, analogues to bialgebras

and Hopf algebras.

19

Algebraic structures in Sp

Proposition: any graded, locally finite and connected bialgebra H is a

Hopf algebra.

A species h is connected (resp. positive) if dimK h[∅] = 1 (resp.

dimK h[∅] = 0).

Proposition: any connected bimonoid h is a Hopf monoid.

The antipode is a map s : h→ h. When a bimonoid h possess an

antipode, it is unique.

20

Algebraic structures in Sp: examples

• (E, µ,∆)

E[I] := K{HI}.

µS,T (HS ⊗ HT) := HS⊔T , ∆S,T (HI) := HS ⊗ HT .

sI(HI) = (−1)|I|HI .

• (L, µ,∆)

L[I] := K{Hℓ : ℓ : [n]→ I}, where |I| = n.

µS,T (Hℓ1 ⊗ Hℓ2) := Hℓ1⊙ℓ2 , ∆S,T (Hℓ) := Hℓ|S ⊗ Hℓ|T .

sI(Hℓ) = (−1)|I|Hreverse(ℓ).

The product of L is concatenation, while the coproduct is deshuffle.

There is also a Hopf monoid (Σ, µ,∆) with analogues operations.

21

Algebraic structures in Sp: examples

• (E, µ,∆)

E[I] := K{HI}.

µS,T (HS ⊗ HT) := HS⊔T , ∆S,T (HI) := HS ⊗ HT .

sI(HI) = (−1)|I|HI .

• (L, µ,∆)

L[I] := K{Hℓ : ℓ : [n]→ I}, where |I| = n.

µS,T (Hℓ1 ⊗ Hℓ2) := Hℓ1⊙ℓ2 , ∆S,T (Hℓ) := Hℓ|S ⊗ Hℓ|T .

sI(Hℓ) = (−1)|I|Hreverse(ℓ).

The product of L is concatenation, while the coproduct is deshuffle.

There is also a Hopf monoid (Σ, µ,∆) with analogues operations.

21

Algebraic structures in Sp: examples

• (E, µ,∆)

E[I] := K{HI}.

µS,T (HS ⊗ HT) := HS⊔T , ∆S,T (HI) := HS ⊗ HT .

sI(HI) = (−1)|I|HI .

• (L, µ,∆)

L[I] := K{Hℓ : ℓ : [n]→ I}, where |I| = n.

µS,T (Hℓ1 ⊗ Hℓ2) := Hℓ1⊙ℓ2 , ∆S,T (Hℓ) := Hℓ|S ⊗ Hℓ|T .

sI(Hℓ) = (−1)|I|Hreverse(ℓ).

The product of L is concatenation, while the coproduct is deshuffle.

There is also a Hopf monoid (Σ, µ,∆) with analogues operations.

21

Algebraic structures in Sp

A Lie monoid in Sp is given by (g, [,]), where g is a species and

[,] : g · g→ g

satisfies

• Anticommutativity

[x, y]S,T = −[y, x]T,S ;

• Jacobi identity:

[[x, y]S,T , z]S⊔T,R + [[z, x]R,S , y]R⊔S,T + [[z, x]T,R, x]T⊔R,S = 0.

22

Algebraic structures in Sp

Let (c,∆, ε) be a comonoid.

The species Prim(c) of primitive parts of c is given by

Prim(c) := {x ∈ c[I] : ∆I(x) = x⊗ 1 + 1⊗ x}.

When h is a bialgebra, the restriction of the Lie bracket induced from h

endows Prim(h) with a Lie monoid structure.

If h is connected, then Prim(h) is positive and

Prim(h)[I] =
⋂

S⊔T=I
S,T ̸=∅

ker(∆S,T : h[I]→ h[S]⊗ h[T]),

for every I ̸= ∅.

23

Algebraic structures in Sp

Let (c,∆, ε) be a comonoid.

The species Prim(c) of primitive parts of c is given by

Prim(c) := {x ∈ c[I] : ∆I(x) = x⊗ 1 + 1⊗ x}.

When h is a bialgebra, the restriction of the Lie bracket induced from h

endows Prim(h) with a Lie monoid structure.

If h is connected, then Prim(h) is positive and

Prim(h)[I] =
⋂

S⊔T=I
S,T ̸=∅

ker(∆S,T : h[I]→ h[S]⊗ h[T]),

for every I ̸= ∅.

23

Algebraic structures in Sp

Let (c,∆, ε) be a comonoid.

The species Prim(c) of primitive parts of c is given by

Prim(c) := {x ∈ c[I] : ∆I(x) = x⊗ 1 + 1⊗ x}.

When h is a bialgebra, the restriction of the Lie bracket induced from h

endows Prim(h) with a Lie monoid structure.

If h is connected, then Prim(h) is positive and

Prim(h)[I] =
⋂

S⊔T=I
S,T ̸=∅

ker(∆S,T : h[I]→ h[S]⊗ h[T]),

for every I ̸= ∅.

23

Algebraic structures in Sp

Let (c,∆, ε) be a comonoid.

The species Prim(c) of primitive parts of c is given by

Prim(c) := {x ∈ c[I] : ∆I(x) = x⊗ 1 + 1⊗ x}.

When h is a bialgebra, the restriction of the Lie bracket induced from h

endows Prim(h) with a Lie monoid structure.

If h is connected, then Prim(h) is positive and

Prim(h)[I] =
⋂

S⊔T=I
S,T ̸=∅

ker(∆S,T : h[I]→ h[S]⊗ h[T]),

for every I ̸= ∅.

23

Monoids in species, revisited

A monoid in Sp is given by (a, µ, ι), where a is a species and

µ : a · a→ a , ι : 1→ a.

Explicitly, if I = S ⊔ T then

µS,T : a[S]⊗ a[T]→ a[I].

The map ι is uniquely determined by its component ι∅ : K→ a[∅].

The maps µ and ι must satisfy associativity, unitality and naturality

axioms.

24

Monoids in species, revisited

A monoid in Sp is given by (a, µ, ι), where a is a species and

µ : a · a→ a , ι : 1→ a.

Explicitly, if I = S ⊔ T then

µS,T : a[S]⊗ a[T]→ a[I].

The map ι is uniquely determined by its component ι∅ : K→ a[∅].

The maps µ and ι must satisfy associativity, unitality and naturality

axioms.

24

Monoids in species, revisited

Naturality: the product map behaves well with respect with the

transport of structures (relabeling).

More precisely, if I = S ⊔ T and σ : I → J is a bijection. the diagram

a[S]⊗ a[T]
µS,T

//

a[σ|S]⊗a[σ|T]

��

a[I]

a[σ]

��

a[σ(S)]⊗ a[σ(T)]
µσ(S),σ(T)

// σ[J]

commutes.

25

Monoids in species, revisited

Unitality:

a a · a
µ
oo

1 · a

ι·id

OO

=

aa a · a
µ
// a

a · 1

id·ι

OO

=

==

The unit axiom states that for each finite set I, the diagrams

a[I] a[∅]⊗ a[I]
µ∅,I
oo

K⊗ a[I]

ι∅⊗idI

OO

∼=

dd
a[I]⊗ a[∅]

µI,∅
// a[I]

a[I]⊗K

idI⊗ι∅

OO

∼=

::

commute.

26

Monoids in species, revisited

Associativity : given a decomposition I = R ⊔ S ⊔ T ,

a · a · a
id·µ

//

µ·id

��

a · a

µ

��
a · a

µ
// a

a[R]⊗ a[S]⊗ a[T]
id⊗µS,T

//

µR,S⊗id

��

a[R]⊗ a[S ⊔ T]

µR,S⊔T

��

a[R ⊔ S]⊗ a[T]
µR⊔S,T

// a[I]

From the associativity of the collection (µS,T)S,T , there is a unique map

called the higher product map of a

a[S1]⊗ · · · ⊗ a[Sk]
µS1,...,Sk−−−−−−→ a[I] for every I = S1 ⊔ · · · ⊔ Sk, k ≥ 0,

obtained by iterating the product maps µS,T .

If F = S1| · · · |Sk ⊨ I, we define µF := µS1,...,Sk
and

a(F) := a[S1]⊗ · · · ⊗ a[Sk], so

µF : a(F)→ a[I].

27

Monoids in species, revisited

Associativity : given a decomposition I = R ⊔ S ⊔ T ,

a · a · a
id·µ

//

µ·id

��

a · a

µ

��
a · a

µ
// a

a[R]⊗ a[S]⊗ a[T]
id⊗µS,T

//

µR,S⊗id

��

a[R]⊗ a[S ⊔ T]

µR,S⊔T

��

a[R ⊔ S]⊗ a[T]
µR⊔S,T

// a[I]

From the associativity of the collection (µS,T)S,T , there is a unique map

called the higher product map of a

a[S1]⊗ · · · ⊗ a[Sk]
µS1,...,Sk−−−−−−→ a[I] for every I = S1 ⊔ · · · ⊔ Sk, k ≥ 0,

obtained by iterating the product maps µS,T .

If F = S1| · · · |Sk ⊨ I, we define µF := µS1,...,Sk
and

a(F) := a[S1]⊗ · · · ⊗ a[Sk], so

µF : a(F)→ a[I].

27

Monoids in species, revisited

Associativity : given a decomposition I = R ⊔ S ⊔ T ,

a · a · a
id·µ

//

µ·id

��

a · a

µ

��
a · a

µ
// a

a[R]⊗ a[S]⊗ a[T]
id⊗µS,T

//

µR,S⊗id

��

a[R]⊗ a[S ⊔ T]

µR,S⊔T

��

a[R ⊔ S]⊗ a[T]
µR⊔S,T

// a[I]

From the associativity of the collection (µS,T)S,T , there is a unique map

called the higher product map of a

a[S1]⊗ · · · ⊗ a[Sk]
µS1,...,Sk−−−−−−→ a[I] for every I = S1 ⊔ · · · ⊔ Sk, k ≥ 0,

obtained by iterating the product maps µS,T .

If F = S1| · · · |Sk ⊨ I, we define µF := µS1,...,Sk
and

a(F) := a[S1]⊗ · · · ⊗ a[Sk], so

µF : a(F)→ a[I].

27

Monoids in species from higher product maps

Theorem(Aguiar-Mahajan): Let a be a connected species equipped with

a collection of maps

µF : a(F)→ a[I], for every F ⊨ I, I finite set .

Then a is a connected monoid with higher products maps µF if and only

if the naturality axiom holds and the diagram

a(G)
µG //

µG/F

��

a[I]

a(F)

µF

<<

commutes, for each compositions F and G of I with F≤G.

Here, ≤ refers to the refinement partial order on set compositions. Also,

G/F is a set composition of I constructed from G and F .

The combinatorics of set compositions encode algebraic properties of

connected monoids in species.

28

Monoids in species from higher product maps

Theorem(Aguiar-Mahajan): Let a be a connected species equipped with

a collection of maps

µF : a(F)→ a[I], for every F ⊨ I, I finite set .

Then a is a connected monoid with higher products maps µF if and only

if the naturality axiom holds and the diagram

a(G)
µG //

µG/F

��

a[I]

a(F)

µF

<<

commutes, for each compositions F and G of I with F≤G.

Here, ≤ refers to the refinement partial order on set compositions. Also,

G/F is a set composition of I constructed from G and F .

The combinatorics of set compositions encode algebraic properties of

connected monoids in species.
28

The Tits monoid of set

compositions

Let I be a finite set.

A set composition of I is a sequence

F = (F1, . . . , Fk) = F1| · · · |Fk

of disjoint non-empty sets such that their reunion is I.

Let Σ[I] be the set of all compositions of I. If F ∈ S[I], we write F ⊨ I.

There is a unique set composition on the empty set, so |Σ[∅]| = 1.

For example,

2|569|3|1478 ∈ Σ[10].

29

Let I be a finite set.

A set composition of I is a sequence

F = (F1, . . . , Fk) = F1| · · · |Fk

of disjoint non-empty sets such that their reunion is I.

Let Σ[I] be the set of all compositions of I. If F ∈ S[I], we write F ⊨ I.

There is a unique set composition on the empty set, so |Σ[∅]| = 1.

For example,

2|569|3|1478 ∈ Σ[10].

29

Let I be a finite set.

A set composition of I is a sequence

F = (F1, . . . , Fk) = F1| · · · |Fk

of disjoint non-empty sets such that their reunion is I.

Let Σ[I] be the set of all compositions of I. If F ∈ S[I], we write F ⊨ I.

There is a unique set composition on the empty set, so |Σ[∅]| = 1.

For example,

2|569|3|1478 ∈ Σ[10].

29

Let I be a finite set.

A set composition of I is a sequence

F = (F1, . . . , Fk) = F1| · · · |Fk

of disjoint non-empty sets such that their reunion is I.

Let Σ[I] be the set of all compositions of I. If F ∈ S[I], we write F ⊨ I.

There is a unique set composition on the empty set, so |Σ[∅]| = 1.

For example,

2|569|3|1478 ∈ Σ[10].

29

Operations on set compositions

• Concatenation

Let I = {a, b, c, d, e, f, g, h} and let I = S ⊔ T , with

S = {a, b, c, d, e} and T = {f, g, h}.

Consider

F = de|abc and G = fg|h.

The concatenation of F and G is

F ⊙G := de|abc|fg|h ⊨ I.

If p is species and F,G ⊨ I, there is a canonical isomorphism

p(F)⊗ p(G) ∼= p(F ⊙G).

30

Operations on set compositions

• Tits product (Jacques Tits - 1974; Coxeter groups, Buildings)

Let I = {a, b, c, d, e, f, g, h} and consider

F = cdfg|ah|be ⊨ I and G = adefh|bcg ⊨ I.

The Tits product of F and G is

F ·G := df |cg|ah| |e|b ≡ df |cg|ah|e|b ⊨ I.

(Σ[I], ·) is a monoid (with unit (I)), called the Tits monoid on I.

The Tits product is strongly non-commutative:

G · F = df |ah|e|cg| |b ≡ df |ah|e|cg|b.

The Tits product is intimately related to the refinement order on set

compositions.

31

Operations on set compositions

• Tits product (Jacques Tits - 1974; Coxeter groups, Buildings)

Let I = {a, b, c, d, e, f, g, h} and consider

F = cdfg|ah|be ⊨ I and G = adefh|bcg ⊨ I.

The Tits product of F and G is

F ·G := df |cg|ah| |e|b ≡ df |cg|ah|e|b ⊨ I.

(Σ[I], ·) is a monoid (with unit (I)), called the Tits monoid on I.

The Tits product is strongly non-commutative:

G · F = df |ah|e|cg| |b ≡ df |ah|e|cg|b.

The Tits product is intimately related to the refinement order on set

compositions.

31

Refinement order on set compositions

Let I be a finite set and F,G ⊨ I.

F ≤ G if each block of F is a reunion of adyacent blocks of G.

2|5|3|1|4 2|3|5|1|4 3|2|5|1|4

2|35|1|4

ee 99

23|5|1|4

ee 99

235|1|4

ee 99

Minimal element: 0̂I := (I)

Maximal elements: permutations in SI .

32

Refinement order on set compositions

Let I be a finite set and F,G ⊨ I.

F ≤ G if each block of F is a reunion of adyacent blocks of G.

2|5|3|1|4 2|3|5|1|4 3|2|5|1|4

2|35|1|4

ee 99

23|5|1|4

ee 99

235|1|4

ee 99

Minimal element: 0̂I := (I)

Maximal elements: permutations in SI .

32

Refinement order on set compositions

Let I be a finite set and F,G ⊨ I.

F ≤ G if each block of F is a reunion of adyacent blocks of G.

2|5|3|1|4 2|3|5|1|4 3|2|5|1|4

2|35|1|4

ee 99

23|5|1|4

ee 99

235|1|4

ee 99

Minimal element: 0̂I := (I)

Maximal elements: permutations in SI .

32

Refinement order on set partitions

Let I be a finite set and let Π[I] be the set of all set partitions of I.

If

π ∈ Π[I], we write π ⊢ I. If π, τ ⊢ I,

π ≤ τ if each block of π is a reunion of blocks of τ.

{{a}, {b}, {c}}

{{a}, {b, c}}

66

{{b}, {a, c}}

OO

{{c}, {a, c}}

hh

{{a, b, c}}

hh OO 66

33

Refinement order on set partitions

Let I be a finite set and let Π[I] be the set of all set partitions of I. If

π ∈ Π[I], we write π ⊢ I.

If π, τ ⊢ I,

π ≤ τ if each block of π is a reunion of blocks of τ.

{{a}, {b}, {c}}

{{a}, {b, c}}

66

{{b}, {a, c}}

OO

{{c}, {a, c}}

hh

{{a, b, c}}

hh OO 66

33

Refinement order on set partitions

Let I be a finite set and let Π[I] be the set of all set partitions of I. If

π ∈ Π[I], we write π ⊢ I. If π, τ ⊢ I,

π ≤ τ if each block of π is a reunion of blocks of τ.

{{a}, {b}, {c}}

{{a}, {b, c}}

66

{{b}, {a, c}}

OO

{{c}, {a, c}}

hh

{{a, b, c}}

hh OO 66

33

Refinement order on set partitions

Let I be a finite set and let Π[I] be the set of all set partitions of I. If

π ∈ Π[I], we write π ⊢ I. If π, τ ⊢ I,

π ≤ τ if each block of π is a reunion of blocks of τ.

{{a}, {b}, {c}}

{{a}, {b, c}}

66

{{b}, {a, c}}

OO

{{c}, {a, c}}

hh

{{a, b, c}}

hh OO 66

33

Refinement order on set partitions

Let I be a finite set and let Π[I] be the set of all set partitions of I. If

π ∈ Π[I], we write π ⊢ I. If π, τ ⊢ I,

π ≤ τ if each block of π is a reunion of blocks of τ.

a.b.c

a.bc

;;

b.ac

OO

c.ab

cc

abc

cc OO ;;

Minimal element: 0̂I := {I}
Maximal element: 1̂I := {{i} : i ∈ I}.

34

Refinement order on set partitions

Let I be a finite set and let Π[I] be the set of all set partitions of I. If

π ∈ Π[I], we write π ⊢ I. If π, τ ⊢ I,

π ≤ τ if each block of π is a reunion of blocks of τ.

a.b.c

a.bc

;;

b.ac

OO

c.ab

cc

abc

cc OO ;;

Minimal element: 0̂I := {I}
Maximal element: 1̂I := {{i} : i ∈ I}.

34

Let I be a finite set.

Let

supp : Σ[I]→ Π[I]

be the function that forgets the order of the blocks. It is a poset map.

Let F,G ⊨ I. We have:

1. F ≤ F ·G.

2. F ≤ G⇐⇒ F ·G = G.

3. F 2 = F .

4. F ·G · F = F ·G (The monoid (Σ[I], ·) is a left regular band)

5. supp(F ·G) = suppI(F) ∨ supp(G).

6. G · F = G⇐⇒ supp(F) ≤ supp(G).

35

Let I be a finite set.

Let

supp : Σ[I]→ Π[I]

be the function that forgets the order of the blocks. It is a poset map.

Let F,G ⊨ I. We have:

1. F ≤ F ·G.

2. F ≤ G⇐⇒ F ·G = G.

3. F 2 = F .

4. F ·G · F = F ·G (The monoid (Σ[I], ·) is a left regular band)

5. supp(F ·G) = suppI(F) ∨ supp(G).

6. G · F = G⇐⇒ supp(F) ≤ supp(G).

35

Let I be a finite set.

Let

supp : Σ[I]→ Π[I]

be the function that forgets the order of the blocks. It is a poset map.

Let F,G ⊨ I. We have:

1. F ≤ F ·G.

2. F ≤ G⇐⇒ F ·G = G.

3. F 2 = F .

4. F ·G · F = F ·G (The monoid (Σ[I], ·) is a left regular band)

5. supp(F ·G) = suppI(F) ∨ supp(G).

6. G · F = G⇐⇒ supp(F) ≤ supp(G).

35

Back to species

Splitting operation

Let F,G ⊨ I.

F ≤ G⇐⇒ ∃! “splitting” G/F := G1| · · · |Gk of G with

{
Gj ⊨ Ij

F = I1| · · · |Ij

Let (a, µ, ι) be a monoid. Define µG/F : a(G)→ a(F) by means of the

diagram

a(G)

∼=

��

µG/F
// a(F)

a(G1)⊗ · · ·⊗ a(Gk) µG1
⊗···⊗µGk

// a[I1]⊗ · · ·⊗ a[Ik]

36

Monoids in species from higher product maps

Theorem(Aguiar-Mahajan): Let a be a connected species equipped with

a collection of maps

µF : a(F)→ a[I], for every F ⊨ I, I finite set .

Then a is a connected monoid with higher products maps µF if and only

if the naturality axiom holds and the diagram

a(G)
µG //

µG/F

��

a[I]

a(F)

µF

<<

commutes, for each compositions F and G of I with F≤G.

Here, ≤ refers to the refinement partial order on set compositions. Also,

G/F is a set composition of I constructed from G and F .

The combinatorics of set compositions encode algebraic properties of

connected monoids in species.

37

Monoids in species from higher product maps

Theorem(Aguiar-Mahajan): Let a be a connected species equipped with

a collection of maps

µF : a(F)→ a[I], for every F ⊨ I, I finite set .

Then a is a connected monoid with higher products maps µF if and only

if the naturality axiom holds and the diagram

a(G)
µG //

µG/F

��

a[I]

a(F)

µF

<<

commutes, for each compositions F and G of I with F≤G.

Here, ≤ refers to the refinement partial order on set compositions. Also,

G/F is a set composition of I constructed from G and F .

The combinatorics of set compositions encode algebraic properties of

connected monoids in species.
37

Comonoids in species, revisited

A comonoid in Sp is given by (c,∆, ε), where c is a species and

∆ : c→ c · c , ε : c→ 1.

Explicitly, if I = S ⊔ T then

∆S,T : c[I]→ c[S]⊗ c[T].

The map ε is uniquely determined by its component ε∅ : c[∅]→ K.

The maps ∆ and ε must satisfy coassociativity, counitality and naturality

axioms.

Exercise: write explicitely the naturality axiom, counitality axiom and

coassociative axiom for the coproduct in a comonoid.

38

Comonoids in species, revisited

A comonoid in Sp is given by (c,∆, ε), where c is a species and

∆ : c→ c · c , ε : c→ 1.

Explicitly, if I = S ⊔ T then

∆S,T : c[I]→ c[S]⊗ c[T].

The map ε is uniquely determined by its component ε∅ : c[∅]→ K.

The maps ∆ and ε must satisfy coassociativity, counitality and naturality

axioms.

Exercise: write explicitely the naturality axiom, counitality axiom and

coassociative axiom for the coproduct in a comonoid.

38

Comonoids in species, revisited

Given a decomposition I = S1 ⊔ · · · ⊔ Sk, there is a unique map

c[I]
∆S1,...,Sk−−−−−−→ a[S1]⊗ · · · ⊗ a[Sk].

For k = 1, this map is defined to be the identity of c[I], and for k = 0 to

be the counit map ε∅.

The map ∆S1,...,Sk
is called the higher coproduct map of a.

As before, if F = S1| · · · |Sk ⊨ I, we define write ∆F := ∆S1,...,Sk
.

Hence,

∆F : a[I]→ a(F).

39

Bimonoids in species

Definition/Theorem(Aguiar-Mahajan): Let h be a connected species

equipped with two collections of maps

µF : h(F)→ h[I] and ∆F : h[I]→ h(F),

one map for each composition F of a nonempty finite set I. Then h is a

bimonoid with higher product maps µF and higher coproduct maps ∆F if

and only if the following conditions hold:
- naturality,

- higher associativity,

- higher coassociativy,

- higher compatitiblity: the diagram commutes for any pair of

compositions F,G ⊨ I.

h(FG)
β

// h(GF)

µGF/F

��

h(F)

∆FG/F

OO

µF

// h[I]
∆G

// h(G)
40

Questions?

40

Bimonoids in species

A bimonoid h is at the same time a monoid (h, µ, ι) and a comonoid

(h,∆, ε), which are related in the following way: the maps

µ : h · h→ a , ι : 1→ h

are morphism of comonoids. This is equivalent to ask that the maps

∆ : h→ h · h , ε : h→ 1

are morphism of monoids.

In order to describe the compatibility rule, fix decompositions

S ⊔ T = I = S′ ⊔ T ′, and consider the resulting pairwise intersections:

A = S1 ∩ S2, B = S1 ∩ T2, C = T1 ∩ S2, D = T1 ∩ T2.

S1

T1

S2 T2

A B

C D

41

Bimonoids in species

A bimonoid h is at the same time a monoid (h, µ, ι) and a comonoid

(h,∆, ε), which are related in the following way: the maps

µ : h · h→ a , ι : 1→ h

are morphism of comonoids. This is equivalent to ask that the maps

∆ : h→ h · h , ε : h→ 1

are morphism of monoids.

In order to describe the compatibility rule, fix decompositions

S ⊔ T = I = S′ ⊔ T ′, and consider the resulting pairwise intersections:

A = S1 ∩ S2, B = S1 ∩ T2, C = T1 ∩ S2, D = T1 ∩ T2.

S1

T1

S2 T2

A B

C D

41

h[A]⊗ h[B]⊗ h[C]⊗ h[D]
id⊗β⊗id

// h[A]⊗ h[C]⊗ h[B]⊗ h[D]

µA,C⊗µB,D

��

h[S1]⊗ h[S2] µS1,S2

//

∆A,B⊗∆C,D

OO

h[I]
∆T1,T2

// h[T1]⊗ h[T2]

h[∅]⊗ h[∅]
ε∅⊗ε∅ //

µ∅,∅

��

K⊗K

∼=

��

h[∅]
ε∅

// K

K
ι∅ //

∼=

��

h[∅]

∆∅,∅

��

K⊗K
ε∅⊗ε∅

// h[∅]⊗ h[∅]

h[∅]
ε∅

K

ι∅
>>

∼=
// K

42

	Hopf algebras
	Species
	Algebraic structures on Sp
	The Tits monoid of set compositions
	Back to species

