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Hopf algebras

Classical Hopf algebras: Borel, Cartier, Hopf (1940-1950).

Motivation: algebraic topology, homological algebra, study of loop
spaces, algebras of operations (Steenrod), homology of
Eilenberg—MaclLane spaces.

Joni-Rota: “A great many problems in combinatorics are concerned in
assembling, or disassembling, large objects out of pieces of prescribed
shape, as in the familiar board puzzles. "

(Joni, S. A, & Rota, G. C. (1979). Coalgebras and bialgebras in combinatorics.
Studies in Applied Mathematics, 61(2), 93-139.)



Hopf algebras

A Hopf algebra (H,m,t, A, ¢,S) consists of

e an associative algebra (H,m,¢);

a coassociative coalgebra (H, A, ¢);

compatibility between the product and the coproduct;

e the identity map id : H — H is invertible in the convolution
algebra (End(H), x), where

frgi=mo(f®g)oA.

The inverse of id, denoted by S, is called the antipode of H.
Finding an optimal formula for the antipode is not easy. It provides a
rich information about hidden combinatorial structures on H.



A (graded, connected) Hopf-algebraic square




A (graded, connected) Hopf-algebraic square

QSym: quasisymmetric functions (compositions)

Sym: symmetric functions (partitions)

GSym: free quasisymmetric functions (permutations)

NSym: non-commutative symmetric functions (compositions)
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A (combinatorial) Hopf-algebraic square

(stma CO)

N

(Sym,gl) (GSyma@)

~

(NSym, 43)

Sym — QSym — K|z, z5,...] and
NSym — &Sym — K(zy, z2,...)

Every ( : H — K is a character
Co : QSym — K is defined as (o(f(z1,22,...)) :== f(1,0,...)
Theorem (Aguiar, Bergeron, Sottile): (QSym,(y) is terminal.



A (combinatorial) Hopf algebras square

The map U : (H,({) — (QSym, (o)

H——Y . QSym

N A

is defined, for every h € H, and n > 0, as

\Il(h) = Z Cc(h)MCa

¢ composition of n
where, for ¢ = (¢1,c¢a,...,ck), (. is the composite

(k—1) ®k
H_2 &k Hcl®"'®HCk—>< K.




A (combinatorial) Hopf algebras square

The map U : (H,({) — (QSym, (o)

is defined, for every h € H, and n > 0, as

\Il(h) = Z Cc(h)MCa

¢ composition of n
where, for ¢ = (¢1,c¢a,...,ck), (. is the composite

(k—1) ®k
H_2 &k Hcl®"'®HCk—>< K.

The map V¥ explains the “ubiquity” of quasisymmetric functions as generating

functions in combinatorics.
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A combinatorial example

Let G be a simple graph, with vertices V(G) and edges E(G).

A proper coloring of G is a function col : V(G) — {1,2,...} such that
col(v) # col(w), whenever v and w are adjacent.

The chromatic symmetric function of G is

X(G) = X(G;:L‘l,l'g,‘..) = Z H Leol(v)s

col veV(GQ)
where the sum is over the set of proper colorings of G.
o If n=|V(G)|, then X(G) is homogeneous of degree n.
e X(G) is symmetric (X (G) € Sym).

o Under z; « 1, for 1 <i <t, and z; + 0, for i < t, written z = 17,
then X (G;1%) is the (classical) chromatic polynomial on t.



Using the universal property

Let G = K{ isomophism classes of finite (unonriented) graphs }.

If G,H € G, let G- H := G L H the disjoint union. Also, let

A(G):i= Y Gls®Gly@eps-
SCV(G)

Then, (G,-,A) is a graded Hopf algebra (Schmitt).
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Using the universal property

Let G = K{ isomophism classes of finite (unonriented) graphs }.

If G,H € G, let G- H := G L H the disjoint union. Also, let

A(G):i= Y Gls®Gly@eps-
SCV(G)

Then, (G,-,A) is a graded Hopf algebra (Schmitt). Consider now the
character ( : G — K given by

1, if G has no edges,
((G) = .
0, otherwise

Theorem: ¥(G) is the chromatic symmetric function.

(G,-,A) is called the chromatic Hopf algebra of graphs.
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Let I be a finite set.

Let X[I] the vector space generated by all compositions of I and let &;
be the group of permutations on I.

The vector space X[I] is a right &;-module, where the action permutes
the elements of 1.

This action extends to a (covariant) functor
Y : FinSet — Vect,

where
o [ +— E[I];
o I %)= (229 5.

The construction X is an example of a vector species.
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A vector species is a functor
p : FinSet — Vect.
By functoriality,
1% 75 K — plBoa] = p[8] o plal,

19 1 —s plid;] = idypy)-

In particular, p[o]~! = p[o—!] for every I % J.

For every n € N, &, acts on p[n| via o - z := p[o](x).
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A vector species is a functor
p : FinSet — Vect.
By functoriality,
1% 75 K — plBoa] = p[8] o plal,

19 1 —s plid;] = idypy)-

In particular, p[o]~! = p[o—!] for every I % J.
For every n € N, &, acts on p[n| via o - 2 := p[o](x). Therefore,

species p «— V = (V},)n>0, Vi, is a G,,-module.

10



Examples of species

e Species E of sets:
E[I] := K{x/}.

e Species E,, of n-sets:
E.l1] = K{xr}, if [I| =mn;
(0), if [I] # n.

e Species X := E; of sets of one element.
e Species 1 := Ey.

e Species G of graphs:

G[I] := K{ finite graphs with vertices in I }.

11



Examples of species

Species II of partitions.

Species L of linear orders.

Species 3 of set compositions.

Species B of binary trees.

Species & of permutations.

Species Braid of braid hyperplane arrangements.

12



Operations on species

e Sum of species
(p+a)[I] == p[I] ® q[I].

e Product of species (Cauchy product)

(p-a)I]l:= P »lSI@qlT].

I=suT

13



Operations on species

e Composition of species

(poq)ll]:= P plrl® (X) alBl.

14



Generating function of a species

To every species p it is associated its exponential generating function:

TL

ZdlmK p[n —|.

n>0
We have:
(p+a)(z) =p(z) +a(z),
(p-a)(@) =p(z) - a(),
(poq)(z) =p(z) o q(z)
For the last identity, q[0)] := (0)

15



The category Sp of vector species

A morphism of species p E q is a collection f = (fr) of linear maps
such that

Jr

pU] —— qll]

plo] J/q o]

plJ] —— alJ]

for every I %+ J. This defines the category Sp of species.

16



Recall that the Cauchy product of two species p and q is given by

(p-a)lll= € plSI®alT].

I=SUT

17



Recall that the Cauchy product of two species p and q is given by
(p-a)lll= @ plSI®q[T].
I=5uT

Endowed with this operation, Sp is symmetric monoidal: we can speak of
monoids (u: p-p — p), comonoids (A :p — p-p), ..., in species.

Hs,T

oIS @ plT] 225 p[l]  plI] =255 p[S] @ p[T].

17
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Algebraic structures in Sp

A monoid in Sp is given by (a, i, ¢), where a is a species and

p:a-a—a , t:1—a.

Explicitly, if I = S UT then

wsr : alS] @ a[T] — a[l].

The map ¢ is uniquely determined by its component ¢ : K — a[f)].
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Algebraic structures in Sp

A monoid in Sp is given by (a, i, ¢), where a is a species and
p:a-a—a , t:1—a.
Explicitly, if I = S UT then
ps,r :alS] ®a[T] — a[I].
The map ¢ is uniquely determined by its component ¢ : K — a[f)].

The maps p and ¢ must satisfy associativity, unitality and naturality
axioms.
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Algebraic structures in Sp

A comonoid in Sp is given by (c, A, ¢), where c is a species and

A:c—c-c , e:c— 1.

Explicitly, if I =S UT then
Agr:clI] = c[S]®c[T].
The map ¢ is uniquely determined by its component gy : c[(] — K.

The maps A and & must satisfy coassociativity, counitality and naturality

axioms.
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Algebraic structures in Sp

A comonoid in Sp is given by (c, A, ¢), where c is a species and
A:c—c-c , e:c— 1.
Explicitly, if I = S UT then
Agr:c[I] = c[S] @ c[T].
The map ¢ is uniquely determined by its component gy : c[(] — K.

The maps A and & must satisfy coassociativity, counitality and naturality
axioms.

Notions of bimonoids and Hopf monoids exist, analogues to bialgebras
and Hopf algebras.

19



Algebraic structures in Sp

Proposition: any graded, locally finite and connected bialgebra H is a
Hopf algebra.

A species h is connected (resp. positive) if dimg h[()] = 1 (resp.

Proposition: any connected bimonoid h is a Hopf monoid.

The antipode is a map s : h — h. When a bimonoid h possess an
antipode, it is unique.

20



Algebraic structures in Sp: examples

o (E u,A)
E[I] :== K{H;}.

ws,r(Hs ® Hr) :==Hgur ; Agr(Hr) :=Hg Q@ Hy.

sr(Hr) = (=1)MlH;.

21



Algebraic structures in Sp: examples

e (E,p,A)
E[I] := K{H,}.
ws,r(Hs ® Hr) :==Hgur ; Agr(Hr) :=Hg Q@ Hy.
sr(Hr) = (=1)MlH;.
o (L,u,A)
L[I] :==K{Hy: £ : [n] — I}, where |I| = n.
ps,r(He, ® He,) = Hy, o0, 2 Asr(He) :=Hy g ® Hy,.

SI(Hg) = (—1)|I‘Hreverse(€)-
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Algebraic structures in Sp: examples

e (E,p,A)
E[I] := K{H,}.
ws,r(Hs ® Hr) :==Hgur ; Agr(Hr) :=Hg Q@ Hy.
sr(Hr) = (=1)MlH;.
o (L,u,A)
L[I] :==K{Hy: £ : [n] — I}, where |I| = n.
ps,r(He, ® He,) = Hy, o0, 2 Asr(He) :=Hy g ® Hy,.

SI(Hg) = (—1)|I‘Hreverse(€)-

The product of L is concatenation, while the coproduct is deshuffle.
There is also a Hopf monoid (32, i1, A) with analogues operations.
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Algebraic structures in Sp

A Lie monoid in Sp is given by (g,[ , |), where g is a species and
[, ]:g-9—9
satisfies

e Anticommutativity

[LL‘,Z/]S,T = —[y,l‘]T,s;

e Jacobi identity:

[z, y]s,7, 2lsur,r + [[2, %] R,5, Y] RUS,T + [[2, %]T,R> T]TUR,s = 0.

22



Algebraic structures in Sp

Let (c,A,e) be a comonoid.

23



Algebraic structures in Sp

Let (c,A,e) be a comonoid.
The species Prim(c) of primitive parts of c is given by

Prim(c) :={z ec[l] : Ar(z) =z 1+1®@x}.
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Let (c,A,e) be a comonoid.
The species Prim(c) of primitive parts of c is given by

Prim(c) :={z ec[l] : Ar(z) =z 1+1®@x}.

When h is a bialgebra, the restriction of the Lie bracket induced from h
endows Prim(h) with a Lie monoid structure.
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Algebraic structures in Sp

Let (c,A,e) be a comonoid.
The species Prim(c) of primitive parts of c is given by
Prim(c) :={z ec[l] : Ar(z) =z 1+1®@x}.

When h is a bialgebra, the restriction of the Lie bracket induced from h
endows Prim(h) with a Lie monoid structure.

If h is connected, then Prim(h) is positive and

Prim(h)[I] = (7] ker(Asr : h{I] = h[S] ® h[T]),
SuT=J1
S, T#0)

for every I # ().

23



Monoids in species, revisited

24



Monoids in species, revisited

A monoid in Sp is given by (a, i, ¢), where a is a species and
H:a-a—a , t:1—a.
Explicitly, if I = S UT then
ps,r :alS] ®a[T] — a[I].
The map ¢ is uniquely determined by its component ¢ : K — a[f)].

The maps p and ¢ must satisfy associativity, unitality and naturality
axioms.

24



Monoids in species, revisited

Naturality: the product map behaves well with respect with the
transport of structures (relabeling).

More precisely, if I = ST and o : I — J is a bijection. the diagram

alS] ®@a[l] — =2 a[J]

alolsl®alo|z] la[a]
]

alo(9)] ®@alo(T)] oz ol

commutes.

25



Monoids in species, revisited

Unitality:
a‘t—a-a a-a——»a
N
1-a a-1

The unit axiom states that for each finite set I, the diagrams

all] <21 a[0) ® all] all] ® a[f] —2 a[1]
o Tm@im idz@ﬂmT =
K ® a[I] a[l] @ K

commute.

26



Monoids in species, revisited

Associativity : given a decomposition I = RIS UT,

. id T
aeaea_ 4 o a[R] ® a[S] ® a[T] ——"" 4 a[R] @ a[S U T]
M'id‘/ I pR,s®id MR,SUT
a-a—— ——a a[RU S| ® a[T] — a[l]
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Associativity : given a decomposition I = RIS UT,

. id T
aeaea_ 4 o a[R] ® a[S] ® a[T] ——"" 4 a[R] @ a[S U T]
peid I pR,s®id MR,SUT
a-a—— ——a a[RU S| ® a[T] — a[l]

From the associativity of the collection (ps,7)s. 7, there is a unique map
called the higher product map of a

a[S1] ® - -+ ® a[Sk] M—S*>a[l] for every I =S -+ U Sk, k>0,

obtained by iterating the product maps jis 7.
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Monoids in species, revisited

Associativity : given a decomposition I = RIS UT,

. id T
aeaea_ 4 o a[R] ® a[S] ® a[T] ——"" 4 a[R] @ a[S U T]
peid I pR,s®id MR,SUT
a-a—— ——a a[RU S| ® a[T] — a[l]

From the associativity of the collection (ps,7)s. 7, there is a unique map
called the higher product map of a

a[S1] ® - -+ ® a[Sk] S LN a[I] forevery I =S5, Sk k>0,
obtained by iterating the product maps jis 7.

If F'=5]---|SkE I, we define up := pg,, . s, and
a(F') :=a[S1] ® --- ® a[Sk], so

pur :a(F) — a[l].

27



Monoids in species from higher product maps

Theorem(Aguiar-Mahajan): Let a be a connected species equipped with
a collection of maps

wur a(F) — a[I], forevery F E I, finite set .

Then a is a connected monoid with higher products maps up if and only
if the naturality axiom holds and the diagram

a(G) =55 a1

NG/FJ/ /
HF

a(F)

commutes, for each compositions F' and G of I with F<G.
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Monoids in species from higher product maps

Theorem(Aguiar-Mahajan): Let a be a connected species equipped with
a collection of maps

wur a(F) — a[I], forevery F E I, finite set .

Then a is a connected monoid with higher products maps up if and only
if the naturality axiom holds and the diagram

a(G) = all]
r| 2
a(F)
commutes, for each compositions F' and G of I with F<G.

Here, < refers to the refinement partial order on set compositions. Also,
G/F is a set composition of I constructed from G and F.

The combinatorics of set compositions encode algebraic properties of

connected monoids in species.
28



The Tits monoid of set
compositions




Let I be a finite set.
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Let I be a finite set.

A set composition of [ is a sequence
F=(F,.. F,)=F| - |F

of disjoint non-empty sets such that their reunion is I.
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Let I be a finite set.

A set composition of [ is a sequence
F=(F,.. F,)=F| - |F

of disjoint non-empty sets such that their reunion is I.

Let X[I] be the set of all compositions of I. If F' € S[I], we write F'F I.
There is a unique set composition on the empty set, so |X[(]| = 1.

For example,
2|569(3|1478 € X[10].

29



Operations on set compositions

e Concatenation

Let I ={a,b,c,d,e, f,g,h} and let I = S UT, with
S ={a,b,c,d,e} and T=A{fg,h}.

Consider
F = de|abc and G = fyglh.

The concatenation of F' and G is
F © G :=delabe|fg|h E 1.
If p is species and F, G F I, there is a canonical isomorphism

p(F) ©@p(G) =p(F O G).

30



Operations on set compositions

e Tits product (Jacques Tits - 1974; Coxeter groups, Buildings)

Let I ={a,b,c,d,e, f,g,h} and consider
F = cdf glah|be E T and G = adefhlbcg E I.
The Tits product of F' and G is
F -G :=dfl|cglah| lelb = df|cglahle|bF I.

(X[1],-) is a monoid (with unit (1)), called the Tits monoid on I.
The Tits product is strongly non-commutative:

G - F = dfl|ahle|cg| |b = df|ahle|cgl|b.

31



Operations on set compositions

e Tits product (Jacques Tits - 1974; Coxeter groups, Buildings)
Let I ={a,b,c,d,e, f,g,h} and consider
F = cdf glah|be E T and G = adefhlbcg E I.
The Tits product of F' and G is
F -G :=dfl|cglah| lelb = df|cglahle|bF I.

(X[1],-) is a monoid (with unit (1)), called the Tits monoid on I.
The Tits product is strongly non-commutative:

G - F = dfl|ahle|cg| |b = df|ahle|cgl|b.

The Tits product is intimately related to the refinement order on set
compositions.
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Refinement order on set compositions

Let | be a finite set and F,G F I.
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Refinement order on set compositions

Let | be a finite set and F,G F I.
F < @G if each block of F'is a reunion of adyacent blocks of G.

2/5/3|1]4 2|3|5[1/4 3/2|5[1]4
2|35|1|4 23|5/1/4

235/1/4
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Refinement order on set compositions

Let | be a finite set and F,G F I.
F < @G if each block of F'is a reunion of adyacent blocks of G.

2/5/3|1]4 2|3|5[1/4 3/2|5[1]4
2|35|1|4 23|5/1/4

235/1/4

Minimal element: 0; := (I)
Maximal elements: permutations in S;.
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Refinement order on set partitions

Let | be a finite set and let IT[/] be the set of all set partitions of I.
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Refinement order on set partitions

Let | be a finite set and let II[I] be the set of all set partitions of I. If

m € II[I], we write 7 = I.
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Refinement order on set partitions

Let | be a finite set and let II[I] be the set of all set partitions of I. If

mell[l], wewritem = I. If m,7 1,

7 < 7 if each block of 7 is a reunion of blocks of 7.
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Refinement order on set partitions

Let | be a finite set and let II[I] be the set of all set partitions of I. If

mell[l], wewritem = I. If m,7 1,
7 < 7 if each block of 7 is a reunion of blocks of 7.
{{a}, {0}, {c}}
{{a}, {0,c}} {{b}ﬁ& ct} {{c} . {a,c}}

{{a,b,c}}
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Refinement order on set partitions

Let | be a finite set and let IT[I] be the set of all set partitions of I. If

mellI], wewritem = I. If 1,7+ 1,

m < 7 if each block of 7 is a reunion of blocks of 7.

a.b.c

TN

a.be b.ac c.ab

N

abc
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Refinement order on set partitions

Let | be a finite set and let IT[I] be the set of all set partitions of I. If

mellI], wewritem = I. If 1,7+ 1,

m < 7 if each block of 7 is a reunion of blocks of 7.

a.b.c

TN

a.be b.ac c.ab

N

abc

Minimal element: 0; := {I}
Maximal element: 1; := {{i} : i € I}.
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Let I be a finite set.

35



Let I be a finite set.

Let
supp : X[I] — II[I]

be the function that forgets the order of the blocks. It is a poset map.
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Let I be a finite set.

Let
supp : X[I] — II[I]

be the function that forgets the order of the blocks. It is a poset map.

Let F,G E I. We have:

1. F<F. -G

2. F<G<<=F -G=0G.

3. F2=F.

4. F-G-F =F -G (The monoid (3[I],-) is a left regular band)

&

supp(F" - G) = supp; (F') V supp(G).
. G-F =G < supp(F) < supp(G).

(@)}
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Back to species




Splitting operation

Let F,GE I.

e _ G, E I,
F < G < 3! “splitting” G/F := G| -- |G} of G with
F=10 |

Let (a, i, ¢) be a monoid. Define g, p : a(G) — a(F) by means of the
diagram

Hay @ ®uay, 3[11]®®a[]'k]
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Monoids in species from higher product maps

Theorem(Aguiar-Mahajan): Let a be a connected species equipped with
a collection of maps

wur a(F) — a[I], forevery F E I, finite set .

Then a is a connected monoid with higher products maps up if and only
if the naturality axiom holds and the diagram

a(G) =55 a1

NG/FJ/ /
HF

a(F)

commutes, for each compositions F' and G of I with F<G.
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Monoids in species from higher product maps

Theorem(Aguiar-Mahajan): Let a be a connected species equipped with
a collection of maps

wur a(F) — a[I], forevery F E I, finite set .

Then a is a connected monoid with higher products maps up if and only
if the naturality axiom holds and the diagram

a(G) = all]
r| 2
a(F)
commutes, for each compositions F' and G of I with F<G.

Here, < refers to the refinement partial order on set compositions. Also,
G/F is a set composition of I constructed from G and F.

The combinatorics of set compositions encode algebraic properties of

connected monoids in species.
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Comonoids in species, revisited

A comonoid in Sp is given by (c, A, ¢), where c is a species and

A:c—c-c , e:c— 1.

Explicitly, if I =S UT then
Agr:clI] = c[S]®c[T].
The map ¢ is uniquely determined by its component gy : c[(] — K.

The maps A and & must satisfy coassociativity, counitality and naturality

axioms.
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Comonoids in species, revisited

A comonoid in Sp is given by (c, A, ¢), where c is a species and
A:c—c-c , e:c— 1.
Explicitly, if I = S UT then
Agr:c[I] = c[S] @ c[T].
The map ¢ is uniquely determined by its component gy : c[(] — K.

The maps A and & must satisfy coassociativity, counitality and naturality
axioms.

Exercise: write explicitely the naturality axiom, counitality axiom and
coassociative axiom for the coproduct in a comonoid.
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Comonoids in species, revisited

Given a decomposition I = Sy LI --- LI Sk, there is a unique map
Asy,...,5
c[l] ——% a[$1] ® -+ ® a[Sk].

For k = 1, this map is defined to be the identity of c[I], and for k = 0 to
be the counit map ¢y.

The map Ag, .., is called the higher coproduct map of a.
As before, if F' = Si|---|Sk E I, we define write Ap := Ag,  g,.

Hence,
Ap :a[ll] — a(F).
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Bimonoids in species

Definition/Theorem(Aguiar-Mahajan): Let h be a connected species
equipped with two collections of maps

pr h(F) = h[I] and  Ap:h[I] — h(F),

one map for each composition F' of a nonempty finite set I. Then h is a

bimonoid with higher product maps i and higher coproduct maps Ap if
and only if the following conditions hold:
- naturality,

- higher associativity,
- higher coassociativy,

- higher compatitiblity: the diagram commutes for any pair of
compositions F, G E I.

h(FG) ’ h(GF)
AFG/FT J/"GF/F
h(F) ———— hlI] ————h(G)
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Questions?



Bimonoids in species

A bimonoid h is at the same time a monoid (h, i1, ¢) and a comonoid
(h, A, &), which are related in the following way: the maps

pw:h-h—a , t:1—h
are morphism of comonoids. This is equivalent to ask that the maps
A:h—h-h , e:h—1

are morphism of monoids.

41



Bimonoids in species

A bimonoid h is at the same time a monoid (h, i1, ¢) and a comonoid
(h, A, &), which are related in the following way: the maps

pw:h-h—a , t:1—h

are morphism of comonoids. This is equivalent to ask that the maps
A:h—h-h , e:h—1

are morphism of monoids.

In order to describe the compatibility rule, fix decompositions

SUT =1=5S"UT’, and consider the resulting pairwise intersections:

A=5N8,, B=S5NTy,, C=T1N5Sy, D=T,N1Ts.

41



id@A®id

h[A] ® h[B] ® h[C] ® h[D]

AA,B®AC,D/I\ ‘/HA,C’@ILB,D

h[$1] ® h[Sz] ——z—— h[I] o h[T1] ® h[T3]
o @bl —=" sKQK K - h[0]
Ho m‘/ h: N‘ ‘/Am [}
h[0)] = K K@KWM@]@JM@]

h[A] ® h[C] ® h[B] ® h[D]
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