# Free Rota-Baxter family algebras and free (tri)dendriform family algebras

#### Yuanyuan Zhang

joint work with Xing Gao and Dominique Manchon

Algebraic, analytic and geometric structures emerging from quantum field theory,  ${\sf Chengdu}$ 

March 6, 2024



#### Outline

- Free Rota-Baxter family algebras (RBFA)
  - Typed angularly decorated planar rooted trees
  - A multiplication on  $\mathbf{k}\mathcal{T}(X,\Omega)$
  - Construction of free RBFA
- Embedding free DFAs (resp.TFAs) into free RBFAs
  - Embedding free DFAs into free RBFAs
  - Embedding free TFAs into free RBFAs
  - Universal enveloping algebras of (tri)dendriform family algebras

- In 1998, Loday and Ronco proved the free dendriform algebra on one generator can be described as an algebra over the set of planar binary trees.
- In 2004, Loday and Ronco showed the free tridendriform algebra on one generator can be described as an algebra over the set of planar trees.
- J. -L. Loday and M. O. Ronco, Hopf algebra of the planar binary trees, *Adv. Math.* **39** (1998), 293-309.
- J. -L. Loday and M. O. Ronco, Trialgebras and families of polytopes, in "Homotopy theoty: relations with algebraic geometry, group cohomology, and algebraic K-theory", *Contemp. Math.* **346** (2004), 369-398.

- In 2007, K. Ebrahimi-Fard, J. Gracia-Bondia and F. Patras studied about algebraic aspects of renormalization in Quantum field theory. The first example about Rota-Baxter family algebras of -1 appeared in this paper and Guo suggested them to use this name.
- In 2008, K. Ebrahimi-Fard and L. Guo, they used rooted trees and forests to give explicit constructions of free noncommutative Rota-Baxter algebras on modules and sets.
- K. Ebrahimi-Fard, J. Gracia-Bondia and F. Patras, A Lie theoretic approach to renormalization, *Comm. Math. Phys.* **276** (2007), 519-549.
- K. Ebrahimi-Fard and L. Guo, Free Rota-Baxter algebras and rooted trees, *J. Algebra Appl.* **7** (2008), 167-194.

- In 2009, L. Guo named Rota-Baxter family algebras of weight  $\lambda$ .
- In 2012, E. Panzer studied algebraic aspects of renormalization in Quantum Field Theory. They proved the Taylor expansion operators fulfil for Rota-Baxter family algebras of weight -1.
- L. Guo, Operated monoids, Motzkin paths and rooted trees, *J. Algebraic Combin.* **29** (2009), 35-62.
- D. Kreimer and E. Panzer, Hopf-algebraic renormalization of Kreimer's toy model, Master thesis, Handbook.

- In 2018, Bruned, Haier and Zambotti gave a systematic description of a canonical renormalisation procedure of stochastic PDEs, in which their construction is based on bialgebras of typed decorated forests in cointeraction.
- In 2018, L. Foissy studied multiple prelie algebras and related operads. He proved the free *T*-multiple prelie algebra generated by a set *D*.
- Y. Bruned, M. Hairer and L. Zambotti, Algebraic renormalisation of regularity structures, *Invent. math.* **215** (2019), 1039-1156.
- L. Foissy, Algebraic structures on typed decorated planar rooted trees, *Symmetry Integr. Geom. Methods Appl.* 17 (2021), 28pp.

- Y. Bruned, M. Hairer and L. Zambotti, Algebraic renormalisation of regularity structures, *Invent. math.* **215** (2019), 1039-1156.
- M. Aguiar, Dendriform algebras relative to a semigroup, Symmetry Integr. Geom. Methods Appl. 16 (2020) 066.
- L. Foissy, Algebraic structures on typed decorated planar rooted trees, *Symmetry Integr. Geom. Methods Appl.* **17** (2021), 28pp.
- L. Foissy, Typed binary trees and generalized dendriform algebras and typed binary trees, *J. Algebra*, **586** (2021), 1-61.

- L. Foissy and X. Peng, Typed angularly decorated planar rooted trees and generalized Rota-Baxter algebras, *J. Algebr. Comb.* **57** (2023), 271-303.
- X. Gao, L. Guo and Y. Zhang, Commutative matching Rota-Baxter operators, shuffle products with decorations and matching Zinbiel algebras, *J. Algebra*, **586** (2021), 402-432.
- Y. Zhang, X. Gao and L. Guo, Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras, *J. Algebra* **552** (2020), 134-170.
- Y. Zhang and S. J. Guo, Matching Rota-Baxter systems and Gröbner-Shirshov bases, accepted by *Algebra Colloq*.

- Y. Y. Zhang and X. Gao, Free Rota-Baxter family algebras and (tri)dendriform family algebras, *Pacific J. Math.* **301** (2019), 741-766.
- Y. Y. Zhang, X. Gao and D. Manchon, Free (tri)dendriform family algebras, *J. Algebra* **547** (2020), 456-493.
- Y. Y. Zhang, X. Gao and D. Manchon, Free Rota-Baxter family algebras and free (tri)dendriform family algebras, *Algebr. Represent. Theory*, **301** (2023), 741-766.

- Y. Y. Zhang and D. Manchon, Free pre-Lie family algebras, *Ann. Inst. Heri Poincare Comb. Phys. Interact.* (2023), doi:10.4171/AIHPD/162.
- Y. Y. Zhang, H. H. Zhang and X. Gao, Free  $\Omega$ -Rota-Baxter systems and Gröbner-Shirshov bases, *J. Algebra Appl.*, doi: 10.1142/So219498825501622.
- L. Foissy, D. Manchon and Y. Y. Zhang, Families of algebraic structures, submitted.
- S. Chao, K. Wang and Y. Y. Zhang\*, The cohomology theory of Rota-Baxter  $\Omega$ -associative algebras and derived bracket, submitted.

- A. Das, Twisted Rota-Baxter families and NS-family algebras, J. Algebra 612, (2022), 577-615.
- A. Das and S. Sen, Diassociative family algebras and averaging family operators, *J. Geom. Phys.* **193** (2023), 104964, 15 pp.
- T. S. Ma and J. Li, Matching Rota-Baxter BiHom-algebras and related algebraic structures, *Rocky Mountain J. Math.* **52** (2022), 17411765.
- Y. Bruned and K. Ebrahimi-Fard, Bogoliubov type recursions for renormalisation in regularity structures, *Ann. Inst. Heri Poincare Comb. Phys. Interact.*, doi:10.4171/AIHPD/186 (2024).

i

## Questions

- How to construct the free Rota-Baxter family algebras by using typed angularly decorated planar rooted trees?
- Whow to construct the free (tri)dendriform family algebra by using typed decorated planar (binary) rooted trees?
- What's the relationship between the free Rota-Baxter family algebra and the free (tri)dendriform family algebra?

- 1 Free Rota-Baxter family algebras (RBFA)
  - Typed angularly decorated planar rooted trees
  - A multiplication on  $kT(X, \Omega)$
  - Construction of free RBFA
- 2 Embedding free DFAs (resp.TFAs) into free RBFAs
  - Embedding free DFAs into free RBFAs
  - Embedding free TFAs into free RBFAs
  - Universal enveloping algebras of (tri)dendriform family algebras

## Definition and Example

## Definition (Ebrahimi-Fard et al. 2007, Guo 2009)

Let  $\Omega$  be a semigroup and  $\lambda \in \mathbf{k}$  be given. A **Rota-Baxter family** of weight  $\lambda$  on an algebra R is a collection of linear operators  $(P_{\omega})_{\omega \in \Omega}$  on R such that

$$P_{\alpha}(a)P_{\beta}(b) = P_{\alpha\beta}(P_{\alpha}(a)b + aP_{\beta}(b) + \lambda ab),$$

where  $a, b \in R$  and  $\alpha, \beta \in \Omega$ . Then the pair  $(R, (P_{\omega})_{\omega \in \Omega})$  is called a **Rota-Baxter family algebra** of weight  $\lambda$ .

#### Example 1

The algebra of Laurent series  $R=\mathbf{k}\left[z^{-1},z\right]$  is a Rota-Baxter family algebra of weight -1 , with  $\Omega=(\mathbb{Z},+)$ , where the operator  $P_{\omega}$  is the projection onto the subspace  $R_{<\omega}$  generated by  $\left\{z^k,k<\omega\right\}$  parallel to the supplementary subspace  $R_{\geq\omega}$  generated by  $\left\{z^k,k\geq\omega\right\}$ .

## Example 2

Let  $\Omega=(\mathbb{R},+)$  be a semigroup, and R is the  $\mathbb{R}$ -algebra consisting of all continous functions from  $\mathbb{R}$  to  $\mathbb{R}$ , the multiplication is defined by

$$(fg)(x) := f(x)g(x), \text{ for } f,g \in R.$$

And for any  $\alpha \in \Omega$ , define a family linear operator  $P_{\alpha}: R \to R$  as follows

$$P_{\alpha}(f)(x) = e^{-\alpha A(x)} \int_{0}^{x} e^{\alpha A(t)} f(t) dt$$
, for  $\alpha \in \Omega$ ,

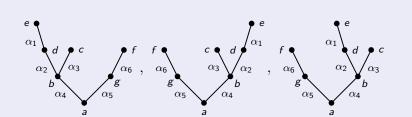
where A is a fixed nonzero element of R. Then  $(P_{\alpha})_{\alpha \in \Omega}$  is a Rota-Baxter family of weight 0.

## Definition (Bruned-Hairer-Zambotti, Invent. math.)

Let X and  $\Omega$  be two sets. An X-decorated  $\Omega$ -typed (abbreviated typed decorated) rooted tree is a triple T = (T, dec, type), where

- T is a rooted tree.
- $ext{ dec}: V(T) \to X ext{ is a map.}$
- **3** type :  $E(T) \rightarrow \Omega$  is a map.

#### Example 3

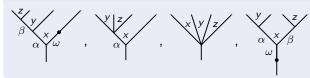


#### Definition

Let X and  $\Omega$  be two sets. An X-angularly decorated  $\Omega$ -typed (abbreviated typed angularly decorated) planar rooted tree is a triple T = (T, dec, type), where

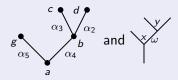
- ① T is a planar rooted tree.
- $\mathbf{2} \ \mathrm{dec} : A(T) \to X \ \mathrm{is \ a \ map}.$
- **3** type :  $IE(T) \rightarrow \Omega$  is a map.

## Example 4



#### Remark

The graphical representation of (planar) rooted trees



in Example 4 and Example 3 is slightly different.

- Here the root and the leaves are now edges rather than vertices.
- The set E(T) must be replaced by the set IE(T) of internal edges.

If a semigroup  $\Omega$  has no identity element, we consider the monoid  $\Omega^1:=\Omega\sqcup\{1\}$  obtained from  $\Omega$  by adjoining an identity:

$$1\omega := \omega 1 := \omega, \text{ for } \omega \in \Omega \text{ and } 11 := 1.$$

For  $n \geq 0$ , let  $\mathcal{T}_n(X, \Omega)$  denote the set of X-angularly decorated  $\Omega^1$ -typed planar rooted trees with n+1 leaves such that leaves are decorated by the identity 1 in  $\Omega^1$  and internal edges are decorated by elements of  $\Omega$ . Note that the root is not decorated. Denote by

$$\mathcal{T}(X,\,\Omega):=\bigsqcup_{n\geq 0}\mathcal{T}_n(X,\,\Omega)\ \ \text{and}\ \ \mathbf{k}\mathcal{T}(X,\,\Omega):=\bigoplus_{n\geq 0}\mathbf{k}\mathcal{T}_n(X,\,\Omega).$$

Graphically, an element  $T \in \mathcal{T}(X, \Omega)$  is of the form:

$$T = T_1 \underbrace{\bigcap_{\alpha_1 \times 1}^{T_2} T_n}_{\alpha_1 \times 1} T_{n+1}, \text{ with } n \ge 0,$$

i.e.,  $\alpha_j\in\Omega$  if  $T_j\neq |;\ \alpha_j=1$  if  $T_j=|.$  For each  $\omega\in\Omega,$  define a linear operator

$$B_{\omega}^{+}: \mathbf{k}\mathcal{T}(X, \Omega) \to \mathbf{k}\mathcal{T}(X, \Omega),$$

by adding a new root and a new internal edge decorated by  $\omega$  connecting the new root and the root of T. For example,

$$B_{\omega}^{+}\Big(\Big|\Big) = \left|_{\omega}, \quad B_{\omega}^{+}\Big(\bigvee^{\times}\Big) = \bigcup^{\times}_{\omega}, \quad B_{\omega}^{+}\Big(\bigvee^{\times}_{\alpha}\bigvee^{\times}_{\beta}\Big) = \bigcup^{\times}_{\omega}\bigvee^{\times}_{\beta}.$$

The **depth** dep(T) of a rooted tree T is the maximal length of linear chains from the root to the leaves of the tree. For example,

$$dep(\left| \begin{array}{c} \\ \end{array} \right|) = dep\left(\begin{array}{c} \\ \\ \end{array} \right) = 1 \text{ and } dep\left(\begin{array}{c} \\ \\ \end{array} \right) = 2.$$

We add the "zero-vertex tree" | to the picture, and set dep(|)=0. Note that the operators  $B_{\omega}^+$  are not defined on |.

#### Remark

For any  $T \in \mathcal{T}(X, \Omega) \sqcup \{|\}$ , if  $\operatorname{dep}(T) = 0$ , then T = |. Define the number of branches  $\operatorname{bra}(T)$  of T to be 0 in this case. Otherwise,  $\operatorname{dep}(T) \geq 1$  and T is of the form

$$T = T_1 \underbrace{\bigcap_{\alpha_1 \times 1}^{T_2} T_n}_{\alpha_1 \times \alpha_{n+1}} T_{n+1} \text{ with } n \geq 0.$$

Here any branch  $T_j \in \mathcal{T}(X, \Omega) \sqcup \{|\}, j = 1, \ldots, n+1$  is of depth at most one less than the depth of T, and equal to zero if and only if  $T_j = |$ . We define  $\operatorname{bra}(T) := n+1$ . For example,

$$\operatorname{bra}\left(\begin{array}{c} \omega \end{array}\right) = 1, \ \operatorname{bra}\left(\begin{array}{c} x \\ \end{array}\right) = 2 \ \text{and} \ \operatorname{bra}\left(\begin{array}{c} x \\ \end{array}\right) = 3.$$

- 1 Free Rota-Baxter family algebras (RBFA)
  - Typed angularly decorated planar rooted trees
  - A multiplication on  $kT(X, \Omega)$
  - Construction of free RBFA
- 2 Embedding free DFAs (resp.TFAs) into free RBFAs
  - Embedding free DFAs into free RBFAs
  - Embedding free TFAs into free RBFAs
  - Universal enveloping algebras of (tri)dendriform family algebras

We define  $T \diamond T'$  by induction on  $\operatorname{dep}(T) + \operatorname{dep}(T') \geq 2$ . For the initial step  $\operatorname{dep}(T) + \operatorname{dep}(T') = 2$ , we have  $\operatorname{dep}(T) = \operatorname{dep}(T') = 1$  and T, T' are of the form

$$T = \underbrace{\begin{array}{c} x_1 \\ \\ \end{array}}_{x_m} \text{ and } T' = \underbrace{\begin{array}{c} y_1 \\ \\ \end{array}}_{y_n}, \text{ with } m, n \geq 0.$$

Define

$$T \diamond T' := \underbrace{x_1 \cdots x_m}_{x_1 \cdots x_m} \diamond \underbrace{y_1 \cdots y_n}_{y_1 \cdots y_n} := \underbrace{x_1 \cdots x_m}_{y_1 \cdots y_n}.$$

For the induction step  $dep(T) + dep(T') \ge 3$ , the trees T and T' are of the form

$$T = T_1 \underbrace{\bigcirc_{\alpha_1}^{T_2} T_m}_{\alpha_1} \underbrace{\bigcirc_{\alpha_2 \alpha_m \circ}^{T_2}}_{T_{m+1}} T_{m+1} \text{ and } T' = \underbrace{T'_1}_{\beta_1} \underbrace{\bigcirc_{\beta_1}^{T_2}}_{\beta_{n+1}} \underbrace{\neg_{n+1}^{T_2}}_{\beta_{n+1}} T'_{n+1}.$$

There are four cases to consider.

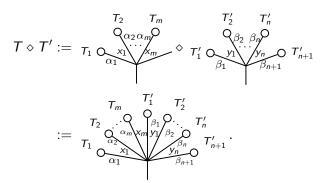
Case 1:  $T_{m+1} = | = T'_1$ . Define

**Case 2:**  $T_{m+1} \neq | = T'_1$ . Define

$$T \diamond T' := T_{1} \underbrace{ \begin{array}{c} T_{2} & T_{m} & T'_{2} & T'_{n} \\ \alpha_{2} \alpha_{m} & \alpha_{m+1} \end{array}}_{X_{1} & X_{m+1}} T_{m+1} \diamond \underbrace{ \begin{array}{c} T_{2} & T'_{n} \\ \beta_{2} & \beta_{n} \end{array}}_{Y_{n+1}} T'_{n+1}$$

$$:= \underbrace{ \begin{array}{c} T_{m} & T_{m+1} & T'_{2} \\ T_{2} & \vdots & \alpha_{m} & T'_{n} \end{array}}_{T_{1} & \beta_{n+1}} T'_{n+1} \cdot \underbrace{ \begin{array}{c} T_{m} & T_{m+1} \\ \gamma_{1} & \vdots \\ \gamma_{n} & \alpha_{m} & \gamma_{1} & \beta_{n} \end{array}}_{X_{1} & \beta_{n+1}} T'_{n+1} \cdot \underbrace{ \begin{array}{c} T_{m} & T_{m+1} \\ \gamma_{1} & \vdots \\ \gamma_{n} & \alpha_{1} & \vdots \end{array}}_{X_{1} & \beta_{n+1}} T'_{n+1} \cdot \underbrace{ \begin{array}{c} T_{m} & T_{m+1} \\ \gamma_{1} & \vdots \\ \gamma_{n} & \beta_{n+1} \end{array}}_{X_{1} & \vdots } T'_{n+1} \cdot \underbrace{ \begin{array}{c} T_{m} & T_{m+1} \\ \gamma_{1} & \vdots \\ \gamma_{n} & \vdots \\ \gamma$$

**Case 3:**  $T_{m+1} = | \neq T'_1$ . Define



Case 4:  $T_{m+1} \neq | \neq T'_1$ . Define

$$T \diamond T' := T_{1} \underbrace{ \begin{array}{c} T_{2} & T_{m} & T'_{2} & T'_{n} \\ \alpha_{2} \alpha_{m} & \beta_{2} & \beta_{n} \\ \end{array}}_{\alpha_{m+1}} T_{m+1} \diamond T'_{1} \underbrace{ \begin{array}{c} \beta_{2} & \beta_{n} \\ \beta_{1} & \beta_{n+1} \\ \end{array}}_{\beta_{n+1}} T'_{n+1}$$

$$:= \left( T_{1} \underbrace{ \begin{array}{c} T_{2} & T_{m} \\ \alpha_{2} \alpha_{m} \\ \end{array}}_{\alpha_{1}} \diamond \left( B_{\alpha_{m+1}}^{+}(T_{m+1}) \diamond B_{\beta_{1}}^{+}(T'_{1}) \right) \right) \diamond \underbrace{ \begin{array}{c} T'_{2} & T'_{n} \\ \beta_{2} & \beta_{n} \\ \end{array}}_{\beta_{n+1}} T'_{n+1}$$

$$:= \left( T_{1} \underbrace{ \begin{array}{c} T_{2} & T_{m} \\ \alpha_{2} \alpha_{m} \\ \end{array}}_{\alpha_{1}} \diamond B_{\alpha_{m+1}}^{+} \beta_{1} \left( B_{\alpha_{m+1}}^{+}(T_{m+1}) \diamond T'_{1} + T_{m+1} \diamond B_{\beta_{1}}^{+}(T'_{1}) + \lambda T_{m+1} \diamond T'_{1} \right) \right)$$

$$T'_{2} & T'_{n} \\ \underbrace{ \begin{array}{c} \beta_{2} & \beta_{n} \\ \\ \beta_{1} & \beta_{n} \\ \end{array}}_{\beta_{1}} \underbrace{ \begin{array}{c} T_{n} \\ \beta_{2} & \beta_{n} \\ \end{array}}_{\beta_{n}} \underbrace{ \begin{array}{c} T_{n} \\ \beta_{2} & \beta_{n} \\ \end{array}}_{\beta_{n}} \underbrace{ \begin{array}{c} T_{n} \\ \beta_{2} & \beta_{n} \\ \end{array}}_{\beta_{n}} \underbrace{ \begin{array}{c} T_{n} \\ \beta_{2} & \beta_{n} \\ \end{array}}_{\beta_{n}} \underbrace{ \begin{array}{c} T_{n} \\ \beta_{2} & \beta_{n} \\ \end{array}}_{\beta_{n}} \underbrace{ \begin{array}{c} T_{n} \\ \beta_{2} & \beta_{n} \\ \end{array}}_{\beta_{n}} \underbrace{ \begin{array}{c} T_{n} \\ \beta_{2} & \beta_{n} \\ \end{array}}_{\beta_{n}} \underbrace{ \begin{array}{c} T_{n} \\ \beta_{2} & \beta_{n} \\ \end{array}}_{\beta_{n}} \underbrace{ \begin{array}{c} T_{n} \\ T_{n} \\ \end{array}}_{\beta_{n}} \underbrace{ \begin{array}{c} T_{n} \\ T_{n}$$

## Example 6

$$= B_{\alpha}^{+} \begin{pmatrix} x \\ y \end{pmatrix} \diamond \beta$$

$$= B_{\alpha\beta}^{+} \begin{pmatrix} x \\ B_{\alpha}^{+} \end{pmatrix} \diamond \beta$$

$$= B_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= B_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= B_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= B_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= B_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= B_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta}^{+} \begin{pmatrix} x \\ A \end{pmatrix} \diamond \beta$$

$$= A_{\alpha\beta$$

- 1 Free Rota-Baxter family algebras (RBFA)
  - Typed angularly decorated planar rooted trees
  - A multiplication on  $kT(X, \Omega)$
  - Construction of free RBFA
- 2 Embedding free DFAs (resp.TFAs) into free RBFAs
  - Embedding free DFAs into free RBFAs
  - Embedding free TFAs into free RBFAs
  - Universal enveloping algebras of (tri)dendriform family algebras

#### **Problems**

- About the Rota-Baxter family algebras on typed-angularly decorated planar rooted trees constructed above: are they free?
- What's the relationship between typed-angularly decorated planar rooted trees and bracketed words?

#### Free FRBA on bracketed words

Denote by S the following vector subspace of  $\mathbf{k}\mathfrak{M}(\Omega,X)$ :

$$S := \left\{ \left\lfloor x \right\rfloor_{\alpha} \left\lfloor y \right\rfloor_{\beta} - \left\lfloor \left\lfloor x \right\rfloor_{\alpha} y \right\rfloor_{\alpha\beta} - \left\lfloor x \left\lfloor y \right\rfloor_{\beta} \right\rfloor_{\alpha\beta} - \lambda \left\lfloor xy \right\rfloor_{\alpha\beta} \right\},\,$$

where  $\alpha, \beta \in \Omega, x, y \in \mathfrak{M}(\Omega, X)$ .

## Theorem (Z.-Gao, Pacific J. Math.)

Let X be a set and let  $\Omega$  be a semigroup.

- S is a Gröbner-Shirshov basis in  $\mathbf{k}\mathfrak{M}(\Omega,X)$  with respect to a monomial order.
- ② The set  $\mathfrak{X}_{\infty}$  is a **k**-basis of the free Rota-Baxter family algebra  $(\mathbf{k}X_{\infty}, \diamond_w, (\lfloor \rfloor \omega)_{\omega \in \Omega}) = \mathbf{k}\mathfrak{M}(\Omega, X)/\operatorname{Id}(S)$  of weight  $\lambda$ , where  $\operatorname{Id}(S)$  is the operated ideal generated by S in  $\operatorname{kM}(\Omega, X)$ .
- Y. Y. Zhang and X. Gao, Free Rota-Baxter family algebras and (tri)dendriform family algebras, *Pacific J. Math.* **301** (2019), 741-766.

## The relationship

Built up a one-one correspondence between  $\mathbf{k}\mathcal{T}(X,\Omega)$  and  $\mathbf{k}\mathfrak{X}_{\infty}$ .

| Typed angularly decorated planar rooted trees $\mathcal{T}(X,\Omega)$ | $\mathfrak{X}_{\infty}$      |
|-----------------------------------------------------------------------|------------------------------|
|                                                                       | 1                            |
| $\omega$                                                              | $\lfloor 1  floor_\omega$    |
| ×                                                                     | Х                            |
| w X                                                                   | $\lfloor x \rfloor_{\omega}$ |
| ×                                                                     | xy                           |
| x y w                                                                 | $[xy]_{\omega}$              |

## Construction of the isomorphism map

Define a linear map

$$\phi: \mathbf{k}\mathcal{T}(X, \Omega) \to \mathbf{k}\mathfrak{X}_{\infty}, \quad T \mapsto \phi(T)$$

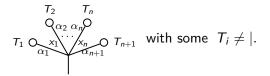
by induction on  $dep(T) \ge 1$ . If dep(T) = 1, then  $T = x_1$  with n > 0 and define

$$\phi(T) := \phi(\underbrace{x_1 \cdots x_n}_{x_n}) := x_1 \cdots x_n,$$

with  $x_1 \cdots x_n := 1$  in the case n = 0.

## Construction of the isomorphism map

For the induction step  $dep(T) \ge 2$ , T is the form



Then we define  $\phi(T)$  by the induction on  $\operatorname{bra}(T) \geq 1$ . For the initial step  $\operatorname{bra}(T) = 1$ , we have  $T = \bigcap_{\alpha_1}^{T_1}$  and define

$$\phi\left(\bigcap_{\alpha_1}^{I_1}\right) := \phi(B_{\alpha_1}^+(T_1)) := \lfloor \phi(T_1) \rfloor_{\alpha_1}.$$

## Construction of the isomorphism map

For the induction step  $bra(T) \ge 2$ , there are two cases to consider.

**Case 1:**  $T_1 = |$ . Define

$$\phi(T) := x_1 \phi\left( \begin{array}{ccc} T_3 & T_n \\ \alpha_3 & \alpha_n \\ T_2 & \alpha_2 & x_2 \\ & & x_n \\ & & x_{n+1} \end{array}, T_{n+1} \right).$$

Case 2:  $T_1 \neq |$ . Define

$$\phi(T) := \lfloor \phi(T_1) \rfloor_{\alpha_1} x_1 \phi \left( \begin{array}{ccc} T_3 & T_n \\ Q_{\alpha_3 & \alpha_n} Q \\ T_2 & X_2 & X_n \\ Q_{\alpha_2} & X_{n+1} \end{array} \right).$$

# Construction of the isomorphism map

Conversely, define a linear map

$$\psi: \mathbf{k} X_{\infty} \to \mathbf{k} \mathcal{T}(X, \Omega), \quad w \mapsto \psi(w)$$

by induction on  $dep(w) \ge 1$ .

- If dep(w) = 1, then  $w = x_1 \cdots x_n \in M(X)$  with  $n \ge 0$ .
- If dep(w) > 1, we apply induction on  $bre(w) \ge 1$ .

Write  $w=w_1\cdots w_n$  with  $\operatorname{bre}(w)=n\geq 1$ . If  $\operatorname{bre}(w)=1$ , then  $w=\lfloor \overline{w}\rfloor_{\alpha}$  for  $\overline{w}\in\mathfrak{X}_{\infty}$  and  $\alpha\in\Omega$  by

 $dep(w) \ge 1$ , and define

$$\psi(\mathbf{w}) = \psi\left(\lfloor \overline{\mathbf{w}} \rfloor_{\alpha}\right) := B_{\alpha}^{+}(\psi(\overline{\mathbf{w}})).$$

If  $bre(w) \ge 2$ , then define

$$\psi(\mathbf{w}) := \psi(\mathbf{w}_1) \diamond \psi(\mathbf{w}_2 \cdots \mathbf{w}_n).$$

# Construction of the isomorphism map

Proposition (Z.-Gao-Manchon, Algebr. Represent. Theory) We have  $\psi \circ \phi = id$  and  $\phi \circ \psi = id$ .

Lemma (Z.-Gao-Manchon, Algebr. Represent. Theory)

For T and T' in  $\mathcal{T}(X,\Omega)$ , we have

$$\phi(T \diamond T') = \phi(T) \diamond_{\mathsf{w}} \phi(T').$$



Y. Y. Zhang, X. Gao and D. Manchon, Free Rota-Baxter family algebras and free (tri)dendriform family algebras, Algebr. Represent. Theory, 301 (2023), 741-766.

#### Main results

Let  $j_X$  be the embedding given by

$$j_X: X \to \mathbf{k}\mathcal{T}(X,\Omega), x \mapsto X$$

#### Theorem (Z.-Gao-Manchon, Algebr. Represent. Theory)

Let X be a set and let  $\Omega$  be a semigroup. The triple  $(\mathbf{k}\mathcal{T}(X,\Omega),\diamond,(B^+_\omega)_{\omega\in\Omega})$ , together with the  $j_X$ , is the free Rota-Baxter family algebra of weight  $\lambda$  on X.

#### Corollary (Z.-Gao-Manchon, Algebr. Represent. Theory)

Let X be a set and let  $\Omega$  be a trivial semigroup with one element. Then the triple  $(\mathbf{k}\mathcal{T}(X), \diamond, B^+)$ , together with the  $j_X$ , is the free Rota-Baxter algebra of weight  $\lambda$  on X.

- 1 Free Rota-Baxter family algebras (RBFA)
  - Typed angularly decorated planar rooted trees
  - A multiplication on  $kT(X, \Omega)$
  - Construction of free RBFA
- Embedding free DFAs (resp.TFAs) into free RBFAs
  - Embedding free DFAs into free RBFAs
  - Embedding free TFAs into free RBFAs
  - Universal enveloping algebras of (tri)dendriform family algebras

#### **Problems**

- How to construct free (tri)dendriform family algebras via typed decorated planar rooted trees?
- What's the relationship between free Rota-Baxter family algebras and free (tri)dendriform family algebras?

#### Definition

Let  $\Omega$  be a semigroup. A **dendriform family algebra** is a **k**-module D with a family of binary operations  $(\prec_{\omega}, \succ_{\omega})_{\omega \in \Omega}$  such that for  $x, y, z \in D$  and  $\alpha, \beta \in \Omega$ ,

$$(x \prec_{\alpha} y) \prec_{\beta} z = x \prec_{\alpha\beta} (y \prec_{\beta} z + y \succ_{\alpha} z),$$
  
$$(x \succ_{\alpha} y) \prec_{\beta} z = x \succ_{\alpha} (y \prec_{\beta} z),$$
  
$$(x \prec_{\beta} y + x \succ_{\alpha} y) \succ_{\alpha\beta} z = x \succ_{\alpha} (y \succ_{\beta} z).$$

For  $n \ge 1$ , let

$$Y_n := Y_{n,X,\Omega} := \mathcal{T}_n(X,\Omega) \cap \{\text{planar binary trees}\}.$$

Example 7
$$Y_{1} = \left\{ \begin{array}{c} x \\ \\ \end{array} \middle| x \in X \right\},$$

$$Y_{2} = \left\{ \begin{array}{c} x \\ \\ \end{array} \middle| x, y \in X, \alpha \in \Omega \right\},$$

$$Y_{3} = \left\{ \begin{array}{c} x \\ \\ \end{array} \middle| x, y \in X, \alpha \in \Omega \right\},$$

$$Y_{3} = \left\{ \begin{array}{c} x \\ \\ \end{array} \middle| x, y \in X, \alpha \in \Omega \right\},$$

The grafting  $\vee_{x,(\alpha,\beta)}$  over x and  $(\alpha,\beta)$  is defined to be  $T=T^I\vee_{x,(\alpha,\beta)}T^r$  for some  $x\in X$  and  $\alpha,\beta\in\Omega^1$ .

#### Example 8

$$\begin{array}{c}
\stackrel{y}{\underset{\alpha}{\bigvee}} = & \stackrel{y}{\underset{\alpha}{\bigvee}} \vee_{x,(\alpha,1)} |, & \stackrel{y}{\underset{\alpha}{\bigvee}} = | \vee_{x,(1,\alpha)} & \stackrel{y}{\underset{\alpha}{\bigvee}}, \\
\stackrel{y}{\underset{\alpha}{\bigvee}} \stackrel{z}{\underset{\beta}{\bigvee}} = & \stackrel{y}{\underset{\alpha}{\bigvee}} \vee_{x,(\alpha,\beta)} & \stackrel{z}{\underset{\alpha}{\bigvee}}.
\end{array}$$

Denote by

$$\mathrm{DD}(X,\Omega) := \bigoplus_{n \geq 1} \mathbf{k} Y_n.$$

#### Definition

Let X be a set and let  $\Omega$  be a semigroup. Define binary operations

$$\prec_{\omega}, \succ_{\omega}: \left( \mathrm{DD}(X, \Omega) \otimes \mathrm{DD}(X, \Omega) \right) \oplus \left( \mathbf{k} | \otimes \mathrm{DD}(X, \Omega) \right)$$
$$\oplus \left( \mathrm{DD}(X, \Omega) \otimes \mathbf{k} | \right) \to \mathrm{DD}(X, \Omega), \text{ for } \omega \in \Omega$$

recursively on dep(T) + dep(U) by

- ② For  $T = T^I \vee_{x,(\alpha_1,\alpha_2)} T^r$  and  $U = U^I \vee_{y,(\beta_1,\beta_2)} U^r$ , define

$$T \prec_{\omega} U := T^{I} \vee_{x, (\alpha_{1}, \alpha_{2}\omega)} (T^{r} \prec_{\omega} U + T^{r} \succ_{\alpha_{2}} U),$$
  
$$T \succ_{\omega} U := (T \prec_{\beta_{1}} U^{I} + T \succ_{\omega} U^{I}) \vee_{y, (\omega\beta_{1}, \beta_{2})} U^{r}.$$

#### Remark

Note that  $|\prec_{\omega}|$  and  $|\succ_{\omega}|$  are not defined for  $\omega\in\Omega^1$ . Here we apply the convention that

$$|\succ_1 T := T \prec_1 | := T$$
 and  $|\prec_1 T := T \succ_1 | := 0$ .

Example 9

Let 
$$T = \bigvee_{x} \text{ and } U = \bigvee_{y} \text{ with } x, y \in X. \text{ For } \omega \in \Omega,$$

$$\bigvee_{x} \swarrow_{\omega} \bigvee_{y} = (|\vee_{x,(1,1)}|) \prec_{\omega} \bigvee_{y} + |\succ_{1} \bigvee_{y})$$

$$= |\vee_{x,(1,\omega)} \bigvee_{y} + |\succ_{1} \bigvee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} + |\succ_{1} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} + |\sim_{1} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} + |\sim_{1} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} + |\sim_{1} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y,(1,\omega)} |\sim_{1} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} + |\sim_{1} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} \vee_{y} + |\sim_{1} \vee_{y} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} \vee_{y} + |\sim_{1} \vee_{y} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} \vee_{y} + |\sim_{1} \vee_{y} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} \vee_{y} + |\sim_{1} \vee_{y} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} \vee_{y} + |\sim_{1} \vee_{y} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} \vee_{y} + |\sim_{1} \vee_{y} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} \vee_{y} + |\sim_{1} \vee_{y} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} \vee_{y} + |\sim_{1} \vee_{y} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} \vee_{y} + |\sim_{1} \vee_{y} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} \vee_{y} + |\sim_{1} \vee_{y} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} \vee_{y} \vee_{y} \vee_{y} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} \vee_{y} \vee_{y} \vee_{y} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} \vee_{y} \vee_{y} \vee_{y} \rangle$$

$$= |\vee_{x,(1,\omega)} \vee_{y} \vee_{y}$$

Let  $j: X \to \mathrm{DD}(X,\Omega)$  be the natural embedding map defined by  $j(x) = \bigvee_{x \in X} for \ x \in X.$ 

#### Theorem (Z.-Gao-Manchon, Algebr. Represent. Theory)

Let X be a set and let  $\Omega$  be a semigroup. Then  $(\mathrm{DD}(X,\Omega),(\prec_{\omega},\succ_{\omega})_{\omega\in\Omega})$ , together with the map j, is the free dendriform family algebra on X.

#### Lemma (Z.-Gao, Pacific J. Math.)

Let X be a set and let  $\Omega$  be a semigroup. The Rota-Baxter family algebra  $(\mathbf{k}\mathcal{T}(X,\Omega),\diamond,(B_{\omega}^+)_{\omega\in\Omega})$  of weight  ${\color{blue}0}$  induces a dendriform family algebra  $(\mathbf{k}\mathcal{T}(X,\Omega),(\prec_{\omega}',\succ_{\omega}')_{\omega\in\Omega})$ , where

$$T \prec_{\omega}' U := T \diamond B_{\omega}^+(U) \text{ and } T \succ_{\omega}' U := B_{\omega}^+(T) \diamond U,$$

with  $T, U \in \mathcal{T}(X, \Omega)$ .

Now, we give the relationship between the free dendriform family algebra and the free Rota-Baxter family algebra.

Theorem (Z.-Gao-Manchon, Algebr. Represent. Theory)

Let X be a set and let  $\Omega$  be a semigroup. The free dendriform family algebra  $(\mathrm{DD}(X,\Omega),(\prec_{\omega},\succ_{\omega})_{\omega\in\Omega})$  on X is a dendriform family subalgebra of the free Rota-Baxter family algebra  $(\mathbf{k}\mathcal{T}(X,\Omega),\diamond,(B^+_{\omega})_{\omega\in\Omega})$  of weight 0.

- 1 Free Rota-Baxter family algebras (RBFA)
  - Typed angularly decorated planar rooted trees
  - A multiplication on  $kT(X, \Omega)$
  - Construction of free RBFA
- Embedding free DFAs (resp.TFAs) into free RBFAs
  - Embedding free DFAs into free RBFAs
  - Embedding free TFAs into free RBFAs
  - Universal enveloping algebras of (tri)dendriform family algebras

#### Definition

Let  $\Omega$  be a semigroup. A **tridendriform family algebra** is a **k**-module T equipped with a family of binary operations  $(\prec_{\omega}, \succ_{\omega})_{\omega \in \Omega}$  and a binary operation  $\cdot$  such that for  $x, y, z \in T$  and  $\alpha, \beta \in \Omega$ ,

$$(x \prec_{\alpha} y) \prec_{\beta} z = x \prec_{\alpha\beta} (y \prec_{\beta} z + y \succ_{\alpha} z + y \cdot z),$$

$$(x \succ_{\alpha} y) \prec_{\beta} z = x \succ_{\alpha} (y \prec_{\beta} z),$$

$$(x \prec_{\beta} y + x \succ_{\alpha} y + x \cdot y) \succ_{\alpha\beta} z = x \succ_{\alpha} (y \succ_{\beta} z),$$

$$(x \succ_{\alpha} y) \cdot z = x \succ_{\alpha} (y \cdot z),$$

$$(x \prec_{\alpha} y) \cdot z = x \cdot (y \succ_{\alpha} z),$$

$$(x \cdot y) \prec_{\alpha} z = x \cdot (y \prec_{\alpha} z),$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z).$$

For  $n \ge 1$ , let

$$T_n := T_{n,X,\Omega} := T_n(X,\Omega) \cap \{Schröder trees\}.$$

Example 10
$$T_{1} = \left\{ \begin{array}{c} x \\ \end{array} \middle| x \in X \right\},$$

$$T_{2} = \left\{ \begin{array}{c} x \\ \end{array} \middle| x \in X \right\},$$

$$T_{3} = \left\{ \begin{array}{c} x \\ \alpha \\ \end{array} \middle| x \\ \end{array} \middle| x \in X \right\},$$

$$T_{3} = \left\{ \begin{array}{c} x \\ \alpha \\ \end{array} \middle| x \\ \end{array} \middle| x \\ \left[ x \in X \right],$$

$$T_{3} = \left\{ \begin{array}{c} x \\ \beta \\ \alpha \\ \end{array} \middle| x \\ \end{array} \middle| x \\ \left[ x \in X \right],$$

$$T_{3} = \left\{ \begin{array}{c} x \\ \beta \\ \alpha \\ \end{array} \middle| x \\ \end{array} \middle| x \\ \left[ x \in X \right],$$

$$T_{3} = \left\{ \begin{array}{c} x \\ \beta \\ \alpha \\ \end{array} \middle| x \\ \end{array} \middle| x \\ \left[ x \in X \right],$$

$$T_{3} = \left\{ \begin{array}{c} x \\ \beta \\ \alpha \\ \end{array} \middle| x \\ \end{array} \middle| x \\ \left[ x \in X \right],$$

$$T_{3} = \left\{ \begin{array}{c} x \\ \beta \\ \alpha \\ \end{array} \middle| x \\ \end{array} \middle| x \\ \left[ x \in X \right],$$

$$T_{3} = \left\{ \begin{array}{c} x \\ \beta \\ \alpha \\ \end{array} \middle| x \\ \end{array} \middle| x \\ \left[ x \in X \right],$$

$$T_{3} = \left\{ \begin{array}{c} x \\ \beta \\ \alpha \\ \end{array} \middle| x \\ \end{array} \middle| x \\ \left[ x \in X \right],$$

$$T_{3} = \left\{ \begin{array}{c} x \\ \beta \\ \alpha \\ \end{array} \middle| x \\ \end{array} \middle| x \\ \left[ x \in X \right],$$

$$T_{3} = \left\{ \begin{array}{c} x \\ \beta \\ \alpha \\ \end{array} \middle| x \\ \end{array} \middle| x \\ \left[ x \in X \right],$$

$$T_{3} = \left\{ \begin{array}{c} x \\ \beta \\ \alpha \\ \end{array} \middle| x \\ \end{array} \middle| x \\ \left[ x \in X \right],$$

$$T_{3} = \left\{ \begin{array}{c} x \\ \beta \\ \alpha \\ \end{array} \middle| x \\ \end{array} \middle| x \\ \left[ x \in X \right],$$

$$T_{3} = \left\{ \begin{array}{c} x \\ \beta \\ \alpha \\ \end{array} \middle| x \\ \right\}$$

Denote by

$$DT(X,\Omega) := \bigoplus_{n\geq 1} \mathbf{k} T_n$$

The grafting  $\bigvee$  of  $T^{(i)}, 1 \leq i \leq k$  over  $(x_1, \ldots, x_k)$  and  $(\alpha_0, \ldots, \alpha_k)$  is

$$T = \bigvee_{x_1,\dots,x_k}^{k+1;\,\alpha_0,\dots,\alpha_k} (T^{(0)},\dots,T^{(k)})$$

#### Example 11

$$\bigvee_{u,v}^{3;\alpha,\beta,\gamma} \left( \bigvee_{v}^{x} , \bigvee_{v}^{y} , \bigvee_{v}^{z} \right) = \bigcap_{\alpha}^{\alpha} \bigcup_{v}^{\beta} \bigcap_{\gamma}^{z} .$$

#### Definition

Let X be a set and let  $\Omega$  be a semigroup. Define binary operations

$$\prec_{\omega}, \succ_{\omega}, \cdot : \left( \mathrm{DT}(X, \Omega) \otimes \mathrm{DT}(X, \Omega) \right) \oplus \left( \mathbf{k} | \otimes \mathrm{DT}(X, \Omega) \right)$$
$$\oplus \left( \mathrm{DT}(X, \Omega) \otimes \mathbf{k} | \right) \to \mathrm{DT}(X, \Omega), \text{ for } \omega \in \Omega$$

recursively on dep(T) + dep(U) by

- 2 Let

$$T = \bigvee_{x_1,...,x_m}^{m+1; \alpha_0,...,\alpha_m} (T^{(0)},...,T^{(m)}) \in T_m, \ U = \bigvee_{y_1,...,y_n}^{n+1; \beta_0,...,\beta_n} (U^{(0)},...,U^{(n)}) \in T_n,$$

#### Definition

$$T \prec_{\omega} U := \bigvee_{x_{1}, \dots, x_{m-1}, x_{m}}^{m+1; \alpha_{0}, \dots, \alpha_{m-1}, \alpha_{m}\omega} (T^{(0)}, \dots, T^{(m-1)}, T^{(m)})$$

$$\succ_{\alpha_{m}} U + T^{(m)} \prec_{\omega} U + T^{(m)} \cdot U),$$

$$T \succ_{\omega} U := \bigvee_{y_{1}, y_{2}, \dots, y_{n}}^{n+1; \omega\beta_{0}, \beta_{1}, \dots, \beta_{n}} (T \succ_{\omega} U^{(0)} + T \prec_{\beta_{0}} U^{(0)})$$

$$+ T \cdot U^{(0)}, U^{(1)}, \dots, U^{(n)}),$$

$$T \cdot U := \bigvee_{x_{1}, \dots, x_{m-1}, x_{m}, y_{1}, \dots, y_{n}}^{m+n+1; \alpha_{0}, \dots, \alpha_{m-1}, \alpha_{m}\beta_{0}, \beta_{1}, \dots, \beta_{n}} (T^{(0)}, \dots, T^{(m-1)}, T^{(m)} \succ_{\alpha_{m}} U^{(0)} + T^{(m)} \prec_{\beta_{0}} U^{(0)} + T^{(m)} \cdot U^{(0)},$$

$$U^{(1)}, \dots, U^{(n)}).$$

#### Remark

Note that  $|\prec_{\omega}|,|\succ_{\omega}|$  and  $|\cdot|$  are not defined. We employ the convention that

$$|\prec_1| + |\succ_1| + |\cdot| := |,$$

and

$$|\succ_1 T := T \prec_1 | := T$$
 and  $|\prec_1 T := T \succ_1 | := 0$ .

#### Example 12

Let 
$$T = X$$
,  $U = X$  with  $x, y, z \in X$  and  $\alpha \in \Omega$ . For  $\beta \in \Omega$ ,

$$=\bigvee_{x}^{2;\,\alpha,\beta}\left(\bigvee_{y},\bigvee_{z}\right)=\bigvee_{\alpha}^{x}\bigwedge_{\beta}^{z}.$$

$$U \cdot T = = \bigvee_{z,x}^{3; 1,\alpha,1} \left( |,| \succ_1 \right) + | \prec_{\alpha} \right) + | \cdot \bigvee_{z,x}^{y} + | \cdot \bigvee_{z,x}^{y} , |$$

$$= \bigvee_{z,x}^{3; 1,\alpha,1} \left( |,| \searrow_{z}^{y} , | \right) = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y} + | \rangle_{z}^{y} + | \rangle_{z}^{y} = \bigvee_{z,x}^{y} \left( |,| \searrow_{z}^{y} , | \rangle_{z}^{y} + | \rangle_{z}^{y$$

Let  $j: X \to \mathrm{DT}(X,\Omega)$  be the natural embedding map defined by  $j(x) = \bigvee^x \text{ for } x \in X.$ 

# Theorem (Z.-Gao-Manchon, Algebr. Represent. Theory)

Let X be a set and let  $\Omega$  be a semigroup. Then  $(\mathrm{DT}(X,\Omega),(\prec_{\omega},\succ_{\omega})_{\omega\in\Omega},\cdot)$ , together with the map j, is the free tridendriform family algebra on X.

#### Lemma (Z.-Gao, Pacific J. Math.)

Let X be a set and let  $\Omega$  be a semigroup. The Rota-Baxter family algebra  $(\mathbf{k}\mathcal{T}(X,\Omega),\diamond,(B_\omega^+)_{\omega\in\Omega})$  of weight  $\mathbf{1}$  induces a tridendriform family algebra  $(\mathbf{k}\mathcal{T}(X,\Omega),(\prec_\omega',\succ_\omega')_{\omega\in\Omega},.')$ , where

$$T \prec_{\omega}' U := T \diamond B_{\omega}^+(U), T \succ_{\omega}' U := B_{\omega}^+(T) \diamond U \text{ and } T \cdot U := T \diamond U, \text{ for } T, U \in \mathcal{T}(X, \Omega).$$

#### Theorem (Z.-Gao-Manchon, Algebr. Represent. Theory)

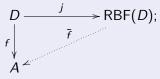
Let X be a set and let  $\Omega$  be a semigroup. The free tridendriform family algebra  $(\mathrm{DT}(X,\Omega),(\prec_\omega,\succ_\omega)_{\omega\in\Omega},\cdot)$  on X is a tridendriform family subalgebra of the free Rota-Baxter family algebra  $(\mathbf{k}\mathcal{T}(X,\Omega),\diamondsuit,(B^+_\omega)_{\omega\in\Omega})$  of weight 1.

- 1 Free Rota-Baxter family algebras (RBFA)
  - Typed angularly decorated planar rooted trees
  - A multiplication on  $kT(X, \Omega)$
  - Construction of free RBFA
- 2 Embedding free DFAs (resp.TFAs) into free RBFAs
  - Embedding free DFAs into free RBFAs
  - Embedding free TFAs into free RBFAs
  - Universal enveloping algebras of (tri)dendriform family algebras

# Universal enveloping algebras

#### Definition

Let D be a DFA (resp. TDFA). A universal enveloping Rota-Baxter family algebra of weight  $\lambda$  of D satisfies the following commutative diagram:



The pair  $(\mathsf{RBF}(D),j)$  is the universal enveloping RBFA of weight  $\lambda$  of D if

- j is a DFA (resp. TDFA) morphism (embedding map).
- A is any RBFA of weight  $\lambda, f$  is any DFA (resp. TDFA) morphism.
- $\exists$  ! RBFA morphism  $\bar{f}$ .

## Universal enveloping algebras

Let  $j: X \to \mathrm{DD}(X,\Omega)$  be the natural embedding map defined by  $j(x) = \bigvee_{x \to \infty} for \ x \in X.$ 

### Theorem (Z.-Gao-Manchon, Algebr. Represent. Theory)

The pair  $(\mathbf{k}\mathcal{T}(X,\Omega),j)$  is the universal enveloping weight 0 Rota-Baxter family algebra of the free dendriform family algebra  $\mathrm{DD}(X,\Omega)$ , satisfying the following commutative diagram:

$$DD(X, \Omega) \xrightarrow{j} \mathbf{k} \mathcal{T}(X, \Omega)$$

$$\downarrow g \qquad \qquad \bar{g} \qquad \qquad \bar{g}$$

$$A \stackrel{\bar{g}}{\longrightarrow} A$$

# Universal enveloping algebras of (tri)dendriform family algebras

Let  $j: X \to \mathrm{DT}(X,\Omega)$  be the natural embedding map defined by  $j(x) = \bigvee_{x \in X} for \ x \in X.$ 

#### Theorem (Z.-Gao-Manchon, Algebr. Represent. Theory)

The pair  $(\mathbf{k}T(X,\Omega),\lambda^{-1}j)$  is the universal enveloping weight  $\lambda$  Rota-Baxter family algebra of the free tridendriform family algebra  $\mathrm{DT}(X,\Omega)$ , satisfying the following commutative diagram:

$$DT(X,\Omega) \xrightarrow{\lambda^{-1}j} \mathbf{k} \mathcal{T}(X,\Omega)$$

$$\downarrow f \qquad \qquad \bar{f} \qquad \qquad \bar{f}$$

$$A \stackrel{\overline{f}}{\longrightarrow} A$$

Thank you for your attention!