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Motivation

@ In 1998, Loday and Ronco proved the free dendriform algebra
on one generator can be described as an algebra over the set
of planar binary trees.

@ In 2004, Loday and Ronco showed the free tridendriform
algebra on one generator can be described as an algebra over
the set of planar trees.

[§ J.-L. Loday and M. O. Ronco, Hopf algebra of the planar
binary trees, Adv. Math. 39 (1998), 293-3009.

[§ J.-L. Loday and M. O. Ronco, Trialgebras and families of
polytopes, in "Homotopy theoty: relations with algebraic
geometry, group cohomology, and algebraic K-theory",
Contemp. Math. 346 (2004), 369-398.



Motivation

e In 2007, K. Ebrahimi-Fard, J. Gracia-Bondia and F. Patras
studied about algebraic aspects of renormalization in
Quantum field theory. The first example about Rota-Baxter
family algebras of -1 appeared in this paper and Guo
suggested them to use this name.

@ In 2008, K. Ebrahimi-Fard and L. Guo, they used rooted trees
and forests to give explicit constructions of free
noncommutative Rota-Baxter algebras on modules and sets.

[§ K. Ebrahimi-Fard, J. Gracia-Bondia and F. Patras, A Lie
theoretic approach to renormalization, Comm. Math. Phys.
276 (2007), 519-549.

@ K. Ebrahimi-Fard and L. Guo, Free Rota-Baxter algebras and
rooted trees, J. Algebra Appl. 7 (2008), 167-194.



Motivation

@ In 2009, L. Guo named Rota-Baxter family algebras of weight
A

o In 2012, E. Panzer studied algebraic aspects of renormalization
in Quantum Field Theory. They proved the Taylor expansion
operators fulfil for Rota-Baxter family algebras of weight -1 .

[§ L. Guo, Operated monoids, Motzkin paths and rooted trees, J.
Algebraic Combin. 29 (2009), 35-62.

[§ D. Kreimer and E. Panzer, Hopf-algebraic renormalization of
Kreimer's toy model, Master thesis, Handbook.



Motivation

@ In 2018, Bruned, Haier and Zambotti gave a systematic
description of a canonical renormalisation procedure of
stochastic PDEs, in which their construction is based on
bialgebras of typed decorated forests in cointeraction.

@ In 2018, L. Foissy studied multiple prelie algebras and related
operads. He proved the free T-multiple prelie algebra
generated by a set D.

[ Y. Bruned, M. Hairer and L. Zambotti, Algebraic
renormalisation of regularity structures, Invent. math. 215
(2019), 1039-1156.

[§ L. Foissy, Algebraic structures on typed decorated planar
rooted trees, Symmetry Integr. Geom. Methods Appl. 17
(2021), 28pp.
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Questions

@ How to construct the free Rota-Baxter family algebras by
using typed angularly decorated planar rooted trees?

@ How to construct the free (tri)dendriform family algebra by
using typed decorated planar (binary) rooted trees?

© What's the relationship between the free Rota-Baxter family
algebra and the free (tri)dendriform family algebra?



@ Free Rota-Baxter family algebras (RBFA)
@ Typed angularly decorated planar rooted trees



Definition and Example

Definition (Ebrahimi-Fard et al. 2007, Guo 2009)

Let Q2 be a semigroup and A € k be given. A Rota-Baxter family
of weight A on an algebra R is a collection of linear operators
(P.)weq on R such that

Po(a)Ps(b) = Pus (Pa(a)b + aPs(b) + Aab),

where a,b € R and «, 8 € Q. Then the pair (R, (Py)weq) is
called a Rota-Baxter family algebra of weight .

Example 1

The algebra of Laurent series R = k [z‘l,z]] is a Rota-Baxter
family algebra of weight -1 , with Q = (Z, +), where the operator
P, is the projection onto the subspace R, generated by

{zk, k < w} parallel to the supplementary subspace R>,, generated
by {zk, k > w}.




Example 2
Let Q = (R, +) be a semigroup, and R is the R-algebra consisting
of all continous functions from R to R, the multiplication is
defined by

(fg)(x) == f(x)g(x), for f,g € R.
And for any « € €, define a family linear operator P, : R — R as
follows

Po(f)(x) = e @AX) / eAOF(t) dt, for a € Q,
0

where A is a fixed nonzero element of R. Then (P,)acq is a
Rota-Baxter family of weight 0.




Typed angularly decorated planar rooted trees

Definition (Bruned-Hairer-Zambotti, Invent. math.)

Let X and Q be two sets. An X-decorated Q2-typed
(abbreviated typed decorated) rooted tree is a triple
T = (T,dec, type), where

© T is a rooted tree.
@ dec: V(T) — X is a map.
@ type: E(T) — Q is a map.

Example 3




Typed angularly decorated planar rooted trees

Definition
Let X and € be two sets. An X-angularly decorated )-typed
(abbreviated typed angularly decorated) planar rooted tree is
a triple T = (T,dec, type), where

@ T is a planar rooted tree.

@ dec: A(T) — X is a map.

@ type: IE(T) — Qis a map.

Example 4




Typed angularly decorated planar rooted trees

Remark
The graphical representation of (planar) rooted trees

c d

a3 (0% J
g b and YW
as Qg

a

in Example 4 and Example 3 is slightly different.
@ Here the root and the leaves are now edges rather than
vertices.
@ The set E(T) must be replaced by the set /E(T) of internal
edges.




Typed angularly decorated planar rooted trees

If a semigroup Q has no identity element, we consider the monoid
Q! := QU {1} obtained from Q by adjoining an identity:

lw:=wl:=w, for weQ and 11 :=1.

For n > 0, let 7,(X, Q) denote the set of X-angularly decorated
Q-typed planar rooted trees with n -+ 1 leaves such that leaves are
decorated by the identity 1 in Q! and internal edges are decorated
by elements of €. Note that the root is not decorated. Denote by

T(X, Q)= | | Ta(X, Q) and kT (X, Q) := @HKTn(X, Q).

n>0 n>0



Typed angularly decorated planar rooted tree

Example 5
%(X;Q):{*7lw17 W1a""wlaw27...eﬂ},
)

& X X X
weo (R ]
«
X Yy 7 y XY
X X
7—2(Xa Q): \%7\%?%7\10/7 w “ y T )
w w o
z
5y Y|z x\Y/z
%(X,Q): OtXUJ 9 aX ) )

where o, 8,w € Q and x,y,z € X




Typed angularly decorated planar rooted tree
Graphically, an element T € T(X, Q) is of the form:

T2 Th

ap
T=rq N\ Toi1s with n > 0,
aq n+1

e, aj € Qif Tj #|; aj=1if T; = |. For each w € Q, define a
linear operator

Bl kT (X, Q) — kT(X, Q),
by adding a new root and a new internal edge decorated by w

connecting the new root and the root of T. For example,

y z

()= (V)= m (N )-




Typed angularly decorated planar rooted tree

The depth dep(T) of a rooted tree T is the maximal length of
linear chains from the root to the leaves of the tree. For example,

denl}) =don (N ) =1 and dep(\:b >

We add the "zero-vertex tree" | to the picture, and set dep(|) = 0.
Note that the operators B are not defined on |.



Typed angularly decorated planar rooted tree

Remark

Forany T € T(X, Q)U{|}, if dep(T) =0, then T =|. Define
the number of branches bra(T) of T to be 0 in this case.
Otherwise, dep(T) > 1 and T is of the form

Here any branch T; € T(X, Q) U {|},j=1,...,n+ 1 s of depth
at most one less than the depth of T, and equal to zero if and only
if T; =|. We define bra(T) := n+ 1. For example,

pra(fo) =2, br0(N) =2 and bra () =




@ Free Rota-Baxter family algebras (RBFA)

e A multiplication on k7 (X, Q)



A multiplication on k7 (X, Q)

We define T o T’ by induction on dep(T) + dep(T’) > 2. For the
initial step dep(T) + dep(T’) = 2, we have
dep(T)=dep(T')=1and T, T’ are of the form

Q'Land T = Q'L with m, n > 0.

Define




A multiplication on k7 (X, Q)

For the induction step dep(T) + dep(T’) > 3, the trees T and T’
are of the form

There are four cases to consider.
Case 1: T,,1 =| = T;. Define

yl.. o T,’1+1 =




A multiplication on k7 (X, Q)

Case 2: Tpy1 # | = T;. Define




A multiplication on k7 (X, Q)

Case 3: Tpy1 =| # Ty. Define

n+1




A multiplication on k7 (X, Q)
Case 4: T,,y1 # | # T{. Define

° T{ yl“ Yn T,/]+1

+ + ’ !

+ + ’ + ’ ,
0 BL 15 (BL s (Tmi1) © T{ + T 0 BS (T)) + ATy © T1)>







@ Free Rota-Baxter family algebras (RBFA)

@ Construction of free RBFA



Problems

© About the Rota-Baxter family algebras on typed-angularly
decorated planar rooted trees constructed above: are they
free?

© What's the relationship between typed-angularly decorated
planar rooted trees and bracketed words?



Free FRBA on bracketed words
Denote by S the following vector subspace of k9t(£2, X) :

5= {LxJab’Jﬁ = LxJay]ap = IxIylslap = ALXyJaﬁ} :
where o, B € Q, x,y € M(Q, X).

Theorem (Z.-Gao, Pacific J. Math.)
Let X be a set and let Q be a semigroup.

© S is a Grobner-Shirshov basis in k9(S2, X) with respect to a
monomial order.

@ The set X, is a k-basis of the free Rota-Baxter family algebra
(kXs0s Ows (| |w)wen) = kM(Q, X)/ I1d(S) of weight A, where
Id(S) is the operated ideal generated by S in kM(£2, X).

[§ Y. Y. Zhang and X. Gao, Free Rota-Baxter family algebras and

(tri)dendriform family algebras, Pacific J. Math. 301 (2019),
741-766.




The relationship

Built up a one-one correspondence between k7 (X, Q) and kX .

Typed angularly decorated planar rooted trees 7(X, Q) | X
1

w 1]
N -

D %)
N2 "

e )




Construction of the isomorphism map

Define a linear map
o kT (X, Q) > kX, T—o(T)

X1 Xn

by induction on dep(T) > 1. If dep(T) =1, then T =

with n > 0 and define

with x1 -+ - x, := 1 in the case n = 0.



Construction of the isomorphism map

For the induction step dep(T) > 2, T is the form

7,1 With some T; # |.

Then we define ¢( T) by the induction on bra(T) > 1. For the
T

initial step bra(T) =1, we have T = TO” and define

T

o T‘“> = 0(BL(T)) = 6(T) oy



Construction of the isomorphism map

For the induction step bra(T) > 2, there are two cases to consider.
Case 1: T; = |. Define

Case 2: T; # |. Define

&(T) = [9(T) a6 1,




Construction of the isomorphism map
Conversely, define a linear map
P kXoo = KT(X,Q), w—(w)

by induction on dep(w) > 1.
o If dep(w) =1, then w = x1 - - - x, € M(X) with n > 0.
o If dep(w) > 1, we apply induction on bre(w) > 1.

Write w = wy - - - w),, with bre(w) =n > 1.
If bre(w) =1, then w = |w|, for w € X and a € Q by
dep(w) > 1, and define

b(w) = ([W]a) = By (¥(W)).
If bre(w) > 2, then define

Y(w) = (wr) o (wa - wp).



Construction of the isomorphism map

Proposition (Z.-Gao-Manchon, Algebr. Represent. Theory)
We have 1 o ¢ = id and ¢ o) = id. J

Lemma (Z.-Gao-Manchon, Algebr. Represent. Theory)
For T and T' in T(X, Q), we have

T oT')=¢(T)owd(T").

[§ Y.Y. Zhang, X. Gao and D. Manchon, Free Rota-Baxter
family algebras and free (tri)dendriform family algebras,
Algebr. Represent. Theory, 301 (2023), 741-766.



Main results

Let jx be the embedding given by

Jx X = kT(X,Q),x — \X/

Theorem (Z.-Gao-Manchon, Algebr. Represent. Theory)

Let X be a set and let Q be a semigroup. The triple
(KT(X,Q),0,(Bf) ecq). together with the jx, is the free
Rota-Baxter family algebra of weight A on X.

Corollary (Z.-Gao-Manchon, Algebr. Represent. Theory)

Let X be a set and let Q be a trivial semigroup with one element.
Then the triple (kT (X),o, Bt), together with the jx, is the free
Rota-Baxter algebra of weight \ on X.




© Embedding free DFAs (resp.TFAs) into free RBFAs
@ Embedding free DFAs into free RBFAs



Problems

@ How to construct free (tri)dendriform family algebras via
typed decorated planar rooted trees?

@ What's the relationship between free Rota-Baxter family
algebras and free (tri)dendriform family algebras?



Embedding free DFAs into free RBFAs

Definition

Let Q be a semigroup. A dendriform family algebra is a
k-module D with a family of binary operations (<., > )weq such
that for x,y,z € D and o, 8 € Q,

(x<ay)=<gz=x=<03(y<gz+Yy >a2),
(x>=ay)=<gz=x>q(y <p 2),
(x<gy+x>ay)=apz=x>a(y >p 2).




Embedding free DFAs into free RBFAs

For n > 1, let

Yo = Yn x 0 = Ta(X, Q) N {planar binary trees}.
Example 7
Y, = {\X/ ‘ x € X} :
Y y
Y2: \S)/,NX’vaEXaO‘EQ )

& < z y &
By yﬁ Y%
Y3: X 5 % 9 B\ « 9 POV 5 coo o




Embedding free DFAs into free RBFAs

The grafting V, (q,5) over x and (a, 3) is defined to be
T=T Vi (a,3) T" for some x € X and «, 8 € Q.

Example 8

y y g y
V/ \/ aﬁ)\/

Denote by
DD(X,Q) := P kY.



Embedding free DFAs into free RBFAs

Definition

Let X be a set and let Q2 be a semigroup. Define binary operations
L (DD(X, Q) ® DD(X, Q)) & (k\ ® DD(X, Q))

@ (DD(X, Q) ® k[) 5 DD(X, Q), for we Q

recursively on dep(T) + dep(U) by
Q@ |-, T:=T<,|:=Tand |<, T:=T>,|:=0for
weQand T € Y, with n> 1.
Q@ For T=T'v Trand U= U’ Vy (61, 8,) U, define

X, (o1, 2)

T <w U= TI vx,(al,azw) (Tr <w U+ Tr >‘a2 U)a
T>,U:=(T <8 U+T ~w Ul) Vy, (B, B2) u.




Embedding free DFAs into free RBFAs

Remark

Note that | <, | and | =, | are not defined for w € Q1. Here we
apply the convention that

|>—1 T::T<1|::Tand ‘<1 T::T>-1|::O.




Example 9

Let T:\)/ and U:\y/with x,y € X. For w € Q,
N < N = (vaay ) < N
= |V, (1,w) <\ ~w \y/+| -1 \y/)
= \Vx,(1,w)\y/
Xy

\)/ - \)/ _ \>/ - (’ \/y,(l,l) |)
= (N <l N ) V|
= \)/\/y,(w,l)‘
X



Embedding free DFAs into free RBFAs

Let j : X — DD(X, Q) be the natural embedding map defined by
j(x) = \)/ for x € X.

Theorem (Z.-Gao-Manchon, Algebr. Represent. Theory)

Let X be a set and let Q be a semigroup. Then
(DD(X, Q), (<w, =w)yecq). together with the map j, is the free
dendriform family algebra on X.

Lemma (Z.-Gao, Pacific J. Math.)

Let X be a set and let Q2 be a semigroup. The Rota-Baxter family
algebra (kT (X,Q),0,(Bf),cq) of weight 0 induces a dendriform
family algebra (kT (X, ), (<L, >.,)weq), where

T<,U=ToB(U)and T =/, U:=Bl(T)o U,

with T, U € T(X,Q).




Embedding free DFAs into free RBFAs

Now, we give the relationship between the free dendriform family
algebra and the free Rota-Baxter family algebra.

Theorem (Z.-Gao-Manchon, Algebr. Represent. Theory)

Let X be a set and let Q) be a semigroup. The free dendriform
family algebra (DD(X, Q), (<w, >w)wea) on X is a dendriform
family subalgebra of the free Rota-Baxter family algebra
(KT(X, Q),0,(B])uwecq) of weight 0.




© Embedding free DFAs (resp.TFAs) into free RBFAs

@ Embedding free TFAs into free RBFAs



Embedding free TDFAs into free RBFAs

Definition
Let Q be a semigroup. A tridendriform family algebra is a
k-module T equipped with a family of binary operations

(<w, =w)wen and a binary operation - such that for x,y,z€ T
and o, 8 € Q,

(x=<aY)=<pz=x=<0p(y<pgz+yaz+y-2z),
(x=ay)<pgz=x>4 (y <5 2),
(x=<py+x=ay+x-y)=apz=x>a(y>52z),
(x>ay) z=xra(y 2),
(x=ay) z=x-(y =a 2),
(x y) %az=x"(y <a 2),
(x-y)-z=x-(y2)




Embedding free TDFAs into free RBFAs

For n > 1, let

Th:= Tn x,q = Tn(X, Q) N {Schréder trees}.
Example 10
T, = {\X/ ‘ x € X},
Y Y Nxly
Ty = W,\%{,\V‘X,yEX,OzEQ )

z Z y
% yB Z xX\Y/z
Tx — BX x X X
3 = a ) @ ) @ ) gooc




Embedding free TDFAs into free RBFAs

Denote by

DT(X,Q) := kT,

n>1

The grafting \/ of T() 1 < i < k over (xi,...,xx) and
(Ozo, oo ,ak) is

T:\/k—i-l;ao ..... ak(T(O)"‘.’T(k))

Example 11

3a67<\/\/\/) u

<E




Embedding free TDFAs into free RBFAs

Definition
Let X be a set and let 2 be a semigroup. Define binary operations
<wr =+ (DT(X, 2) @ DT(X, 2)) @ (k| @ DT(X, Q))
® (DT(X, Q) ® k|) S DT(X, Q), for we Q
recursively on dep(T) + dep(U) by

Q|- T =T=<,|=T,|<T:=T>,|:=0and |- T :=
T-|'=0forweQand TeT,withn>1.

Q Let
=\/7 Mo 2 ©)  Tmy e T,
X1yeeey X

n 1 N
:\/+ font VO, Uy e T,
YiseesYn




Definition

m+1; ag,...,0m—1,mw
T =<, U= O, e m)
<w U \/xl,...,xm_l,xm ( ’ ’ ’
am U+ T <, U+ T 1),
l;UJ I SRR g ]
T s, U:= \/n+ Porfsel (T =, UO 1 T <4 0O

Y1,¥25--,¥n
+ 700 vy,

T . U - \/m+n+1;a07"-7am—17am507517"’75n(T(o)’ o T(m_l),

X135 Xm—15sXmsY15---5Yn
T oy 4 7m) <4, u© 4 7m) .y,
ORI




Remark
Note that | < |,| >=w | and | - | are not defined. We employ the

convention that
| <1+ [=1|+]| =1,

and

| =1 T:=T=<1|:=Tand | <3 T:=T >1|:=0.




Example 12

y
Let T:\o{’/,U:\z/withx,y,zeXandaEQ. For

Beq,

2.8,1 y Y y
reev V(% X X )
X

:\/2;&1(\2{)/,0: N
T U=V (N N e Y 1Y)

VYN S
U-T= 31’“(||>1\/+|<a\/+| \/)

3;1,a,1 y z f(‘
= \/ ., ) = ,
z,x



Embedding free TDFAs into free RBFAs

Let j : X — DT(X, Q) be the natural embedding map defined by
j(x) = \)/ for x € X.

Theorem (Z.-Gao-Manchon, Algebr. Represent. Theory)

Let X be a set and let Q2 be a semigroup. Then
(DT(X,Q), (<w, =w)peq :*), together with the map j, is the free
tridendriform family algebra on X.

Lemma (Z.-Gao, Pacific J. Math.)

Let X be a set and let Q be a semigroup. The Rota-Baxter family
algebra (kT (X,Q),0,(B}), cq) of weight 1 induces a
tridendriform family algebra (KT (X, ), (<, =0)peq - ), where

T<,U=ToBIU),T>,U:=B(T)oU and
T/U:=ToU, for T,Ue€ T(X,Q).




Embedding free TDFAs into free RBFAs

Theorem (Z.-Gao-Manchon, Algebr. Represent. Theory)

Let X be a set and let Q) be a semigroup. The free tridendriform
family algebra (DT(X, Q), (<w, =w)weq, ) on X is a tridendriform
family subalgebra of the free Rota-Baxter family algebra

(kT(X, Q),0, (B )weq) of weight 1.




© Embedding free DFAs (resp.TFAs) into free RBFAs

@ Universal enveloping algebras of (tri)dendriform family
algebras



Universal enveloping algebras

Definition
Let D be a DFA (resp. TDFA). A universal enveloping Rota-Baxter
family algebra of weight A of D satisfies the following commutative
diagram:

D ! RBF(D);

A“
The pair (RBF(D), ) is the universal enveloping RBFA of weight A
of D if
@ j is a DFA (resp. TDFA) morphism (embedding map).

@ Ais any RBFA of weight A, f is any DFA (resp. TDFA)
morphism.

e 3! RBFA morphism f.




Universal enveloping algebras

Let j : X — DD(X, Q) be the natural embedding map defined by
j(x) = \)/ for x € X.

Theorem (Z.-Gao-Manchon, Algebr. Represent. Theory)

The pair (k7T (X,Q),j) is the universal enveloping weight 0
Rota-Baxter family algebra of the free dendriform family algebra
DD(X,Q), satisfying the following commutative diagram:

DD(X, Q) — KT(X, Q)

o




Universal enveloping algebras of (tri)dendriform family
algebras

Let j : X — DT(X, Q) be the natural embedding map defined by
j(x) = \)/ for x € X.

Theorem (Z.-Gao-Manchon, Algebr. Represent. Theory)

The pair (KT (X,Q), \"1)) is the universal enveloping weight \
Rota-Baxter family algebra of the free tridendriform family algebra
DT(X,Q), satisfying the following commutative diagram:

1.
DT(X, Q) —

A<

KT (X, Q)




Thank you for your attention!
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