Local index theory for the Rarita-Schwinger operator

Alberto Richtsfeld

University of Potsdam

Algebraic, analytic and geometric structures emerging from quantum field theory 4-15 March 2024 Sichuan University, Chengdu

Alberto Richtsfeld

University of Potsdam

Image: A mathematical states and a mathem

References

- P. B. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer index theorem. 2nd ed. Boca Raton, FL: CRC Press (1995)
- M. Atiyah, R. Bott, V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19, 279–330 (1973)
- A. R., Local index theory for the Rarita-Schwinger operator, arXiv:2402.04430 (2024)

Classical results

- The Atiyah-Singer index theorem calculates the index of an elliptic operator on a closed manifold in terms of the topology.
- The original proof used methods from K-theory and cobordism theory.
- Over time, new proofs emerged, one of which was the heat kernel method, which led to the local index theorem.

- Let $E, F \rightarrow M$ be hermitian vector bundles over a closed Riemannian manifold M.
- Let $D : \Gamma(E) \to \Gamma(F)$ be a elliptic differential operator.
- Then D defines two heat semigroups $\exp(-tD^*D)$ and $\exp(-tDD^*)$.
- exp(-tD*D) and exp(-tDD*) are smoothing operators, i.e. they have smooth Schwartz kernels k₁, k₂. In particular, they are trace-class operators.

Image: A math a math

The heat kernel method

A simple argument shows that for any t > 0

ind
$$D = \operatorname{tr} \exp(-tD^*D) - \operatorname{tr} \exp(-tDD^*)$$

= $\int_{M} (\operatorname{tr} k_1(x, x)) - \operatorname{tr} k_2(x, x)) dvol_g$
:= $\int_{M} (\operatorname{str} \exp(-tD^2)(x, x)) dvol_g$

The local index theorem asks the question whether the limit

$$\lim_{t\searrow 0} (\operatorname{str} \exp(-\mathcal{D}^2)(x,x)) dvol_g$$

Image: A math a math

University of Potsdam

exists and if so, what the limit is.

Alberto Richtsfeld

The local index theorem for twisted Dirac operators

The local index theorem is true for twisted Dirac operators:

Theorem (Gilkey '73, Atiyah-Bott-Patodi '73, Getzler '83, Bismut '84, Berline-Vergne '85,...)

Let (M, g) be a Riemannian spin manifold and $E \to M$ be a Hermitian vector bundle with connection ∇^E . Then for the twisted Dirac operator D_E , we have

$$\lim_{t\searrow 0}(\operatorname{str}\exp(-tD_E^2)(x,x))dvol_g=\left(\hat{A}(\nabla^g)(x)\wedge\operatorname{ch}(\nabla^E)(x)\right)_n,$$

<<p>< □ ト < 同 ト < 三 ト</p>

University of Potsdam

where ω_n denotes the n-form part of a mixed-degree differential form ω .

Alberto Richtsfeld

Let Man_n be the category of compact, connected, smooth n-manifolds with local diffeomorphisms as morphisms.

Set

 $\mathrm{Met}: \mathbf{Man}_n^{op} \to \mathbf{Set}$

to be the functor sending M to the set of metrics Met(M) on M.

Set

$$\Omega^q$$
: Man^{op}_n \rightarrow Set

to be the functor sending M to the set $\Omega^q(M)$ of differential q-forms on M.

Image: A math a math

University of Potsdam

Riemannian invariants

By a monomial in the partial derivatives of a metric g on \mathbb{R}^n , we mean expressions of the form

$$m_{\alpha}(g) = \partial_{x}^{\alpha_{1}} g_{i_{1}j_{1}} \cdot \cdots \cdot \partial_{x}^{\alpha_{n}} g_{i_{n}j_{n}}.$$

A natural transformation $\omega : \operatorname{Met} \to \Omega^q$ is said to be

- homogeneous of weight k, if for every λ > 0
 ω(λ²g) = λ^kω(g) holds.
- regular, if in coordinates, $\omega(g)$ takes the form

$$\omega(g)(x) = \sum_{I} \sum_{\alpha}^{\text{finite}} a_{\alpha,I}(g(x)) \cdot m_{\alpha}(g)(x) \cdot dx^{i_1} \wedge \cdots \wedge dx^{i_q},$$

where $a_{\alpha,I} : Sym_{>0} \to \mathbb{C}$ are C^{∞} -functions.

Alberto Richtsfeld

University of Potsdam

Pontryagin forms

- Let Ω_g be the curvature 2-form of the Levi-Civita connection of g ∈ Met(M).
- $\operatorname{Pont}(g) = \{P(\Omega_g) | P : \mathfrak{o}(n) \to \mathbb{C} O(n) \operatorname{inv. polynomial}\}$
- The Pontryagin forms are given by

$$\det\left(t+\frac{\Omega_g}{2\pi}\right)=\sum t^{n-2k}p_k(g).$$

Image: A math a math

University of Potsdam

- These are generators of Pont(g).
- $p_k : Met \to \Omega^{4k}$ defines a regular, homogeneous natural transformation of weight 0.

Gilkey's Theorem

Theorem (Gilkey '73, Atiyah-Bott-Patodi '73)

The only regular, homogeneous natural transformations $\omega : Met \to \Omega^q$ of weight ≥ 0 have values in the ring Pont(g) generated by the Pontryagin forms of g, and these have weight 0.

Alberto Richtsfeld

University of Potsdam

Geometric structures

- Let $G_n \in {O(n), SO(n), Pin(n), Spin(n)}$.
- G_n has a natural action on \mathbb{R}^n .
- Given a manifold *Mⁿ*, there are topological conditions for *G_n*-structures, the parameter spaces for the different *G_n*-structures are again determined by the topology of *M*.
- There is a subcategory $G_n Man_n$ of Man_n , whose objects are the manifolds admitting G_n -structures.
- There is a functor

$$G_n - \operatorname{Str}: G_n - \operatorname{Man}_n^{op} \to \operatorname{Set},$$

sending a manifold M to the set of different G_n -structures on M.

University of Potsdam

Alberto Richtsfeld

The set of orientations $\mathcal{O}(M)$ on M is given by $\pi_0(\tilde{M})$, where \tilde{M} is the orientation double cover of M. \mathcal{O} is a functor from $\operatorname{Man}_n^{op}$ to **Set**.

Gn	$\operatorname{Obj}(G_n - \operatorname{Man}_n)$	$G_n - \operatorname{Str}$
O(n)	$Obj(Man_n)$	*
SO(n)	M with $w_1(M)=0$	\mathcal{O}
$\operatorname{Pin}(n)$	M with $w_1(M) = w_2(M) = 0$	$H^1(\cdot,\mathbb{Z}_2)$
$\operatorname{Spin}(n)$	M with $w_1(M) = w_2(M) = 0$	$\mathcal{O} imes H^1(\cdot,\mathbb{Z}_2)$

A G_n -manifold (M, α) is a pair with $M \in Obj(G_n - Man_n)$ and $\alpha \in G_n - Str(M)$.

<<p>< □ ト < 同 ト < 三 ト</p>

University of Potsdam

Alberto Richtsfeld

Constructions emerging from geometric structures

Let $M \in \text{Obj}(G_n - \mathbf{Man}_n)$.

- Each g ∈ Met(M) and α ∈ G_n − Str(M) determines a G_n-principal bundle PG_{g,α}(M).
- The metric g induces a Levi-Civita connection 1-form ω^{LC} on $PG_{g,\alpha}(M)$.
- A G_n -representation $\rho : G_n \to \operatorname{End}(V)$ induces an associated vector bundle $E_{V,g,\alpha} = PG_{g,\alpha}(M) \times_{\rho} V$.
- The connection 1-form ω^{LC} induces a covariant dericative ∇^{LC} on $E_{V,g,\alpha}$.

Image: A math a math

Geometric operators

Definition

A geometric symbol σ is a G_n -equivariant map

$$\sigma: \mathbb{R}^n \to \operatorname{Hom}(V, W),$$

V, W are hermitian representations of G_n . For a Riemannian G_n -manifold (M, g, α) , σ defines an (elliptic) first-order differential operator

$$D_{\sigma,g,\alpha} := \bar{\sigma} \circ \nabla^{LC} : C^{\infty}(M, E_{V,g,\alpha}) \to C^{\infty}(M, E_{W,g,\alpha}),$$

where $\bar{\sigma}$ is the to σ associated section of $T^*M \otimes \operatorname{Hom}(E_{V,g,\alpha}, E_{W,g,\alpha})$. Operators constructed in this way are called geometric.

Alberto Richtsfeld

< (1) > <

Geometric operators: Properties

• For $\lambda > 0$ there exists canonical vector bundle isomorphisms $\epsilon_V : E_{V,g,\alpha} \to E_{V,\lambda^2g,\alpha}, \ \epsilon_W : E_{W,g,\alpha} \to E_{W,\lambda^2g,\alpha}$ such that $\lambda D_{\sigma,\lambda^2g,\alpha} \circ \epsilon_V = \epsilon_W \circ D_{\sigma,g,\alpha}.$

In coordinates, the coefficients of $D_{\sigma,g\alpha}$ are of the form

$$a(x,g) = \sum_{\alpha} a_{\alpha}(g(x))m_{\alpha}(g)(x),$$

University of Potsdam

where $a_{\alpha} : Sym_{>0}(n) \to \mathbb{C}$ are C^{∞} -functions.

Alberto Richtsfeld

Definition of Chiral Geometric Symbol

Definition

Let $H_n \in \{\text{Pin}(n), O(n)\}$, V be an H_n -representation, and $G_n \subseteq H_n$ be the connected component of $1 \in H_n$. A chiral $(G_n$ -)geometric symbol (σ, ε) consists of:

• A H_n -geometric symbol $\sigma : \mathbb{R}^n \to \operatorname{Hom}(V)$,

• a H_n -geometric map $\varepsilon : \Lambda^n \mathbb{R}^n \to \operatorname{Hom}(V)$,

such that

Alberto Richtsfeld

Image: A mathematical states and a mathem

Geometric Operators from Chiral Symbols

- Let $G_n \in {SO(n), Spin(n)}$ and (σ, ε) be an G_n -geometric symbol.
- V^{\pm} are the ± 1 -eigenspaces of $\varepsilon(\mathbf{e}_1 \wedge \cdots \wedge \mathbf{e}_n)$.
- V^{\pm} are G_n -representations and

$$\sigma^{\pm}:\mathbb{R}^n\otimes V^{\pm}\to V^{\mp}$$

<<p>< □ ト < 同 ト < 三 ト</p>

University of Potsdam

are G_n -equivariant.

Alberto Richtsfeld

Geometric Operators from Chiral Symbols

Given a Riemannian G_n-manifold (M, g, α), the chiral geometric symbol induces a Z₂-grading:

$$E_V = E_{V^+} \oplus E_{V^-}$$

• $E_{V^{\pm}}$ can be identified as the ± 1 -eigenspaces of $\overline{\varepsilon}(dvol_g)$.

Geometric operators obtained:

$$D_{\sigma}: E_V \to E_V, \quad D_{\sigma^+}: E_{V^+} \to E_{V^-}, \quad D_{\sigma^-}: E_{V^-} \to E_{V+}.$$

Such that:

$$D_{\sigma} = egin{pmatrix} 0 & D_{\sigma^-} \ D_{\sigma^+} & 0 \end{pmatrix}$$

Since D_{σ} is self-adjoint, we have:

$$(D_{\sigma^+})^* = D_{\sigma^-}$$

Alberto Richtsfeld

University of Potsdam

Proposition

Let $G_n \in {SO(n), Spin(n)}$ and (σ, ε) be a chiral geometric symbol. Let (M, g, α) be a G_n -manifold and $\bar{\alpha} \in G_n - Str(M)$ be the G_n -structure that is obtained from α by reversing the orientation. Then we have the followng equalities

$$E_{V,\alpha} = E_{V,\bar{\alpha}}, \quad E_{V^{\pm},\alpha} = E_{V^{\mp},\bar{\alpha}}, \quad D_{\sigma^{\pm},\alpha} = D_{\sigma^{\mp},\bar{\alpha}}.$$

Alberto Richtsfeld

University of Potsdam

Higher Dirac operators

■ For n = 2k, let V_j[±] be the irreducible representation of Spin(n) with dominant weight

$$\lambda_j^{\pm} = \Big(\underbrace{\frac{3}{2}, \dots, \frac{3}{2}}_{j \text{ times}}, \frac{1}{2}, \dots, \frac{1}{2}, \pm \frac{1}{2}\Big).$$

• $V_j = V_j^+ \oplus V_j^-$ is a Pin(n)-representation.

• V_j appears once in $\Sigma_n \otimes \Lambda^j \mathbb{C}^n$:

$$\Sigma_n \otimes \Lambda^j \mathbb{C}^n = V_j \oplus W, \quad \Sigma_n^{\pm} \otimes \Lambda^j \mathbb{C}^n = V_j^{\pm} \oplus W_{\pm}.$$

- All sums are Spin(n)-equivariant, the first is Pin(n)-equivariant.
- The (orthogonal) projection $\pi_j : \Sigma_n \otimes \Lambda^j \mathbb{C}^n \to V_j$ is $\operatorname{Pin}(n)$ -equivariant.

Alberto Richtsfeld

Higher Dirac operators

Define twisted Clifford multiplication γ_j and involution $\omega_{\mathbb{C}} \otimes \operatorname{id}_{\mathcal{N}^{\mathbb{C}^n}}$,

$$\omega_{\mathbb{C}}=i^ke_1\cdots e_n.$$

- Set σ_j = π_j ∘ γ_j|_{ℝⁿ⊗V_j}, then (σ_j, ω_ℂ ⊗ id|_{V_j}) defines a chiral geometric symbol.
- Operators D_i obtained are called higher Dirac operators.
- D_0 is the Dirac operator, D_1 is the Rarita-Schwinger operator.
- ind $D_{j,+} = \langle (\operatorname{ch}(N^{j}T^{*}_{\mathbb{C}}M) + \operatorname{ch}(N^{j-1}T^{*}_{\mathbb{C}}M)) \hat{A}(M), [M] \rangle$

Alberto Richtsfeld

Image: A math the second se

Index and heat kernel

Let (σ, ε) be a chiral geometric symbol, (M, g, α) closed and connected Riemannian G_n -manifold. Let

$$D: \Gamma(E) \to \Gamma(E)$$

the geometric symbol obtained from σ , $D_{\pm} : \Gamma(E_{\pm}) \to \Gamma(E_{\mp})$ the chiral parts. $\exp(-tD^2)$ is a smoothing operator, w.r.to the splitting $E = E_+ \oplus E_-$:

$$\exp(-tD^2) = \begin{pmatrix} \exp(-tD_-D_+) & 0\\ 0 & \exp(-tD_+D_-) \end{pmatrix}$$

ind $D_+ = \int^{\mathcal{O}} \operatorname{str}(\exp(-tD^2)(x,x)) dvol_{g,\mathcal{O}}$

 ${\cal O}$ is the orientation induced from $\alpha,$

$$\operatorname{str}(A) = \operatorname{tr}(\overline{\varepsilon}(\operatorname{dvol}_{g,\mathcal{O}})A), \quad A \in \operatorname{Hom}(E, E).$$

Alberto Richtsfeld

University of Potsdam

Construction of asymptotic expansion

Obtain an asymptotic expansion

$$\exp(-tD^2)(x,x)\sim \sum arPhi_k(x)t^{rac{k-n}{2}}$$
 :

Let $\sigma_{D^2} = \sum_{k \leq 2} a_k$ is the total symbol of D^2 in coordinates, a_k being the homogeneous parts of degree k. Approximate the symbol of the parametrix $(D^2 - \lambda)^{-1}$ by inverting the symbol of $D^2 - \lambda$ formally:

$$b_0(x,\xi,\lambda) = (a_2(x,\xi) - \lambda)^{-1},$$

For $D_x^{\alpha} = (-i)^{|\alpha|} \partial_x^{\alpha},$

$$b_k = -\left(\sum_{\substack{|\alpha|+j+l=k\\j< k}} \frac{1}{\alpha!} \frac{\partial^{\alpha} b_j}{\partial \xi^{\alpha}} \cdot D_x^{\alpha} a_{2-l}\right) \cdot b_0$$

Alberto Richtsfeld

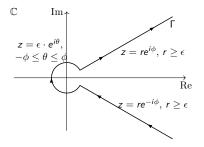
University of Potsdam

The heat coefficients

The asymptotic expansion of the heat kernel is given by

$$\Phi_k(x) = \sqrt{\det g(x)}^{-1} \frac{1}{2\pi i} \int \int_{\Gamma} e^{-\lambda} b_k(x,\xi,\lambda) d\lambda d\xi,$$

where Γ is given by



Alberto Richtsfeld

University of Potsdam

The heat coefficents

Let Φ_k be the asymptotic expansion of exp(-tD²_{σ,g,α}).
 Set ω^(σ,ε)_k(M,g,α)(x) = str(Φ_k(x))dvol_{g,O}.
 ind D⁺_{σ,g,α} = ∫^O_M ω^(σ,ε)_n.

Alberto Richtsfeld

< ロ > < 回 > < 回 > < 回 > <</p>

Heat coefficients as natural transformations

$$\omega_k^{(\sigma,arepsilon)}(M,g,lpha)$$
 does not depend on $lpha$:

- $\omega_k^{(\sigma,\varepsilon)}(M,g,\alpha)$ is a local construction.
- Locally, a G_n -structure is determined by the orientation.

•
$$\omega_k^{(\sigma,\varepsilon)}(M,g,lpha)(x) = \operatorname{tr}(ar{arepsilon}(\operatorname{dvol}_{g,\mathcal{O}}) arPsi_k(x)) \operatorname{dvol}_{g,\mathcal{O}}$$

• For the reversed orientation \overline{O} we have $dvol_{g,\overline{O}} = -dvol_{g,O}$.

Proposition

The kth heat coefficient $\omega_k^{(\sigma,\varepsilon)}$ defines a natural transformation $\operatorname{Met} \to \Omega^n$.

Alberto Richtsfeld

University of Potsdam

Image: A math a math

Regularity of the heat coefficients

Lemma

The natural transformation $\omega_k^{(\sigma,\varepsilon)}$ is regular.

Alberto Richtsfeld

University of Potsdam

< ロ > < 回 > < 回 > < 回 > <</p>

Proof of regularity

Sketch of proof:

In coordinates, the coefficients of $D_{\sigma,g}$ are of the form

$$a(x,g) = \sum_{\alpha} a_{\alpha}(g(x))m_{\alpha}(g)(x),$$
 (*)

Image: A math a math

University of Potsdam

where $a_{\alpha} : Sym_{>0}(n) \to \mathbb{C}$ are C^{∞} -functions.

- Functions of the form * are closed under addition, multiplications and taking derivatives in x.
- By carefully going through the construction of $\omega^{\sigma,\varepsilon}$ one obtains regularity.

Homogeneity of the heat coefficients

Lemma

The natural transformation $\omega_k^{(\sigma,\varepsilon)}$ is homogeneneous of weight $\frac{n-k}{2}$ in g, i.e.

$$\omega_k(\lambda^2 g) = \lambda^{n-k} \omega_k(g).$$

This follows from $D_{\sigma,\lambda^2 g,\alpha} \cong \frac{1}{\lambda} D_{\sigma,g,\alpha}$.

University of Potsdam

イロト イヨト イヨト

Alberto Richtsfeld

Preliminary local index theorem

Theorem

For k < n, the heat coefficient $\omega_k^{(\sigma,\varepsilon)}$ is zero, and $\omega_n^{(\sigma,\varepsilon)} \in \text{Pont}(g)$. In particular, if (M, g, α) is a closed G_n -manifold and $D_{g,\alpha}$ the induced geometric operator, $\text{str}\left(e^{-tD_{g,\alpha}^2}(x,x)\right) d\text{vol}_g$ converges for $t \searrow 0$ with

$$\lim_{t\searrow 0} \operatorname{str}\left(e^{-tD_{g,\alpha}^2}(x,x)\right) d\operatorname{vol}_g = \omega_n(g)(x).$$

Alberto Richtsfeld

University of Potsdam

On an oriented manifold M^n with orientation \mathcal{O} , denote by $\chi(TM_{\mathcal{O}}) \in H^n(M, \mathbb{R})$ the Euler class of the *TM* with respect to the orientation \mathcal{O} .

Theorem (Atiyah-Singer)

Let (σ, ε) be a chiral G_n -geometric symbol for n = 2m even and (M, g, α) be a Riemannian G_n -manifold. Then the characteristic class $(\operatorname{ch}(E_{+,g,\alpha}) - \operatorname{ch}(E_{-,g,\alpha}))/\chi(TM_{\mathcal{O}}) \in H^*(M, \mathbb{R})$ is well-defined and

$$\operatorname{ind}(D_{+,g,\alpha}) = (-1)^m \left(\frac{\operatorname{ch}(E_{+,g,\alpha}) - \operatorname{ch}(E_{-,g,\alpha})}{\chi(TM_{\mathcal{O}})} \cdot \hat{A}(M)^2 \right) [M_{\mathcal{O}}].$$

Alberto Richtsfeld

University of Potsdam

Image: A math a math

Atiyah-Singer integrand

- Let V be the G_n -module σ acts on.
- Let *E˜*₊, *E˜*_−, *T˜* be associated bundles to the *G_n*-representations *V*₊, *V*_−, ℝⁿ on the classifying space *BG_n*.
- The cohomology class

$$\frac{\mathrm{ch}(\tilde{E}_+)-\mathrm{ch}(\tilde{E}_-)}{\chi(\tilde{\mathcal{T}})}\hat{A}(\tilde{\mathcal{T}})^2\in H^*(BG_n,\mathbb{R})$$

is well-defined.

By Chern-Weil theory, there exists a G_n -invariant polynomial $P_{\sigma,\varepsilon}:\mathfrak{g}_n \to \mathbb{R}$ representing the above cohomology class.

<<p>< □ ト < 同 ト < 三 ト</p>

- The mixed-degree form $P_{(\sigma,\varepsilon)}(\bar{\Omega}_{g,\alpha}^{LC})$ does not depend on α .
- $\omega_{(\sigma,\varepsilon)}: g \mapsto (P_{(\sigma,\varepsilon)}(\overline{\Omega}_g^{LC})_n \text{ defines a zero-homogeneous,}$ regular natural transformation $\operatorname{Met} \to \Omega^n$.

• For all G_n -manifolds (M, g, α) ,

$$\int_{M} \omega_n = \operatorname{ind}(D_{+,g,\alpha}) = \int_{M} \omega_{(\sigma,\varepsilon)}.$$

University of Potsdam

Image: A mathematical states and a mathem

Alberto Richtsfeld

Thom's Theorem

Applying Gilkey's Theorem,

$$\omega_n = \sum_I a_I p_I, \quad \omega_{(\sigma,\varepsilon)} = \sum_I b_I p_I \quad a_I, b_I \in \mathbb{C},$$

where *I* runs over all partitions of *n* and $p_{(i_1,...,i_r)} = p_{i_1} \wedge \cdots \wedge p_{i_r}$, p_i denotes the *i*-th Pontryagin form. To deduce $a_I = b_I$, we use the following Theorem by Thom:

Theorem

Let M_1 be the K3-surface and $M_i = \mathbb{H}P^i$ for $i \ge 2$. Then M_i is spinnable and the matrix

$$(p_I(M_{j_1} \times \cdots \times M_{j_k}))_{I,J \text{ partitions of }k}$$

is non-singular.

Alberto Richtsfeld

University of Potsdam

The local index theorem

Rewrite

$$\frac{\operatorname{ch}(\tilde{E}_{+}) - \operatorname{ch}(\tilde{E}_{-})}{\chi(\tilde{T})} (\nabla^{LC,g}) \cdot \hat{A} (\nabla^{LC,g})^{2} = P_{(\sigma,\varepsilon)}(\bar{\Omega}_{g}^{LC}).$$

Alberto Richtsfeld

University of Potsdam

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Our discussion shows:

Theorem

Let (σ, ε) be a chiral G_n -geometric symbol for n = 2m even. Let (M, g, α) be a Riemannian G_n -manifold and $D_g: C^{\infty}(M, E) \to C^{\infty}(M, E)$ be the induced geometric operator. Then the equality

$$\begin{split} \lim_{t \searrow 0} & \operatorname{str}\left(e^{-tD_{g}^{2}}(x,x)\right) d\operatorname{vol}_{g} = \\ & = (-1)^{m} \left(\frac{\operatorname{ch}(\tilde{E}_{+}) - \operatorname{ch}(\tilde{E}_{-})}{\chi(\tilde{\mathcal{T}})}(\nabla^{LC,g})(x) \cdot \hat{\mathrm{A}}(\nabla^{LC,g})(x)^{2}\right)_{n} \end{split}$$

holds.

University of Potsdam

A D F A P F A A D F A P F

Alberto Richtsfeld

Local index theorem for the Rarita-Schwinger operator

Corollary

Let $Q = D_1$ be the Rarita-Schwinger operator on an even-dimensional Riemannian spin-manifold (M, g). Then

$$\begin{split} \lim_{t \searrow 0} & \operatorname{str} \left(e^{-tQ^2}(x,x) \right) dvol_g = \\ &= \left(\hat{\mathrm{A}}(\nabla^{LC,g})(x) \left(\operatorname{ch}(\tilde{T}_{\mathbb{C}})(\nabla^{LC,g})(x) + 1) \right) \right)_n \end{split}$$

Alberto Richtsfeld

University of Potsdam

Image: A mathematical states and a mathem

Corollary

Let D_j be the higher Dirac operator on an even dimensional Riemannian spin-manifold (M,g). Then

$$\begin{split} &\lim_{t\searrow 0} \operatorname{str}\left(e^{-tD_{j}^{2}}(x,x)\right) d\operatorname{vol}_{g} = \\ &= \left(\widehat{\mathrm{A}}(\nabla^{LC,g})(x)\left(\operatorname{ch}(\Lambda^{j}\widetilde{T}_{\mathbb{C}})(\nabla^{LC,g})(x) + \operatorname{ch}(\Lambda^{j-1}\widetilde{T}_{\mathbb{C}})(\nabla^{LC,g})(x)\right)\right)_{n}. \end{split}$$

Alberto Richtsfeld

University of Potsdam

メロト メロト メヨト メ

Thank you for your attention! 感谢您的关注

Alberto Richtsfeld

University of Potsdam

< □ > < □ > < □