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The Euler-Maclaurin Formula

For any f : [0,N] → R of class Cp we have

(EML)
N−1∑
k=0

f (k) =

∫ N

0
f (s)ds +

p∑
k=1

Bk

k!
[f (k−1)(s)]Ns=0 + Rp

Bk Bernoulli numbers 1,−1
2 ,

1
6 , 0,−

1
30 , 0, · · ·

Rp Remainder which depends linearly on f (p).

This identity links integrals to sums, leading to many results in
mathematics: complex analysis, operator theory, numerical
analysis.

What happens in a stochastic framework with Riemann-Stieltjes
integration?
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The Euler-Maclaurin Formula

(EML) is justified on the basis of three basic identities

The sum
∑

and the integration
∫
are the inverse operators of

δf (x) = f (x + 1)− f (x) , Df (x) = f ′(x) .

The formal expansion

δf (x) =
∑
k≥1

f (k)(x)

k!
=

∑
k≥1

Dk

k!
f (x) = (eD − id)f (x)

The series expansion

z

ez − 1
=

∑
k≥0

Bk

k!
zk
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The Euler-Maclaurin Formula

By combining these three facts∑
= δ−1 = (eD − id)−1 = D−1 D

eD − id

= D−1 +
∑
k≥1

Bk

k!
Dk−1 =

∫
+
∑
k≥1

Bk

k!
Dk−1

This approach does not take account of boundary terms.

Using this approach, classical sums can be replaced by a generic
sum over the vertices of a polytope [Berline-Vergne ’18] and other
generalizations
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An alternative proof

The same formula can be proved as a specific case of a family of
EML-type formulas [Boas ’77]

The key point is to rewrite the sum as a Stieltjes integral.

N−1∑
k=0

f (k) =

∫ N−a

−a
f (s)d[s] 0 < a < 1

Applying an integration by parts with the function P1(s) = s − [s]

∑
−
∫

= −
∫ N−a

−a
f (s)d(P1(s))

= [−f (s)P1(s)]
N−a
−a +

∫ N−a

−a
f ′(s)P1(s)ds

What happens if we iterate the integration?
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An alternative proof

For any sequence of functions (Pk)k≥1 s.t. P ′
k = Pk−1 we have

∑
=

∫
+

p∑
l=1

(−1)l [f (l−1)(s)Pl(s)]
N−a
−a + (−1)p+1

∫ N−a

−a
f (p)(s)Pp(s)ds

Sending a ↓ 0, one has EML formula modulo initial constants

The classic choice is to consider P = (Qk)k≥1 s.t.
Q ′

k = Qk−1

Q1 = t − [t]− 1
2

Qk 1-periodic ,
∫ 1
0 Qk(s)ds = 0

The system identifies a unique solution such that Qk(0) =
Bk
k! .

Functions Qk are called periodic Bernoulli polynomials.
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Extension to Stieltjes Integrals

Let X : [0,N] → V be a finite variation process and
f : V → L(V ,W ) a smooth function with V ,W Banach spaces.
We consider the Riemann-Stieltjes integral.∫ N

0
f (Xs)dXs

we want to compare it with Riemann-Stieltjes sums

IN(f ,X ) :=
N−1∑
k=0

f (Xk)δXk , δXk = Xk+1 − Xk

Is there a way of deriving a formula between these two operators?
Yes, but we must use the Boas approach.
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Extension to Stieltjes Integrals

Thanks to the finite variation we write

N−1∑
k=0

f (Xk)(Xk+1 − Xk) =

∫ N−a

−a
f (Xs)dX[s+1]

Using the notation Z 1
s = Xs − X[s+1] we repeat

IN(f ,X )−
∫ N−a

−a
f (Xs)dXs = −

∫ N−a

−a
f (Xs)d(Z

1
s + b1)

= −[f (Xs)(Z
1
s + b1)]N−a

−a +

∫ N−a

−a
Df (Xs)(dXs ⊗ Z 1

s + b1)ds

By iterating this integration by parts, we obtain a sequence of
non-linear path functionals on X .
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Tensor notation

For each f : V → L(V ,W ) we write the gradient

Dpf : V → L(V⊗p+1,W )

To keep track of higher order tensors, we use unitary tensor space

T1((V )) = 1⊕
∏
i=1

V⊗i , T p
1 (V ) = 1⊕

p⊕
i=1

V⊗i

with its applications of projections πi : T1((V )) → V⊗i and its
inverse application v → v−1.
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Sawtooth Signature

Definition (B.,Friz, Paycha ’24+)

For any b ∈ T1((V )), we consider the finite variation process
Z (b) : [0,N] → T1((V )) given by

π1(Zt(b)) = Xt − X[t+1] + π1(b)

and the higher order components satisfy for all k ≥ 2 the
differential equations{

dπk(Zt(b)) = dXt ⊗ πk−1(Zt(b))

Z0(b) = πk(b)

We call Z (b) the sawtooth signature with initial data b.
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Preliminary EML formula

Proposition (B.,Friz, Paycha ’24+)

For any b ∈ T p
1 (V )

IN(f ,X ) =

∫ N

0
f (Yt)dXt − [f (Xt)b

1]Nt=0

+

p∑
l=2

(−1)l [D l−1f (Xt)πl(Zt(b))]
N
t=0 + Rp(b)

where the remainder Rm(b) is given by the Stieltjes integral

Rp(b) = (−1)p+1

∫ N

0
Dpf (Xt)dπp+1(Zt(b)) .

The result is obtained by repeating the integration by parts.
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Three fundamental questions

Even if the formula appears to be the same as before, three main
questions need to be understood:

How can I best describe the sawtooth signature Zt(b)?

How do you choose b to find periodic Bernoulli polynomials in
a non-periodic context?

What formula is obtained when Rp(b) = 0?
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Iterated integrals

It is natural to compare Z (b) with the signature of the path X
S(X ) : {0 < s < t < N} → T1((V ))

πl(Ss,t(X )) =

∫
∆l

s,t

dXs1⊗· · ·⊗dXsl ∆l
s,t = {s ≤ s1 ≤ · · · ≤ sl ≤ t}

The process t → Ss,t(X ) is the solution of the differential equation{
dSs,t(X ) = Ss,t(X )⊗ dXt

Ss,s(X ) = 1

and it is the basis for rough paths
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Classic signature and sawtooth signature

Theorem (B.,Friz, Paycha ’24+)

For all b ∈ T1((V )) and l ≥ 1 we have the identity

πl(Zt(b)) =(−1)lπl(S0,t(X )−1)⊗ b

−
[t]∑
k=0

(−1)l−1πl−1(Sk,t(X )−1)⊗ δXk

The dependence of b is linear with respect to ⊗.

Zt(b) is an algebraic functional of the signature.
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Idea of Proof

To describe Zt(b) we couple a classical induction with the study of
the reversed signature t → S ♭

s,t(X ) which solves{
dS ♭

s,t(X ) = dXt ⊗ S ♭
s,t(X )

Ss,s(X ) = 1

the components of S ♭
s,t(X ) are the reversed iterated integrals

πl(S
♭
s,t(X )) =

∫
∆l,∗

0,t

dXs1⊗· · ·⊗dXsl , ∆l ,∗
0,t = {0 ≤ sl < . . . < s1 ≤ t}

We can calculate πl(S
flat
s,t (X )) using the relation

πl(S
♭
s,t(X )) = (−1)lπl(Ss,t(X )−1)
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Optimal choice of initial constants

It is natural to look for the constant b which minimises Rp(b).

By decomposing Rp symmetrically we apply Cauchy-Schwarz

E∥Rp(b)∥ ≲

(
E
∫ N

0
∥πp(Zt(b))∥2V⊗p |dXt |

)1/2

with |dXt | the total variation of the process
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Optimal choice of initial constants

As we are looking for a sequence of universal constants
b ∈ T1((V )) we would like to define πp(b) recursively

Definition (B.,Friz, Paycha ’24+)

For all l ≥ 1 we set

πl(b
∗) = − 1

E
∫ N
0 |dXt |

E
∫ N

0
πl(Zt(b

∗,<l))|dXt |

where b∗,<l = (1, π1(b
∗), . . . , πl−1(b

∗), 0, . . .). We call
b∗ ∈ T1((V )) the optimal average constants
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Optimal choice of initial constants

Theorem (B.,Friz, Paycha ’24+)

When V is a Hilbert space the value πl(b
∗) minimizes for all l ≥ 1

the functional

v ∈ V⊗l → E
∫ N

0
∥πl(Zt(b

∗,<l + v))∥2V⊗l |dXt | .

Thanks to the linear dependence of b, we can prove that

E
∫ N

0
∥πl(Zt(b

∗,<l + v))∥2V⊗l |dXt |

= E
∫ N

0
∥πl(Zt(b

∗,<l)) + v∥2V⊗l |dXt |

The result follows from the optimisation of a quadratic functional
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Moyennes optimales et nombres de Bernoulli

Theorem (B.,Friz, Paycha ’24+)

When Xt = t and V = R for all l ≥ 2 we have

πl(Zt(b
∗)) = Ql(t)

The proof is derived by an explicit calculation and an intrinsic
property of the Bernoulli numbers

In general, this choice should improve the numerical efficiency in
the computation of Riemann-Stieltjes integrals.
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Zero Remainder in EML

A classical application of EML are the Faulhaber formulas when
f (x) = xq, q ≥ 1 et p = q + 1

N−1∑
k=1

kq =
Nq+1

q + 1
+

q∑
l=1

Bl

l!

q!

(q − l + 1)
Nq−l+1

When b = 1 et Dpf = 0 the preliminary EML becomes∫ N

0
f (Xs)dXs =

N−1∑
k=0

f (Xk)δXk +

p∑
l=2

(−1)l+1D l−1f (XN)πl(ZN(1))
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Zero Remainder in EML

When f (X )(Y ) = X ⊗ Y∫
∆2

0,N

dXs1 ⊗ dXs2 =
N−1∑
k=0

Xk ⊗ δXk − π2(ZN)

=
∑

0≤l<k<N

δXl ⊗ δXk − π2(ZN)

The term on the right involves the discrete signature of order 2
defined from the time series {Xk}k=0,...,N

The sawtooth signature can be seen as a correction between
discrete and continuous signatures.
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The sawtooth signature can be seen as a correction between
discrete and continuous signatures.
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Discrete Signatures

Given a time series x : [[0,N]] → V , consider the iterated sums
Σ(x) : {0 ≤ m < n ≤ N} → T1((V ))

πl(Σm,n(x)) =
∑

m≤j1<...<jl<n

δxj1 ⊗ . . .⊗ δxjn

Unfortunately, these tensors are not sufficient to describe all

possible products.

π1(Σ0,N(x))⊗ π1(Σ0,N(x)) = xN − x0 ⊗ xN − x0

=
∑

0≤l<k<N

δxl ⊗ δxk +
∑

0≤k<l<N

δxl ⊗ δxk +
N−1∑
k=0

(δxk)
⊗2
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Discrete Signatures

For any integer n > 0 a composition of n is a vector
I = (i1, , . . . , ik) of positive integers s.t. i1 + . . . ik = n.

∥I∥ =
k∑

j=1

ij , |I | = k

Definition (DET 2020, BP2023)

We define the discrete signature as the value
{ΣI (x) : {0 ≤ m < n ≤ N} → V⊗∥I∥}I∈Composition

ΣI
m,n(x) =

∑
m≤j1<...<j|I |<n

(δxj1)
⊗i1 ⊗ . . . (δxj1)

⊗i|I |
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Discrete Signatures and linear interpolations

Theorem (Chen 1954, AFS 2019, DET 2020)

Let X lin : [0,N] → V be the linear interpolation of a time series
x : [[0,N]] → V . For any integer u ≥ 1 we have

πu(Sm,n(X
lin)) =

∑
I∈C(u)

1

i1! . . . ik !
ΣI
m,n(x)

Thanks to a slight generalisation of the identity∫ N

0
f (Xs)dXs =

N−1∑
k=0

f (Xk)δXk +

p∑
l=2

(−1)lD l−1f (XN)πl(ZN)

we can provide an alternative proof of this identity with possible
extensions.
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Remarks and Perspectives

Similar results can be obtained for right-point Riemann sums

N−1∑
k=0

f (Xk+1)δXk

Extension to semimartingales, rough paths.

Numerical simulations of integrals?
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