From Path Signatures to Algebraic Varieties

Carlos Enrique Améndola Cerón (TU Berlin)

Algebraic, analytic, geometric structures emerging from QFT

 π Day 2024

Setup: Signatures

- Let $X: [0,1] \to \mathbb{R}^d$ be a piecewise differentiable path.
- Coordinate functions: $X_1, X_2, \dots, X_d : \mathbb{R} \to \mathbb{R}$
- Their differentials $\mathrm{d}X_i(t)=X_i'(t)\mathrm{d}t$ are the coordinates of the vector

$$\mathrm{d}X = (\mathrm{d}X_1, \mathrm{d}X_2, \dots, \mathrm{d}X_d)$$

The kth signature of X is a tensor σ^(k)(X) of order k and format d × d × ··· × d. It is the multivariate integral:

$$\sigma^{(k)}(X) \;\;=\;\; \int_{\Delta} \mathrm{d} X(t_1) \otimes \mathrm{d} X(t_2) \otimes \cdots \otimes \mathrm{d} X(t_k),$$

where $\Delta = \{(t_1, t_2, \dots, t_k) \in \mathbb{R}^k : 0 \le t_1 \le t_2 \le \dots \le t_k \le 1\}.$ • Its d^k entries $\sigma_{i_1 i_2 \dots i_k}$ are the *iterated integrals*

$$\sigma_{i_1i_2\cdots i_k} = \int_0^1 \int_0^{t_k} \cdots \int_0^{t_3} \int_0^{t_2} \mathrm{d}X_{i_1}(t_1) \,\mathrm{d}X_{i_2}(t_2) \,\cdots \,\mathrm{d}X_{i_k}(t_k).$$

Carlos Améndola

Signatures

• $\sigma^{(k)}(X)$ has entries

$$\sigma_{i_1i_2\cdots i_k} = \int_0^1 \int_0^{t_k} \cdots \int_0^{t_3} \int_0^{t_2} \mathrm{d}X_{i_1}(t_1) \,\mathrm{d}X_{i_2}(t_2) \cdots \,\mathrm{d}X_{i_k}(t_k).$$

- Let's start with k = 1:
- Fundamental Theorem of Calculus:

$$\int_0^1 \mathrm{d} X_i(t) = X_i(1) - X_i(0)$$

• The first signature of the path X is

$$\sigma^{(1)}(X) = \int_0^1 \mathrm{d}X(t) = X(1) - X(0) \in \mathbb{R}^d$$

Signature Matrices

 Now let's consider k = 2. Then the second signature S = σ⁽²⁾(X) is the d × d matrix with entries

$$\sigma_{ij} = \int_0^1 \int_0^t \mathrm{d}X_i(s) \mathrm{d}X_j(t)$$

• Set X(0) = 0. Applying Fundamental Theorem of Calculus again:

$$\sigma_{ij} = \int_0^1 X_i(t) X_j'(t) \mathrm{d}t$$

We obtain

$$\sigma_{ij}+\sigma_{ji}=X_i(1)\cdot X_j(1)$$

- In matrix notation, $S + S^T = X(1) \cdot X(1)^T_{-}$
- In particular, the symmetric matrix $S + S^T$ has rank one!
- The skew-symmetric matrix $S S^T$ measures deviation from linearity:

$$\sigma_{ij} - \sigma_{ji} = \int_0^1 (X_i(t)X_j'(t) - X_j(t)X_i'(t)) \mathrm{d}t$$

Lévy Area

The entry $\frac{1}{2}(\sigma_{ij} - \sigma_{ji})$ of the skew-symmetric matrix $S - S^T$ is the area below the line minus the area above the line, known as a Lévy area:

Some History

- Introduced by Kuo Tsai Chen in the 1950s: K.-T. Chen: Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Annals of Mathematics 65 (1957)
 K.-T. Chen: Integration of paths – a faithful representation of paths by noncommutative formal power series, Transactions AMS 89 (1958)
- The *signature* of a path X is the sequence of tensors

$$\sigma(X) = (1, \sigma^{(1)}(X), \sigma^{(2)}(X), \sigma^{(3)}(X), \dots, \sigma^{(n)}(X), \dots)$$

- *Essential question*: how much information does the signature reveal about the path *X*?
- Signature determines paths! (modulo starting point, parametrization and tree-like excursion)
 B. Hambly and T. Lyons: Uniqueness for the signature of a path of bounded variation and the reduced path group, Annals of Mathematics 171 (2010)

- Signatures are central to the theory of rough paths, a revolutionary view on *Stochastic Analysis*.
- P. Friz and N. Victoir: Multidimensional Stochastic Processes as Rough Paths. Theory and Applications, Cambridge University Press, 2010.
 P. Friz and M. Hairer: A Course on Rough Paths. With an introduction to regularity structures, Universitext, Springer, Cham, 2014.
- They can be used to encode and model data!

 T. Lyons: Rough paths, signatures and the modelling of functions on streams, Proc. International Congress of Mathematicians 2014, Seoul
 I. Chevyrev and A. Kormilitzin: A primer on the signature method in machine learning, arXiv:1603.03788.

Recent developments

- C. Am., P. Friz and B. Sturmfels: *Varieties of Signature Tensors*, Forum of Mathematics, Sigma. Vol. 7, CUP (2019).
- M. Pfeffer, A. Seigal and B. Sturmfels: *Learning Paths from Signature Tensors*, SIMAX 40.2 (2019).
- F. Galuppi: *The Rough Veronese Variety*, Linear Algebra and Applications 583 (2019).
- L. Colmenajero , F. Galuppi and M. Michalek: *Toric geometry of path signature varieties*, Advances in Applied Mathematics 121 (2020).
- C. Am., D. Lee and C. Meroni: *Convex Hulls of Curves: Volumes and Signatures*, Geometric Science of Information (2023).
- C. Bellingeri and R. Penaguiao: *Discrete Signature Varieties*, arXiv:2303.13377
- C. Am., F. Galuppi, A. Ríos, P. Santarsiero and T. Seynnaeve: Decomposing Tensor Spaces via Path Signatures, arXiv:2308.11571

 $x^{4} + y^{4} + z^{4} - x^{2} - y^{2} - z^{2} - x^{2}y^{2} - x^{2}z^{2} - y^{2}z^{2} + 1 = 0$

Algebraic Varieties

- Solution set of a polynomial system of equations.
- $\mathcal{V} \subseteq \mathcal{K}^n$ (affine) algebraic variety \Rightarrow we can find a set of polynomials $\mathcal{F} \subseteq \mathbb{K}[s_1, \ldots, s_n]$ such that

$$\mathcal{V} = \{a \in \mathbb{K}^n | f(a) = 0 \text{ for all } f \in \mathcal{F}\}$$

- If polynomials are homogeneous \Rightarrow work in *projective space* \mathbb{P}^{n-1} .
- The *ideal* V associated to a variety V: set of all polynomials that vanish on V.
- Key Fact: a polynomial map $\sigma : \mathbb{K}^m \to \mathbb{K}^n$ induces naturally an algebraic variety that contains the *image* of σ .
- We are interested in projective varieties in tensor space ℙ^{d^k-1} that arise when X ranges over some nice families of paths.

Example of a Signature Variety

• Let d = 2 and consider quadratic paths in the plane \mathbb{R}^2 :

$$X(t) = \begin{pmatrix} x_{11}t + x_{12}t^2, x_{21}t + x_{22}t^2 \end{pmatrix}^T = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \cdot \begin{pmatrix} t \\ t^2 \end{pmatrix}$$

Their kth signature tensors depend *polynomially* of degree k on x_{ij}.
 σ⁽¹⁾(X) = (σ₁, σ₂) = (x₁₁ + x₁₂, x₂₁ + x₂₂).

$$\begin{split} \sigma_{ij} &= \int_0^1 \int_0^t (x_{i1} + 2x_{i2}s) \mathrm{d}s \, (x_{j1} + 2x_{j2}t) \mathrm{d}t \\ &= \int_0^1 (x_{i1}t + x_{i2}t^2) \, (x_{j1} + 2x_{j2}t) \, \mathrm{d}t \\ &= \int_0^1 [x_{i1}x_{j1}t + (2x_{i1}x_{j2} + x_{i2}x_{j1})t^2 + 2x_{i2}x_{j2}t^3] \, \mathrm{d}t \\ &= \frac{1}{2}x_{i1}x_{j1} + \frac{2}{3}x_{i1}x_{j2} + \frac{1}{3}x_{i2}x_{j1} + \frac{1}{2}x_{i2}x_{j2}. \end{split}$$

• We can write $\sigma^{(2)}(X)$ as

$$\frac{1}{2} \begin{pmatrix} x_{11}+x_{12} \\ x_{21}+x_{22} \end{pmatrix} (x_{11}+x_{12}, x_{21}+x_{22}) + \frac{1}{6} (x_{11}x_{22}-x_{12}x_{21}) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

۲

• The variety of all such signature matrices is the solution set of the quadratic equation

$$(\sigma_{12} + \sigma_{21})^2 - 4\sigma_{11}\sigma_{22} = 0.$$

- This means that the image variety associated to signature matrices of polynomial paths of degree two in the plane is a *hypersurface* in P³.
- We will denote this surface by $\mathcal{P}_{2,2,2}$. Its prime ideal generated by the quadric above is $P_{2,2,2}$.
- We want to study and *understand* these varieties!
- Question: What is the resulting variety if we restrict to linear paths?
- Answer: Symmetric matrices of rank 1: the classical Veronese variety!

• The third signature $\sigma^{(3)}(X)$ is a 2 × 2 × 2-tensor (d = 2, k = 3).

$$\begin{split} \sigma_{111} &= \frac{1}{6}(x_{11} + x_{12})^3 \\ \sigma_{112} &= \frac{1}{6}(x_{11} + x_{12})^2(x_{21} + x_{22}) + \frac{1}{60}(5x_{11} + 4x_{12})(x_{11}x_{22} - x_{12}x_{21}) \\ \sigma_{121} &= \frac{1}{6}(x_{11} + x_{12})^2(x_{21} + x_{22}) + \frac{1}{60}(2x_{12})(x_{11}x_{22} - x_{12}x_{21}) \\ \sigma_{211} &= \frac{1}{6}(x_{11} + x_{12})^2(x_{21} + x_{22}) - \frac{1}{60}(5x_{11} + 6x_{12})(x_{11}x_{22} - x_{12}x_{21}) \\ \sigma_{122} &= \frac{1}{6}(x_{11} + x_{12})(x_{21} + x_{22})^2 + \frac{1}{60}(5x_{21} + 6x_{22})(x_{11}x_{22} - x_{12}x_{21}) \\ \sigma_{212} &= \frac{1}{6}(x_{11} + x_{12})(x_{21} + x_{22})^2 - \frac{1}{60}(2x_{22})(x_{11}x_{22} - x_{12}x_{21}) \\ \sigma_{221} &= \frac{1}{6}(x_{11} + x_{12})(x_{21} + x_{22})^2 - \frac{1}{60}(5x_{21} + 4x_{22})(x_{11}x_{22} - x_{12}x_{21}) \\ \sigma_{222} &= \frac{1}{6}(x_{21} + x_{22})^3 \end{split}$$

- Goal: find the polynomial relations among the eight entries of $\sigma^{(3)}(X)$
- Image signature variety is $\mathcal{P}_{2,3,2}$ and its prime ideal is $P_{2,3,2}$.
- An instance of the general $P_{d,k,m}$ of polynomial paths of degree m.

Universal Varieties

- Recall: $X : [0,1] \to \mathbb{R}^d$ be a piecewise differentiable path.
- The kth signature of X is a tensor σ^(k)(X) of order k and format d × d × ··· × d.

$$\sigma_{i_1i_2\cdots i_k} = \int_0^1 \int_0^{t_k} \cdots \int_0^{t_3} \int_0^{t_2} \mathrm{d}X_{i_1}(t_1) \,\mathrm{d}X_{i_2}(t_2) \cdots \,\mathrm{d}X_{i_k}(t_k).$$

- In other words, the *k*th signature tensor of a path X in \mathbb{R}^d is a point $\sigma^{(k)}(X)$ in the tensor space $(\mathbb{R}^d)^{\otimes k}$, and in projective space $\mathbb{P}^{d^{k-1}}$.
- Consider the set of signature tensors σ^(k)(X) as X ranges over all smooth paths X : [0,1] → ℝ^d. This is called the universal variety

$$\mathcal{U}_{d,k} \subset \mathbb{P}^{d^k - 1}$$

• It is an algebraic variety! To truly understand them one needs the tools of *tensor algebras, Lie groups and free Lie algebras...*

Carlos Améndola

Computing Universal Varieties

d	k	amb	dim	deg	gens
2	2	3	2	2	1
2	3	7	4	4	6
2	4	15	7	12	33
2	5	31	13	40	150
3	2	8	5	4	6
3	3	26	13	24	81
3	4	80	31	672	954
4	2	15	9	8	20
4	3	63	29	200	486

Invariants of the ideal $U_{d,k}$ that defines the universal variety $\mathcal{U}_{d,k}$

Example (d = k = 2)

The universal variety $U_{2,2}$ of signature matrices consists of all 2×2 matrices whose symmetric part has rank ≤ 1 : $(\sigma_{12} + \sigma_{21})^2 = 4\sigma_{11}\sigma_{22}$

We want to understand this table! Explain dimensions? degrees? generators?

Computing Dimension

$d \setminus k$	2	3	4	5	6	7	8	9
2	2	4	7	13	22	40	70	126
3	5	13	31	79	195	507	1317	3501
4	9	29	89	293	963	3303	11463	40583
5	14	54	204	828	3408	14568	63318	280318
6	20	90	405	1959	9694	49684	259474	1379194

The dimension of the universal variety $U_{d,k}$ is much smaller than $d^k - 1$.

A word over the alphabet $\{1, 2, ..., d\}$ is Lyndon if it is strictly smaller in lexicographic order than all of its rotations, e.g. 11213.

Theorem

The dimension of the universal variety $U_{d,k}$ equals the number of Lyndon words of length $\leq k$ over the alphabet $\{1, 2, ..., d\}$ (minus one).

$$\lambda_{d,n} = \dim(\operatorname{Lie}^{n}(\mathbb{R}^{d})) = \sum_{k=1}^{n} \sum_{\ell \mid k} \frac{\mu(\ell)}{k} d^{k/\ell}$$
, where μ is the Möbius function.

Shuffle Relations

- The *shuffle product* of two words of lengths r and s is the sum over all $\binom{r+s}{s}$ ways of interleaving the two words.
- Examples:

 $e_{12} \sqcup\!\!\!\sqcup e_{34} = e_{1234} + e_{1324} + e_{1342} + e_{3124} + e_{3142} + e_{3412},$

 $e_3 \sqcup e_{134} = e_{3134} + 2e_{1334} + e_{1343}, \qquad e_{21} \sqcup e_{21} = 2e_{2121} + 4e_{2211}$

• These extend to the *shuffle linear forms* $e_{I \sqcup \cup J} := e_I \sqcup \cup e_J$, e.g.

 $e_{12 \sqcup J34} = e_{12} \sqcup L e_{34}.$

• Further extension: replace *e* by σ so that we obtain polynomial functions on tensor entries, e.g. $\sigma_{21 \sqcup 1} := 2\sigma_{2121} + 4\sigma_{2211}$

Theorem

For a smooth path X, the following shuffle relation holds:

$$\sigma_I(X)\sigma_J(X)=\sigma_{I\sqcup J}(X)$$
 for all words I,J

Example

$$\sigma_1^2 = 2\sigma_{11}, \quad \sigma_1\sigma_2 = \sigma_{12} + \sigma_{21}, \quad \sigma_2^2 = 2\sigma_{22}$$

$$\sigma_2 \sigma_{21} = 2\sigma_{221} + \sigma_{212}, \quad \sigma_2 \sigma_{22} = 3\sigma_{222}$$

Chen-Chow Theorem

• Step *n* signature map:

$$\sigma^{\leq n}(X) \,=\, \big(\,1,\,\sigma^{(1)}(X),\,\sigma^{(2)}(X),\,\sigma^{(3)}(X),\,\ldots,\sigma^{(n)}(X)\big)$$

• Key result attributed to Chow (1940) and Chen (1957):

Theorem (Chen-Chow)

Consider the image of the step n signature map applied to paths in \mathbb{R}^d :

 $\mathcal{G}^n(\mathbb{R}^d) \;=\; \left\{ \, \sigma^{\leq n}(X) \;:\; X: [0,1] o \mathbb{R}^d \, \, \text{any smooth path} \,
ight\} \,.$

then it is an algebraic variety (known as the step-n free Lie group) in the space of truncated tensors defined by the shuffle relations

$$\sigma_I(P)\sigma_J(P) = \sigma_{I\sqcup J}(P)$$
 for all words I, J with $|I| + |J| \le n$.

Example (d = k = 2)

The universal variety $U_{2,2}$ of signature matrices is defined by $(\sigma_{12}+\sigma_{21})^2 = \sigma_{1\sqcup 2}\sigma_{1\sqcup 2} = \sigma_{1\sqcup 2\sqcup 1\sqcup 2} = \sigma_{1\sqcup 1}\sigma_{2\sqcup 2} = \sigma_{1\sqcup 1}\sigma_{2\sqcup 2} = 4\sigma_{11}\sigma_{22}$

Polynomial Signature Varieties

- Look at nice family of paths whose signatures live inside U_{d,k}: polynomial paths.
- The coordinates of $X : [0,1] \to \mathbb{R}^d$ are polynomials of degree $\leq m$.

$$X_i(t) = x_{i1}t + x_{i2}t^2 + x_{i3}t^3 + \cdots + x_{im}t^m.$$

- Each one is represented by a real $d \times m$ matrix $X = (x_{ij})$.
- The x_{ij} are homogeneous coordinates on the projective space P^{dm-1}.
 We have the (rational) map

$$\sigma^{(k)} : \mathbb{P}^{dm-1} \dashrightarrow \mathbb{P}^{d^{k}-1}, \ X \mapsto \sigma^{(k)}(X).$$

- The closure of the image of this map is the *polynomial signature* variety $\mathcal{P}_{d,k,m}$.
- The homogeneous prime ideal P_{d,k,m} of this variety in ℝ[σ^(k)] is the polynomial signature ideal.

Carlos Améndola

Example: $\mathcal{P}_{3,3,2}$

• The third signature variety $\mathcal{P}_{3,3,2}$ for quadratic paths in \mathbb{R}^3 lies in the universal variety $\mathcal{U}_{3,3}$ for $3 \times 3 \times 3$ tensors.

- \bullet Recall: $\mathcal{U}_{3,3}$ has dimension 13, degree 24, and cut out by 81 quadrics.
- $\mathcal{P}_{3,3,2}$ has dimension 5, degree 90, and cut out by 162 quadrics in \mathbb{P}^{25} !
- The linear span of $\mathcal{P}_{3,3,2}$ is a hyperplane \mathbb{P}^{25} . It is defined by

$$\sigma_{123} - \sigma_{132} - \sigma_{213} + \sigma_{231} + \sigma_{312} - \sigma_{321} = 0.$$

• This linear form is the signed volume of the convex hull of a path.

Piecewise Linear Signature Varieties

- Look at nice family of paths whose signatures live inside U_{d,k}: piecewise linear paths.
- Paths $X : [0,1] \to \mathbb{R}^d$ that are piecewise linear with *m* pieces.
- Their steps are the vectors $X_1, \ldots, X_m \in \mathbb{R}^d$.

$$t \mapsto X_1 + \dots + X_{i-1} + (mt - i + 1) \cdot X_i$$
 where $rac{i-1}{m} \leq t \leq rac{i}{m}$

- They are also represented by a real $d \times m$ matrix $X = (x_{ij})$.
- We again have a (rational) map

$$\sigma^{(k)} : \mathbb{P}^{dm-1} \dashrightarrow \mathbb{P}^{d^{k}-1}, \ X \mapsto \sigma^{(k)}(X).$$

- The closure of the image of this map is the *piecewise linear signature* variety $\mathcal{L}_{d,k,m}$.
- The homogeneous prime ideal L_{d,k,m} of this variety in ℝ[σ^(k)] is the piecewise linear signature ideal.

Carlos Améndola

Piecewise-linear path parametrization

• By Chen (1954), the *m*-step signature of a piecewise linear path X is given by the *tensor product of tensor exponentials*:

$$\sigma^{\leq n}(X) = \exp(X_1) \otimes \exp(X_2) \otimes \cdots \otimes \exp(X_m) \in T^n(\mathbb{R}^d).$$

• As a corollary, the kth signature tensor of X equals

$$\sigma^{(k)}(X) = \sum_{\tau} \prod_{\ell=1}^{m} \frac{1}{|\tau^{-1}(\ell)|!} \cdot X_{\tau(1)} \otimes X_{\tau(2)} \otimes X_{\tau(3)} \otimes \cdots \otimes X_{\tau(k)}$$

(sum is over weakly increasing $\tau : \{1, 2, \dots, k\} \rightarrow \{1, 2, \dots, m\}$). • For example, for k = 3 we have

$$\sigma^{(3)}(X) = \frac{1}{6} \cdot \sum_{i=1}^{m} X_i^{\otimes 3} + \frac{1}{2} \cdot \sum_{1 \leq i < j \leq m} (X_i^{\otimes 2} \otimes X_j + X_i \otimes X_j^{\otimes 2}) + \sum_{1 \leq i < j < l \leq m} X_i \otimes X_j \otimes X_k.$$

Theorem (Am., Friz, Sturmfels 2019)

Let k = 2 and $m \le d$. For $m \le d$ we have the equality

$$\mathcal{P}_{d,2,m} = \mathcal{L}_{d,2,m}$$

- We denote $\mathcal{M}_{d,m} := \mathcal{P}_{d,2,m} = \mathcal{L}_{d,2,m}$.
- Any d × d matrix S = σ⁽²⁾(X) is uniquely the sum of a symmetric matrix and a skew-symmetric matrix:

$$S = P + Q$$
 where $P = \frac{1}{2}(S + S^{T}), Q = \frac{1}{2}(S - S^{T})$

• The $\binom{d+1}{2}$ entries p_{ij} of P and $\binom{d}{2}$ entries q_{ij} of Q serve as coordinates on the space \mathbb{P}^{d^2-1} of matrices $S = (\sigma_{ij})$.

Theorem (Am., Friz, Sturmfels 2019)

For each d and m, the following subvarieties of \mathbb{P}^{d^2-1} coincide:

- **1** Signature matrices of piecewise linear paths with m segments.
- 2 Signature matrices of polynomial paths of degree m.
- Sometrices S = P + Q, with P symmetric and Q skew-symmetric, such that rank(P) ≤ 1 and rank([PQ]) ≤ m.

For each fixed d, these varieties $\mathcal{M}_{d,m}$ form a nested family:

 $\mathcal{M}_{d,1} \subset \mathcal{M}_{d,2} \subset \mathcal{M}_{d,3} \subset \cdots \subset \mathcal{M}_{d,d} = \mathcal{M}_{d,d+1} = \cdots$

For $m \leq d$, $\mathcal{M}_{d,m}$ is irreducible of dimension $md - \binom{m}{2} - 1$. For $m \geq d$, $\mathcal{M}_{d,m} = \mathcal{U}_{d,2}$ the universal variety.

Example (d = 3, m = 2)

The variety $\mathcal{M}_{3,2}$ has dimension 4 and degree 6 in \mathbb{P}^8 . It is cut out by the 2×2 minors of the 3×3 symmetric matrix $P = (p_{ij})$ and the 3×3 minors of

$$\begin{bmatrix} P \ Q \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & 0 & q_{12} & q_{13} \\ p_{12} & p_{22} & p_{23} & -q_{12} & 0 & q_{23} \\ p_{13} & p_{23} & p_{33} & -q_{13} & -q_{23} & 0 \end{bmatrix}.$$

= p_{ii} , $\sigma_{ij} = p_{ij} + q_{ij}$ and $\sigma_{ji} = p_{ij} - q_{ij}$ for $1 \le i < j \le d$.

 σ_{ii}

d	k	т	amb	dim	deg	gens
2	2	1	2	1	2	1
2	2	2	3	2	2	1
3	2	1	5	2	4	6
3	2	2	8	4	6	9
3	2	3	8	5	4	6
4	2	1	9	3	8	20
4	2	2	15	6	20	36
4	2	3	15	8	16	21
4	2	4	15	9	8	20
5	2	1	14	4	16	50
5	2	2	24	8	70	100
5	2	3	24	11	80	55
5	2	4	24	13	40	50, 5
5	2	5	24	14	16	50

Invariants of the ideal $M_{d,m}$ that defines the variety of signature matrices $\mathcal{M}_{d,m}$.

Chains of Inclusions

• If m = 1 then X is a linear path and $\mathcal{L}_{d,k,1} = \mathcal{P}_{d,k,1}$.

• This is the classical Veronese variety of symmetric tensors of rank 1.

Theorem (Am., Friz, Sturmfels 2019)

We have the following chains of inclusions between the *kth* Veronese variety and the *kth* universal variety:

$$\nu_{k}(\mathbb{P}^{d-1}) = \mathcal{L}_{d,k,1} \subset \mathcal{L}_{d,k,2} \subset \mathcal{L}_{d,k,3} \subset \cdots \subset \mathcal{L}_{d,k,M} = \mathcal{U}_{d,k} \subset \mathbb{P}^{d^{k}-1}$$
$$\nu_{k}(\mathbb{P}^{d-1}) = \mathcal{P}_{d,k,1} \subset \mathcal{P}_{d,k,2} \subset \mathcal{P}_{d,k,3} \subset \cdots \subset \mathcal{P}_{d,k,M'} = \mathcal{U}_{d,k} \subset \mathbb{P}^{d^{k}-1}$$

Here M and M' are constants that depend only on d and k.

Conjecture

$$M = M' = \left[\frac{\lambda_{d,k}}{d}\right]$$

For $m \geq M$, we have $\mathcal{P}_{d,k,m} = \mathcal{L}_{d,k,m} = \mathcal{U}_{d,k}$.

Piecewise linear vs. Polynomial

We have seen that $\mathcal{P}_{d,2,m} = \mathcal{L}_{d,2,m}$ The case k = 2 does not generalize! For $k \geq 3$ we have $\mathcal{L}_{2,k,2} \neq \mathcal{P}_{2,k,2}$ in \mathbb{P}^{2^k-1} .

Example (d = 2, k = 3, m = 3)

The ideal $U_{2,3} = L_{2,3,3} = P_{2,3,3}$ is generated by six quadrics. Both $P_{2,3,2}$ and $L_{2,3,2}$ are generated by three quadrics modulo $U_{2,3}$. For $P_{2,3,2}$ these three generators can be written as

$$(2\beta_1 + \gamma_1)^2 - \mathbf{10}(\alpha_2\gamma_1 + 3\alpha_1\gamma_2), (2\beta_1 + \gamma_1)(2\beta_2 + \gamma_2) + \mathbf{10}(\alpha_3\gamma_1 + \alpha_2\gamma_2), (2\beta_2 + \gamma_2)^2 - \mathbf{10}(\alpha_3\gamma_2 + 3\alpha_4\gamma_1).$$

Corresponding generators of $L_{2,3,2}$: replace the coefficient **10** by **9**.

d	k	т	amb	dim	deg	gens
2	2	1	2	1	2	1
2	2	≥2	3	2	2	1
2	3	1	3	1	3	3
2	3	2	7	3	6	9
2	3	<u>≥</u> 3	7	4	4	6
2	4	1	2	1	4	6
2	4	2	14	3	24	55
2	4	3	15	5	$192^{\mathcal{P}}, 64^{\mathcal{L}}$	$(33^{\mathcal{P}}, 34^{\mathcal{L}}), (0^{\mathcal{P}}, 3^{\mathcal{L}}), ?$
2	4	<u>></u> 4	15	7	12	33
3	2	1	5	2	4	6
3	2	2	8	4	6	9
3	2	<u>≥</u> 3	8	5	4	6
3	3	1	9	2	9	27
3	3	2	25	5	90	162
3	3	3	26	8	$756^{\mathcal{P}}, 396^{\mathcal{L}}$	$(83^{\mathcal{P}},91^{\mathcal{L}})$, ?

Invariants of the ideals $P_{d,k,m}$, $L_{d,k,m}$

Recall: Universal Varieties

d	k	amb	dim	deg	gens
2	2	3	2	2	1
2	3	7	4	4	6
2	4	15	7	12	33
2	5	31	13	40	150
3	2	8	5	4	6
3	3	26	13	24	81
3	4	80	31	672	954
4	2	15	9	8	20
4	3	63	29	200	486
5	2	24	14	16	50

Invariants of the ideal $U_{d,k}$ that defines the universal variety $\mathcal{U}_{d,k}$

We got a little taste of *Applied Algebraic Geometry* and *Nonlinear Algebra*. For related cool topics, check out the *SIAGA* and the *Algebraic Statistics* (MSP) journals:

谢谢!

