From Path Signatures to Algebraic Varieties

Carlos Enrique Améndola Cerón (TU Berlin)

Algebraic, analytic, geometric structures emerging from QFT

 π Day 2024

Setup: Signatures

- Let $X:[0,1]\rightarrow \mathbb{R}^d$ be a piecewise differentiable path.
- Coordinate functions: $X_1, X_2, \ldots, X_d : \mathbb{R} \to \mathbb{R}$
- Their differentials ${\rm d}X_i(t)=X_i'(t){\rm d}t$ are the coordinates of the vector

$$
\mathrm{d}X=(\mathrm{d}X_1,\mathrm{d}X_2,\ldots,\mathrm{d}X_d)
$$

The k th signature of X is a tensor $\sigma^{(k)}(X)$ of order k and format $d \times d \times \cdots \times d$. It is the multivariate integral:

$$
\sigma^{(k)}(X) \;\; = \;\; \int_{\Delta} \mathrm{d} X(t_1) \otimes \mathrm{d} X(t_2) \otimes \cdots \otimes \mathrm{d} X(t_k),
$$

where $\Delta = \big\{ (t_1, t_2, \ldots, t_k) \in \mathbb{R}^k \, : 0 \leq t_1 \leq t_2 \leq \cdots \leq t_k \leq 1 \big\}.$ Its d^k entries $\sigma_{i_1 i_2 ... i_k}$ are the *iterated integrals*

$$
\sigma_{i_1i_2\cdots i_k} = \int_0^1 \int_0^{t_k} \cdots \int_0^{t_3} \int_0^{t_2} dX_{i_1}(t_1) dX_{i_2}(t_2) \cdots dX_{i_k}(t_k).
$$

Signatures

 $\sigma^{(k)}(X)$ has entries

$$
\sigma_{i_1i_2\cdots i_k} = \int_0^1 \int_0^{t_k} \cdots \int_0^{t_3} \int_0^{t_2} dX_{i_1}(t_1) dX_{i_2}(t_2) \cdots dX_{i_k}(t_k).
$$

- Let's start with $k = 1$:
- Fundamental Theorem of Calculus:

$$
\int_0^1 \mathrm{d}X_i(t) = X_i(1) - X_i(0)
$$

• The first signature of the path X is

$$
\sigma^{(1)}(X)=\int_0^1 \mathrm{d} X(t)=X(1)-X(0)\in \mathbb{R}^d
$$

Signature Matrices

Now let's consider $k=2.$ Then the second signature $S=\sigma^{(2)}(X)$ is the $d \times d$ matrix with entries

$$
\sigma_{ij} = \int_0^1 \int_0^t \mathrm{d}X_i(s) \mathrm{d}X_j(t)
$$

• Set $X(0) = 0$. Applying Fundamental Theorem of Calculus again:

$$
\sigma_{ij}=\int_0^1 X_i(t)X'_j(t)\mathrm{d}t
$$

• We obtain

$$
\sigma_{ij} + \sigma_{ji} = X_i(1) \cdot X_j(1)
$$

- In matrix notation, $S + S^{\mathcal{T}} = X(1) \cdot X(1)^{\mathcal{T}}$
- In particular, the symmetric matrix $S+S^\mathcal{T}$ has rank one!
- The skew-symmetric matrix $\mathit{S}-\mathit{S}^\mathcal{T}$ measures *deviation from linearity*:

$$
\sigma_{ij}-\sigma_{ji}=\int_0^1 (X_i(t)X'_j(t)-X_j(t)X'_i(t))\mathrm{d}t
$$

Lévy Area

The entry $\frac{1}{2}(\sigma_{ij}-\sigma_{ji})$ of the skew-symmetric matrix $\mathcal{S}-\mathcal{S}^{\mathcal{T}}$ is the area below the line minus the area above the line, known as a Lévy area:

Some History

- Introduced by Kuo Tsai Chen in the 1950s: K.-T. Chen: Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Annals of Mathematics 65 (1957) K.-T. Chen: Integration of paths $-$ a faithful representation of paths by noncommutative formal power series, Transactions AMS 89 (1958)
- \bullet The *signature* of a path X is the sequence of tensors

$$
\sigma(X) = (1, \sigma^{(1)}(X), \sigma^{(2)}(X), \sigma^{(3)}(X), \ldots, \sigma^{(n)}(X), \ldots)
$$

- Essential question: how much information does the signature reveal about the path X ?
- Signature determines paths! (modulo starting point, parametrization and tree-like excursion) B. Hambly and T. Lyons: Uniqueness for the signature of a path of bounded *variation and the reduced path group*, Annals of Mathematics 171 (2010)
- Signatures are central to the theory of rough paths, a revolutionary view on Stochastic Analysis.
- P. Friz and N. Victoir: Multidimensional Stochastic Processes as Rough Paths. Theory and Applications, Cambridge University Press, 2010. P. Friz and M. Hairer: A Course on Rough Paths. With an introduction to regularity structures, Universitext, Springer, Cham, 2014.
- They can be used to encode and model data! T. Lyons: Rough paths, signatures and the modelling of functions on streams, Proc. International Congress of Mathematicians 2014, Seoul I. Chevyrev and A. Kormilitzin: A primer on the signature method in machine learning, arXiv:1603.03788.

Recent developments

- C. Am., P. Friz and B. Sturmfels: Varieties of Signature Tensors, Forum of Mathematics, Sigma. Vol. 7, CUP (2019).
- M. Pfeffer, A. Seigal and B. Sturmfels: Learning Paths from Signature Tensors, SIMAX 40.2 (2019).
- **•** F. Galuppi: The Rough Veronese Variety, Linear Algebra and Applications 583 (2019).
- L. Colmenajero, F. Galuppi and M. Michalek: Toric geometry of path signature varieties, Advances in Applied Mathematics 121 (2020).
- C. Am., D. Lee and C. Meroni: Convex Hulls of Curves: Volumes and Signatures, Geometric Science of Information (2023).
- C. Bellingeri and R. Penaguiao: Discrete Signature Varieties, arXiv:2303.13377
- C. Am., F. Galuppi, A. Ríos, P. Santarsiero and T. Seynnaeve: Decomposing Tensor Spaces via Path Signatures, arXiv:2308.11571

 $x^4 + y^4 + z^4 - x^2 - y^2 - z^2 - x^2y^2 - x^2z^2 - y^2z^2 + 1 = 0$

Algebraic Varieties

- Solution set of a polynomial system of equations.
- $\mathcal{V} \subseteq \mathcal{K}^n$ (affine) *algebraic variety* \Rightarrow we can find a set of polynomials $\mathcal{F} \subset \mathbb{K}[s_1,\ldots,s_n]$ such that

$$
\mathcal{V} = \{a \in \mathbb{K}^n | f(a) = 0 \text{ for all } f \in \mathcal{F}\}
$$

- If polynomials are homogeneous \Rightarrow work in projective space \mathbb{P}^{n-1} .
- The *ideal* V associated to a variety V: set of all polynomials that vanish on V.
- Key Fact: a polynomial map $\sigma : \mathbb{K}^m \to \mathbb{K}^n$ induces naturally an algebraic variety that contains the *image* of σ .
- We are interested in projective varieties in tensor space \mathbb{P}^{d^k-1} that arise when X ranges over some nice families of paths.

Example of a Signature Variety

Let $d=2$ and consider quadratic paths in the plane \mathbb{R}^2 :

$$
X(t) = (x_{11}t + x_{12}t^2, x_{21}t + x_{22}t^2)^T = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \cdot \begin{pmatrix} t \\ t^2 \end{pmatrix}
$$

• Their kth signature tensors depend *polynomially* of degree k on x_{ii} . $\sigma^{(1)}(X)=(\sigma_1,\sigma_2)=\big(x_{11}+x_{12},x_{21}+x_{22}\big).$

$$
\sigma_{ij} = \int_0^1 \int_0^t (x_{i1} + 2x_{i2}s)ds (x_{j1} + 2x_{j2}t)dt
$$

\n
$$
= \int_0^1 (x_{i1}t + x_{i2}t^2) (x_{j1} + 2x_{j2}t) dt
$$

\n
$$
= \int_0^1 [x_{i1}x_{j1}t + (2x_{i1}x_{j2} + x_{i2}x_{j1})t^2 + 2x_{i2}x_{j2}t^3] dt
$$

\n
$$
= \frac{1}{2}x_{i1}x_{j1} + \frac{2}{3}x_{i1}x_{j2} + \frac{1}{3}x_{i2}x_{j1} + \frac{1}{2}x_{i2}x_{j2}.
$$

We can write $\sigma^{(2)}(X)$ as

$$
\frac{1}{2}\begin{pmatrix}x_{11}+x_{12}\\x_{21}+x_{22}\end{pmatrix}\begin{pmatrix}x_{11}+x_{12},\ x_{21}+x_{22}\end{pmatrix}\,\,+\,\,\frac{1}{6}\begin{pmatrix}x_{11}x_{22}-x_{12}x_{21}\end{pmatrix}\begin{pmatrix}0&1\\-1&0\end{pmatrix}.
$$

 \bullet

The variety of all such signature matrices is the solution set of the quadratic equation

$$
(\sigma_{12}+\sigma_{21})^2-4\sigma_{11}\sigma_{22} = 0.
$$

- This means that the image variety associated to signature matrices of polynomial paths of degree two in the plane is a *hypersurface* in \mathbb{P}^3 .
- We will denote this surface by $\mathcal{P}_{2,2,2}$. Its prime ideal generated by the quadric above is $P_{2,2,2}$.
- We want to study and *understand* these varieties!
- Question: What is the resulting variety if we restrict to linear paths?
- Answer: Symmetric matrices of rank 1: the classical Veronese variety!

The third signature $\sigma^{(3)}(X)$ is a 2 \times 2 \times 2-tensor $(d=2,k=3).$

$$
\begin{array}{rcl}\n\sigma_{111} &=& \frac{1}{6}(x_{11} + x_{12})^3 \\
\sigma_{112} &=& \frac{1}{6}(x_{11} + x_{12})^2(x_{21} + x_{22}) + \frac{1}{60}(5x_{11} + 4x_{12})(x_{11}x_{22} - x_{12}x_{21}) \\
\sigma_{121} &=& \frac{1}{6}(x_{11} + x_{12})^2(x_{21} + x_{22}) + \frac{1}{60}(2x_{12})(x_{11}x_{22} - x_{12}x_{21}) \\
\sigma_{211} &=& \frac{1}{6}(x_{11} + x_{12})^2(x_{21} + x_{22}) - \frac{1}{60}(5x_{11} + 6x_{12})(x_{11}x_{22} - x_{12}x_{21}) \\
\sigma_{122} &=& \frac{1}{6}(x_{11} + x_{12})(x_{21} + x_{22})^2 + \frac{1}{60}(5x_{21} + 6x_{22})(x_{11}x_{22} - x_{12}x_{21}) \\
\sigma_{212} &=& \frac{1}{6}(x_{11} + x_{12})(x_{21} + x_{22})^2 - \frac{1}{60}(2x_{22})(x_{11}x_{22} - x_{12}x_{21}) \\
\sigma_{221} &=& \frac{1}{6}(x_{11} + x_{12})(x_{21} + x_{22})^2 - \frac{1}{60}(5x_{21} + 4x_{22})(x_{11}x_{22} - x_{12}x_{21}) \\
\sigma_{222} &=& \frac{1}{6}(x_{21} + x_{22})^3\n\end{array}
$$

- Goal: find the polynomial relations among the eight entries of $\sigma^{(3)}(X)$
- Image signature variety is $P_{2,3,2}$ and its prime ideal is $P_{2,3,2}$.
- An instance of the general $P_{d,k,m}$ of polynomial paths of degree m.

Universal Varieties

- Recall: $X:[0,1]\rightarrow \mathbb{R}^d$ be a piecewise differentiable path.
- The k th signature of X is a tensor $\sigma^{(k)}(X)$ of order k and format $d \times d \times \cdots \times d$

$$
\sigma_{i_1i_2\cdots i_k} = \int_0^1 \int_0^{t_k} \cdots \int_0^{t_3} \int_0^{t_2} dX_{i_1}(t_1) dX_{i_2}(t_2) \cdots dX_{i_k}(t_k).
$$

- In other words, the k th signature tensor of a path X in \mathbb{R}^d is a point $\sigma^{(k)}(X)$ in the tensor space $(\mathbb{R}^d)^{\otimes k}$, and in projective space $\mathbb{P}^{d^k-1}.$
- Consider the set of signature tensors $\sigma^{(k)}(X)$ as X ranges over all smooth paths $X:[0,1]\rightarrow \mathbb{R}^d.$ This is called the universal variety

$$
\mathcal{U}_{d,k} \subset \mathbb{P}^{d^k-1}
$$

• It is an algebraic variety! To truly understand them one needs the tools of tensor algebras, Lie groups and free Lie algebras...

Computing Universal Varieties

Invariants of the ideal $U_{d,k}$ that defines the universal variety $\mathcal{U}_{d,k}$

Example $(d = k = 2)$

The universal variety $U_{2,2}$ of signature matrices consists of all 2×2 matrices whose symmetric part has rank ≤ 1 : $(\sigma_{12} + \sigma_{21})^2 = 4 \sigma_{11} \sigma_{22}$

We want to *understand* this table! Explain dimensions? degrees? generators?

Computing Dimension

The dimension of the universal variety $\mathcal{U}_{\boldsymbol{d},k}$ is much smaller than $\boldsymbol{d}^k-1.$

A word over the alphabet $\{1, 2, \ldots, d\}$ is Lyndon if it is strictly smaller in lexicographic order than all of its rotations, e.g. 11213.

Theorem

The dimension of the universal variety $\mathcal{U}_{d,k}$ equals the number of Lyndon words of length $\leq k$ over the alphabet $\{1, 2, \ldots, d\}$ (minus one).

$$
\lambda_{d,n} = \dim(\mathrm{Lie}^n(\mathbb{R}^d)) = \sum_{k=1}^n \sum_{\ell \, | \, k} \frac{\mu(\ell)}{k} d^{k/\ell}, \text{ where } \mu \text{ is the Möbius function.}
$$

Shuffle Relations

- \bullet The shuffle product of two words of lengths r and s is the sum over all $\binom{r+s}{s}$ s^{+s}) ways of interleaving the two words.
- **•** Examples:

 e_{12} μ $e_{34} = e_{1234} + e_{1324} + e_{1342} + e_{3124} + e_{3142} + e_{3412}$

 $e_3 \sqcup e_{134} = e_{3134} + 2e_{1334} + e_{1343}$, $e_{21} \sqcup e_{21} = 2e_{2121} + 4e_{2211}$

• These extend to the *shuffle linear forms* e_{1} $:= e_1 \sqcup e_1$, e.g.

 e_{12} \cdots 34 = e_{12} \sqcup e_{34} .

• Further extension: replace e by σ so that we obtain polynomial functions on tensor entries, e.g. σ_{21} ₁₁₁₂₁ := $2\sigma_{2121} + 4\sigma_{2211}$

Theorem

For a smooth path X , the following shuffle relation holds:

$$
\sigma_I(X)\sigma_J(X)=\sigma_{I\sqcup J}(X) \quad \text{for all words } I, J
$$

Example

$$
\sigma_1^2 = 2\sigma_{11}, \quad \sigma_1 \sigma_2 = \sigma_{12} + \sigma_{21}, \quad \sigma_2^2 = 2\sigma_{22}
$$

$$
\sigma_2\sigma_{21}=2\sigma_{221}+\sigma_{212},\quad \sigma_2\sigma_{22}=3\sigma_{222}
$$

Chen-Chow Theorem

 \circ Step *n* signature map:

$$
\sigma^{\leq n}(X) = (1, \sigma^{(1)}(X), \sigma^{(2)}(X), \sigma^{(3)}(X), \ldots, \sigma^{(n)}(X))
$$

• Key result attributed to Chow (1940) and Chen (1957):

Theorem (Chen-Chow)

Consider the image of the step n signature map applied to paths in \mathbb{R}^d :

 $\mathcal{G}^n(\mathbb{R}^d) \;=\; \left\{\, \sigma^{\leq n}(X) \;:\; \, X: [0,1] \to \mathbb{R}^d \, \textit{any smooth path} \,\right\} \,.$

then it is an algebraic variety (known as the step-n free Lie group) in the space of truncated tensors defined by the shuffle relations

$$
\sigma_I(P)\sigma_J(P)=\sigma_{I\sqcup J}(P) \quad \text{for all words } I, J \text{ with } |I|+|J| \leq n.
$$

Example $(d = k = 2)$

The universal variety $U_{2,2}$ of signature matrices is defined by $(\sigma_{12}+\sigma_{21})^2=\sigma_{1\sqcup2}\sigma_{1\sqcup2}=\sigma_{1\sqcup2\sqcup1\sqcup2}=\sigma_{1\sqcup1\sqcup2\sqcup2}=\sigma_{1\sqcup1}\sigma_{2\sqcup2}=4\sigma_{11}\sigma_{22}$

Polynomial Signature Varieties

- Look at nice family of paths whose signatures live inside $\mathcal{U}_{d,k}$: polynomial paths.
- The coordinates of $X:[0,1]\to\mathbb{R}^d$ are polynomials of degree $\leq m.$

$$
X_i(t) = x_{i1}t + x_{i2}t^2 + x_{i3}t^3 + \cdots + x_{im}t^m.
$$

- Each one is represented by a real $d \times m$ matrix $X = (x_{ii})$.
- The x_{ij} are homogeneous coordinates on the projective space $\mathbb{P}^{dm-1}.$ • We have the (rational) map

$$
\sigma^{(k)}: \mathbb{P}^{dm-1} \dashrightarrow \mathbb{P}^{d^k-1}, X \mapsto \sigma^{(k)}(X).
$$

- The closure of the image of this map is the *polynomial signature* variety $P_{d,k,m}$.
- The homogeneous prime ideal $P_{d,k,m}$ of this variety in $\mathbb{R}[\sigma^{(k)}]$ is the polynomial signature ideal.

Example: $P_{3,3,2}$

The third signature variety $\mathcal{P}_{3,3,2}$ for quadratic paths in \mathbb{R}^3 lies in the universal variety $U_{3,3}$ for $3 \times 3 \times 3$ tensors.

- Recall: U_3 ₃ has dimension 13, degree 24, and cut out by 81 quadrics.
- $\mathcal{P}_{3,3,2}$ has dimension 5, degree 90, and cut out by 162 quadrics in $\mathbb{P}^{25}!$
- The linear span of $\mathcal{P}_{3,3,2}$ is a hyperplane $\mathbb{P}^{25}.$ It is defined by

 $\sigma_{123} - \sigma_{132} - \sigma_{213} + \sigma_{231} + \sigma_{312} - \sigma_{321} = 0.$

• This linear form is the signed volume of the convex hull of a path.

Piecewise Linear Signature Varieties

- Look at nice family of paths whose signatures live inside $\mathcal{U}_{d,k}$: piecewise linear paths.
- Paths $X:[0,1]\rightarrow \mathbb{R}^d$ that are piecewise linear with m pieces.
- Their steps are the vectors $\,X_1,\ldots,X_m\in\mathbb{R}^d$.

$$
t \mapsto X_1 + \cdots + X_{i-1} + (mt - i + 1) \cdot X_i
$$
 where $\frac{i-1}{m} \le t \le \frac{i}{m}$

• They are also represented by a real $d \times m$ matrix $X = (x_{ii})$. We again have a (rational) map

$$
\sigma^{(k)}: \mathbb{P}^{dm-1} \dashrightarrow \mathbb{P}^{d^k-1}, X \mapsto \sigma^{(k)}(X).
$$

- The closure of the image of this map is the *piecewise linear signature* variety $\mathcal{L}_{d,k,m}$.
- The homogeneous prime ideal $L_{d,k,m}$ of this variety in $\mathbb{R}[\sigma^{(k)}]$ is the piecewise linear signature ideal.

Piecewise-linear path parametrization

 \bullet By Chen (1954), the *m*-step signature of a piecewise linear path X is given by the tensor product of tensor exponentials:

$$
\sigma^{\leq n}(X) = \exp(X_1) \otimes \exp(X_2) \otimes \cdots \otimes \exp(X_m) \in \mathcal{T}^n(\mathbb{R}^d).
$$

• As a corollary, the kth signature tensor of X equals

$$
\sigma^{(k)}(X) = \sum_{\tau} \prod_{\ell=1}^m \frac{1}{|\tau^{-1}(\ell)|!} \cdot X_{\tau(1)} \otimes X_{\tau(2)} \otimes X_{\tau(3)} \otimes \cdots \otimes X_{\tau(k)}
$$

(sum is over weakly increasing $\tau : \{1, 2, \ldots, k\} \rightarrow \{1, 2, \ldots, m\}$). • For example, for $k = 3$ we have

$$
\sigma^{(3)}(X) = \frac{1}{6} \cdot \sum_{i=1}^m X_i^{\otimes 3} + \frac{1}{2} \cdot \sum_{1 \leq i < j \leq m} \left(X_i^{\otimes 2} \otimes X_j + X_i \otimes X_j^{\otimes 2} \right) \ + \sum_{1 \leq i < j < l \leq m} X_i \otimes X_j \otimes X_k.
$$

Theorem (Am., Friz, Sturmfels 2019)

Let $k = 2$ and $m \le d$. For $m \le d$ we have the equality

$$
\mathcal{P}_{d,2,m}=\mathcal{L}_{d,2,m}
$$

- We denote $\mathcal{M}_{d,m} := \mathcal{P}_{d,2,m} = \mathcal{L}_{d,2,m}$.
- Any $d\times d$ matrix $\mathcal{S}=\sigma^{(2)}(X)$ is uniquely the sum of a symmetric matrix and a skew-symmetric matrix:

$$
S = P + Q
$$
 where $P = \frac{1}{2}(S + S^{T}), Q = \frac{1}{2}(S - S^{T})$

The $\binom{d+1}{2}$ $\binom{+1}{2}$ entries ρ_{ij} of P and $\binom{d}{2}$ $\binom{d}{2}$ entries q_{ij} of Q serve as coordinates on the space \mathbb{P}^{d^2-1} of matrices $\mathcal{S} = (\sigma_{ij}).$

Theorem (Am., Friz, Sturmfels 2019)

For each d and m, the following subvarieties of \mathbb{P}^{d^2-1} coincide:

- **1** Signature matrices of piecewise linear paths with m segments.
- ² Signature matrices of polynomial paths of degree m.
- \bullet Matrices $S = P + Q$, with P symmetric and Q skew-symmetric, such that $\text{rank}(P) \leq 1$ and $\text{rank}([P \ Q]) \leq m$.

For each fixed d, these varieties $\mathcal{M}_{d,m}$ form a nested family:

 $\mathcal{M}_{d,1} \subset \mathcal{M}_{d,2} \subset \mathcal{M}_{d,3} \subset \cdots \subset \mathcal{M}_{d,d} = \mathcal{M}_{d,d+1} = \cdots$

For $m \leq d$, $\mathcal{M}_{d,m}$ is irreducible of dimension $md-(\frac{m}{2})-1$. For $m \geq d$, $\mathcal{M}_{d,m} = \mathcal{U}_{d,2}$ the universal variety.

Example $(d = 3, m = 2)$

The variety $\mathcal{M}_{3,2}$ has dimension 4 and degree 6 in $\mathbb{P}^8.$ It is cut out by the 2 \times 2 minors of the 3 \times 3 symmetric matrix $P = (p_{ii})$ and the 3 \times 3 minors of

$$
[P Q] = \begin{bmatrix} p_{11} & p_{12} & p_{13} & 0 & q_{12} & q_{13} \\ p_{12} & p_{22} & p_{23} & -q_{12} & 0 & q_{23} \\ p_{13} & p_{23} & p_{33} & -q_{13} & -q_{23} & 0 \end{bmatrix}.
$$

$$
\sigma_{ii} = p_{ii}, \ \sigma_{ij} = p_{ij} + q_{ij} \text{ and } \sigma_{ji} = p_{ij} - q_{ij} \text{ for } 1 \leq i < j \leq d.
$$

Invariants of the ideal $M_{d,m}$ that defines the variety of signature matrices $\mathcal{M}_{d,m}$.

Chains of Inclusions

If $m = 1$ then X is a linear path and $\mathcal{L}_{d,k,1} = \mathcal{P}_{d,k,1}$.

• This is the classical Veronese variety of symmetric tensors of rank 1.

Theorem (Am., Friz, Sturmfels 2019)

We have the following chains of inclusions between the kth Veronese variety and the kth universal variety:

$$
\nu_k(\mathbb{P}^{d-1}) = \mathcal{L}_{d,k,1} \subset \mathcal{L}_{d,k,2} \subset \mathcal{L}_{d,k,3} \subset \cdots \subset \mathcal{L}_{d,k,M} = \mathcal{U}_{d,k} \subset \mathbb{P}^{d^k-1}
$$

$$
\nu_k(\mathbb{P}^{d-1}) = \mathcal{P}_{d,k,1} \subset \mathcal{P}_{d,k,2} \subset \mathcal{P}_{d,k,3} \subset \cdots \subset \mathcal{P}_{d,k,M'} = \mathcal{U}_{d,k} \subset \mathbb{P}^{d^k-1}
$$

Here M and M' are constants that depend only on d and k .

Conjecture

$$
M = M' = \left\lceil \frac{\lambda_{d,k}}{d} \right\rceil
$$

For $m \geq M$, we have $\mathcal{P}_{d,k,m} = \mathcal{L}_{d,k,m} = \mathcal{U}_{d,k}$.

Piecewise linear vs. Polynomial

We have seen that $P_{d,2,m} = \mathcal{L}_{d,2,m}$ The case $k = 2$ does not generalize! For $k \geq 3$ we have $\mathcal{L}_{2,k,2} \neq \mathcal{P}_{2,k,2}$ in \mathbb{P}^{2^k-1} .

Example $(d = 2, k = 3, m = 3)$

The ideal $U_{2,3} = L_{2,3,3} = P_{2,3,3}$ is generated by six quadrics. Both $P_{2,3,2}$ and $L_{2,3,2}$ are generated by three quadrics modulo $U_{2,3}$. For $P_{2,3,2}$ these three generators can be written as

$$
(2\beta_1 + \gamma_1)^2 - \mathbf{10}(\alpha_2\gamma_1 + 3\alpha_1\gamma_2),
$$

\n
$$
(2\beta_1 + \gamma_1)(2\beta_2 + \gamma_2) + \mathbf{10}(\alpha_3\gamma_1 + \alpha_2\gamma_2),
$$

\n
$$
(2\beta_2 + \gamma_2)^2 - \mathbf{10}(\alpha_3\gamma_2 + 3\alpha_4\gamma_1).
$$

Corresponding generators of $L_{2,3,2}$: replace the coefficient 10 by 9.

Invariants of the ideals $P_{d,k,m}$, $L_{d,k,m}$

Recall: Universal Varieties

Invariants of the ideal $U_{d,k}$ that defines the universal variety $\mathcal{U}_{d,k}$

We got a little taste of Applied Algebraic Geometry and Nonlinear Algebra. For related cool topics, check out the SIAGA and the Algebraic Statistics (MSP) journals:

谢谢!

