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Plan for the talk :
I - Usual theory of transversal index
II - Calculus on filtered manifolds
III - Foliated filtered manifolds and transversal index
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Origin : Atiyah (’71). Action of a compact Lie group and invariant
differential operators (e.g. equivariant Dirac operator). The ellipticity
condition can only be checked on

T ∗
GM := {(x , ℓ), ∀ξ ∈ g, ℓ(Xξ(x)) = 0}

where ξ → Xξ denotes the associated infinitesimal action of the Lie algebra
g.
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Connes (’85) Replace group actions by (regular) foliations. Index in
K 0(C∗(Hol(F )) (K-homology group). Various extensions :

• Hilsum, Skandalis (’87) wrong way maps between two foliations
• Connes, Moscovici (’98) computation of a Chern character in cyclic

homology
• Baldare, Benameur (’20) group acting on a foliation
• Kasparov (’16), Hochs, Wang (’20) extension of Atiyah’s ideas to

KK-theory
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(M, F ) foliated manifold, M⧸F often has a bad topology.

Image : D. Cannarsa
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Definition
The holonomy groupoid of (M, F ) is Hol(F ) ⇒ M. Two elements are
composable if they are on the same leaf and arrows between x and y are
germs of leafwise diffeomorphisms on transversal manifolds around x and y

Hol(F ) is a Lie groupoid.
Convolution algebra C∞

c (Hol(F )), (maximal) C∗-algebraic completion
C∗(Hol(F )) instead of C∞

c (M⧸F ) and C0(M⧸F ).

Exemple
If F is given by a fibration M → B (with connected fibers) then
C∗(Hol(F )) is Morita equivalent to C0(B)
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Hol(F ) acts on the normal bundle TM⧸F . Identify
(TM⧸F

)∗
= F ⊥ :

Definition (Connes)
Let P ∈ Ψm(M) a pseudodifferential operator, its transverse principal
symbol σ⊥(P) is the restriction of its principal symbol to F ⊥.
P is transversally elliptic if ∀ξ ∈ F ⊥ \ 0, σ⊥(P)(x , ξ) ̸= 0 and σ⊥(P) is
Hol(F )-invariant.

The invariance means that if (x , y , γ) ∈ Hol(F ) then
σ⊥(y , ξ) = σ⊥(x , dγT ξ).
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Theorem (Connes (’85))
Let P : Γ(M, E+) → Γ(M, E−) be an order 0 pseudodifferential operator.
Let Q : Γ(M, E−) → Γ(M, E+) be such that σ⊥(Q) = σ⊥(P)−1 then(

L2(M, E+ ⊕ E−),
(

0 Q
P 0

))

defines a K-homology class of C∗(Hol(F )) that only depends on the
homotopy class of σ⊥(P) among transversally elliptic symbols.
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Definition
A filtered manifold is a manifold M with the data of subbundles
H1 ⊂ · · · H r = TM such that

∀i , j
[
Γ(H i), Γ(H j)

]
⊂ Γ(H i+j)

Exemple
Contact manifolds, CR manifolds...
∆ = X 2 + Y 2 + f ∂z on R3 with X , Y ∈ X(R3), [X , Y ] = ∂z .

Pseudodifferential calculus developped to have X ∈ Γ(H i) of order i . Gives
a noncommutative symbolic calculus.
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tHM = H1 ⊕ H2
⧸H1 ⊕ · · · TM⧸H r−1

The Lie bracket of vector fields induces a Lie bracket on tHM which
restricts to the fiber. tHM is a family of nilpotent Lie algebras.
THM the corresponding family of Lie groups. Inhomogeneous dilations
(δλ)λ>0 on THM given on tHM via

δλ(x1, · · · , x r ) = (λx1, · · · , λr x r ).
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Definition
A symbol of order m ∈ Z in THM is a distribution u ∈ D′(THM) satisfying

u is properly supported i.e. π : supp(u) → M is a proper map
u is transversal to π

∀λ ∈ R
∗
+, δλ∗u − λmu ∈ C∞

p (G)
Sm(G) denotes the set of these distributions and S∗(G) =

⋃
m∈Z

Sm(G).

Same symbolic calculus property as in the usual case with H1 = TM
(product, continuity, compacity...)
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Definition
A symbol σ ∈ Sm(THM) is Rockland at x ∈ M if for every
π ∈ T̂H,xM \ {triv}, π(σ) is injective on H∞

π . σ is Rockland if it is
Rockland at every point x ∈ M.

Remark
In the non-filtered case Rockland condition is the usual ellipticity.

Theorem (Rockland (...))
σ ∈ Sm(THM) is Rockland iif there exists ρ ∈ S−m(THM) such that
σ ∗ ρ − 1, ρ ∗ σ − 1 ∈ S−∞(THM) = C∞

p (THM)

By "quantizing" (tangent groupoid) we can obtain pseudodifferential
operators from symbols, denote by Ψm

H (M) the associated space of
pseudodifferential operators of order m in the filtered calculus.
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What we need :
Noncommutative analog of TM⧸F
Replacement for transversal ellipticity

The setting is the following :

Definition
A foliated filtered manifold is a manifold M with the data of subbundles
H0 ⊂ H1 ⊂ · · · H r = TM with the condition on the Lie brackets :

∀i , j
[
Γ(H i), Γ(H j)

]
⊂ Γ(H i+j)
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Consequences of the definition :
H0 is a foliation
The action Hol(H0) ↷ TM⧸H0 preserves each H i

⧸H0

tH/H0M = tHM⧸H0 = H1
⧸H0 ⊕ H2

⧸H1 ⊕ · · · ⊕ TM⧸H r−1 is a bundle of
nilpotent Lie algebras
Hol(H0) ↷ tH/H0M preserving the bundle of Lie algebras structure
Hol(H0) ↷ TH/H0M preserving the bundle of Lie groups structure
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There is a quotient map THM → TH/H0M compatible with the
inhomogeneous dilations. Space of transverse symbols Sm(TH/H0M) are
defined analogously as for THM. There is a canonical push-forward map

Sm(THM) → Sm(TH/H0M)

Definition
A transverse symbol is transversally Rockland if it satisfies the Rockland
condition for TH/H0M and if it is Hol(H0) equivariant.
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Crash-Course in KK-theory :

A, B : C∗-algebras. KK (A, B) abelian group of "generalized morphisms"
from A to B.

KK (C, A) = K 0(A) K-theory group (projections/abstract vector bundles)
KK (A,C) = K0(A) K-homology group (abstract elliptic operators)

Kasparov product ⊗B : KK (A, B) × KK (B, C) → KK (A, C). For
A = C(X ), E → X vector bundle, D : C∞(X ) → C∞(X ) we have
[E ] ⊗ [D] ∈ KK (C,C) ∼= Z is equal to Ind(DE ).

Invariance under Morita equivalence : we can replace
C∗(M × M) = K(L2(M)) by C.
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Theorem (C. (’22))
If σ ∈ S0(TH/H0M) is transversally Rockland then it defines a class

[σ] ∈ KKHol(H0)(C0(M), C∗(TH/H0M))

Theorem (C. (’22))
If P ∈ Ψ0

H(M) has its transverse principal symbol transversally Rockland
then it defines a class

[P] ∈ KK (C∗(Hol(H0)),C) = K 0(C∗(Hol(H0)))
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Exemple
For H0 = 0 we would get [σ] ∈ KK (C0(M), C∗(TM)) (on a compact
manifold we can refine to KK (C, C∗(TM)) = K 0(C0(T ∗M))),
[P] ∈ KK (C0(M),C)

Exemple
If H0 corresponds to a fibration π : M → B with B filtered. P is
transversally Rockland iif π∗(P) is Rockland and [P] is the usual class in
K 0(C(B)).
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Exemple
If Γ ↷ M is a smooth action of a discrete group we can recover a
Γ-equivariant index from the transversal index results.

Exemple
(C. ’23) Transverse Bernstein-Gelfand-Gelfand sequences of operators on
foliated manifolds with transverse parabolic geometry (e.g. Γ\G/P for
space of leaves).
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Denote by

jHol(H0) : KKHol(H0)(A, B) → KK (Hol(H0) ⋉ A, Hol(H0) ⋉ B)

the descent homomorphism.
Let Thol

H M = Hol(H0)⋉TH/H0M × {0}
⊔

M × M ×R
∗. The groupoid Thol

H M
induces a canonical E -theory class

Indhol
H ∈ E (C∗(Hol(H0) ⋉ TH/H0M),C)

Under amenability assumptions it can be obtained as a class in KK-theory.
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Theorem (C. (’22))
If P ∈ Ψ0

H(M) has its transverse principal symbol σ⊥
H (P) transversally

Rockland then it defines a class

[P] ∈ KK (C∗(Hol(H0)), C∗(Thol
H M|[0;1]))

and we have the relations

[P] ⊗ [ev0] = jHol(H0)([σ⊥
H (P)]), [P] ⊗ [ev1] = [P]

In particular if Hol(H0) is amenable then we get

[P] = jHol(H0)([σ⊥
H (P)]) ⊗ Indhol

H
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Idea : Extend P to a family of operators P ∈ E ′
r (THM).

Use morphism φ : TM
H → T

Hol
H M to get φ∗(P) ∈ E ′

r (THol
H M).

φ∗(P) has non-trivial singularities, analysis in local coordinate charts ( local
computation of a Kasparov product).
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