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Classical theory

⊚ Spacetime: 2-D Minkowski space M2 = (R2, η), with signature (+,−). Light-cone
coordinates (τ, ξ) are expressed in terms of cartesian coordinates (t, x⃗) by

τ =
1

2
(x⃗ + t), ξ =

1

2
(x⃗ − t).

⊚ Configurations: φ ∈ E (M2) := Γ∞(M2 ← E = M2 × R) = C∞(M2).

⊚ Lagrangian: horizontal 2-form on J1E with scalar density given by

L = L0+Lint =
1

2

[
(∂tφ)

2 − (∂x⃗φ)
2
]
+cos(aφ) ←→ L = φτφξ+cos(aφ), a > 0.

⊚ Euler-Lagrange equation: also called sine-Gordon equation

−□φ− a sin(aφ) = −
(
∂2
t − ∂2

x⃗

)
φ− a sin(aφ) = 0 ←→ φξτ − a sin(aφ) = 0.

w Remark: Subscripts τ and ξ indicate partial derivation.



Conservation laws

ô Fact: From the theory of integrable systems, it is well-known that the sine-Gordon
model admits an infinite number of on-shell conserved currents.

Definition

An on-shell conserved current is (in this setting) a horizontal 1-form ρ = ρ1dτ + ρ2dξ on JkE , for
some k ∈ N, such that

d
(
(jkφ)∗ρ

)
= 0, (1)

whenever φ is a solution of the sine-Gordon equation. Equation (1) is called an on-shell
conservation law.
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Bäcklund transformations

Definition

φ′ ∈ E (M2) is obtained from a given φ ∈ E (M2) by a Bäcklund transformation Bα of parameter
α ∈ R, in notation φ′ = Bαφ, if φ

′ satisfies the parametric system of first order PDEs:

1

2
(φ′ + φ)ξ =

1

α
sin

[a
2
(φ′ − φ)

]
(2)

1

2
(φ′ − φ)τ = α sin

[a
2
(φ′ + φ)

]
. (3)

w Remark: Bäcklund transformations relate solutions of the sine-Gordon equation!

Definition

φ′ ∈ E (M2) is obtained from a given φ ∈ E (M2) by an extended Bäcklund transformation B̂α of
parameter α ∈ R, in notation φ′ = B̂αφ, if φ

′ satisfies (2).



The higher conserved currents

Extended Bäcklund transformations can be interpreted as “Lagrangian symmetries”. The
application of Noether’s Theorem yields a family of on-shell conserved currents.

Proposition

The components of the on-shell conserved currents sN = sN1 dτ + sN2 dξ, N ∈ N, have the form:

sN2 = 2
N∑

µ=0

(−1)µ
(a
2

)2(µ+1) ∑
n0,...,n2(N−µ)≥0

n0+···+n2(N−µ)=2(µ+1)

1·n1+···+2(N−µ)·n2(N−µ)=2(N−µ)

An0
1 · · ·A

n2(N−µ)

2(N−µ)+1

n0! · · · n2(N−µ)!
.



The higher conserved currents

Proposition

sN1 = −

2
N∑

β=1

(−1)β
(a
2

)2β ∑
n1,...,n2N≥0

n1+···+n2N=2β
1·n1+···+2N·n2N=2N

An1
1 · · ·A

n2N
2N

n1! · · · n2N !

 cos(aφ)

−

2
N−1∑
β=0

(−1)β+1
(a
2

)2β+1 ∑
n1,...,n2N≥0

n1+···+n2N=2β+1
1·n1+···+2N·n2N=2N

An1
1 · · ·A

n2N
2N

n1! · · · n2N !

 sin(aφ),

where the coefficient of sin(aφ) is defined only for N ≥ 1.



A notion of degree

{
s01 = −2 cos(aφ),
s02 = φ2

ξ ,

{
s11 = φ2

ξ cos(aφ) +
2
aφξξ sin(aφ),

s12 = 1
4φ

4
ξ +

2
a2
φξφξξξ +

1
a2
φ2
ξξ.

Definition

Consider φ ∈ C∞(M2). Assign a degree to the k-th derivative w.r.t. ξ, by:

deg(φkξ) = k , ∀k ∈ N.

Extend to monomials in the derivatives of φ by additivity. A polynomial in the derivatives of φ is
homogeneous of degree d if all its terms have degree d .

Proposition

The components of sN have homogeneous degrees deg(sN1 ) = 2N and deg(sN2 ) = 2(N + 1).
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The general philosophy of pAQFT

A classical field theory is essentially described by its Lagrangian L = L0 + Lint.

free classical fields
L0 ⇝“geometry/kinematics”

(A, ·, { , },∗ )

λ //

ℏ
��

interacting classical fields
L0 + λLint ⇝“dynamics”

(A[[λ]], ·, { , },∗ )

?

��
free quantum fields
(A[[ℏ]], ⋆, [ , ]⋆,∗ )

λ // interacting quantum fields
(A[[ℏ, λ]], ⋆, [ , ]⋆,∗ )

⊚ ℏ-deformation −→ (Formal) Deformation quantization.

⊚ λ-deformation −→ Perturbation.



(Formal) Deformation quantization

free classical fields
A = {F : E (M2)→ C, µcausal}

ℏ
��

free quantum fields
A[[ℏ]] = {

∑∞
n=0 Anℏn |An ∈ A}

⊚ Classical product: commutative
∀F ,G ∈ A → F · G ∈ A
(F · G )[φ] = F [φ]G [φ], φ ∈ E (M2).

⊚ Star product: non-commutative
∀F ,G ∈ A → F ⋆ G ∈ A[[ℏ]]

F ⋆ G −→
ℏ→0

F · G .

Microlocal analysis: imposing special requirements on the wavefront sets, define

(F ⋆ G )[φ] =
∞∑
n=0

ℏn

n!

〈
F (n)[φ], (W⊗n) ∗ G (n)[φ]

〉
, W ∈ D ′(M2).

ô Fact: Deformation of Poisson ∗-algebras (A[[ℏ]], ⋆, [ , ]⋆,∗ ) −→
ℏ→0

(A, ·, { , },∗ ).



Perturbation

free classical fields
A = {F : E (M2)→ C, µcausal}

ℏ
��

λ // interacting classical fields
A[[λ]] = {

∑∞
n=0 Anλ

n |An ∈ A}

?
��

free quantum fields
A[[ℏ]] = {

∑∞
n=0 Anℏn |An ∈ A}

λ

S-matrix
// interacting quantum fields

A[[ℏ, λ]]

⊚ S-matrix: S(Lint) ∈ A[[λ]]((ℏ)) encodes the notion of
“Heisenberg interaction picture” F (φret) = (F )ret(φ)
in a perturbative way, by Bogoliubov formula:

F → (F )ret =
ℏ
i

d

dκ

(
S(λLint)

⋆−1⋆S(λLint+κF )
)∣∣∣

κ=0
.



Interaction picture: time-ordered products

The time-ordered products are multilinear maps Tn : A⊗n → A[[ℏ]], that satisfy
certain (physically motivated) axioms, and are used to define:

S(λLint) = 1 +
∞∑
n=1

1

n!

(
iλ

ℏ

)n

Tn

(
L⊗n
int

)
.

If Lint is a regular field, then Tn

(
L⊗n
int

)
= Lint ⋆∆F · · · ⋆∆F Lint︸ ︷︷ ︸

n−times

, where

(F ⋆∆F G )[φ] =
∞∑
n=0

ℏn

n!

〈
F (n)[φ], (∆F )⊗n ∗ G (n)[φ]

〉
.

\ Problem: What happens if Lint is not a regular field?



The renormalization problem

For a general interaction Lagrangian Lint ∈ A, one could naively try to compute

Ťn

(
Lint(x1)⊗ · · · ⊗ Lint(xn)

)
“ = ” Lint(x1) ⋆∆F · · · ⋆∆F Lint(xn)︸ ︷︷ ︸

n−times

↓
(∆F )n12(x1 − x2)(∆

F )n13(x1 − x3) · · · (∆F )n23(x2 − x3) · · ·

These products are defined, by Hörmander’s sufficient criterion, only on:

M̌n
2 = { (x1, . . . , xn) ∈Mn

2 | xi ̸= xj , ∀1 ≤ i < j ≤ n } .

ô Fact: Renormalization is the inductive (on n ≥ 1) construction of Tn

(
L⊗n
int

)
:

⊚ by inductive hypotesis (and axioms), Ťn

(
L⊗n
int

)
is defined on Mn

2 \∆n;

⊚ to complete the inductive step, Ťn is extended to the whole Mn
2.



Scaling degree of distributions

Definition

The scaling degree of t ∈ D ′(Rd \ {0}) in 0 is: sd(t) = inf { r ∈ R | limρ↓0 ρ
r t(ρx) = 0 }.

Theorem (Brunetti, Fredenhagen, Epstein, Glaser,...)

Let t0 ∈ D ′(Rd \ { 0 }). Then:

⊚ If sd(t0) < d ⇒ ∃! extension t ∈ D ′(Rd) s.t. sd(t) = sd(t0).

⊚ If d ≤ sd(t0) <∞ ⇒ There are several extensions t ∈ D ′(Rd) s.t. sd(t) = sd(t0).
Given a particular extension t̄, the general extension t is of the form

t = t̄ +
∑

|a|≤sd(t0)−d

Ca∂
aδ, Ca ∈ C.



Renormalizability of interacting fields

Unrenormalized retarded functionals are given by Bogoliubov formula, on Mn+1
2 \∆n+1:

ˇ(F )ret =
ℏ
i

d

dκ

(
Š(λLint)

⋆−1 ⋆ Š(λLint + κF )
)∣∣∣

κ=0
=

∞∑
n=0

λn

n!ℏn
Řn(L

⊗n
int ,F ).

The unrenormalized retarded products Řn are then inductively extended to Mn+1
2 , ∀n ≥ 1.

Definition

Consider ˇ(F )ret as above. Let N(Lint,F , ·) : N→ N be defined as: N(Lint,F , 0) = 0,

N(Lint,F , n) = max
{
0, sd

(
Řn(L

⊗n
int ,F )

)
− 2n − N(Lint,F , n − 1) + 1

}
, n ≥ 1.

The unrenormalized retarded functional ˇ(F )ret is:

(a) renormalizable by power counting if N(Lint,F , ·) is bounded;

(b) super-renormalizable by power counting if the number of non-vanishing values of
N(Lint,F , ·) is finite.



The sine-Gordon model in pAQFT

⊚ Interaction Lagrangian:

Lint = cos(aφ) =
1

2

(
e iaφ + e−iaφ

) pAQFT−→ 1

2

(
Va + V−a

)
∈ A.

⊚ Vertex operators: Va :
(
g ∈ C∞

c (M2), φ ∈ E (M2)
)
7→ Va(g)[φ] =

∫
M2

e iaφg .

⊚ S-matrix:

S(λLint) = 1 +
∞∑
n=1

1

n!

(
iλ

2ℏ

)n

Tn(V±a ⊗ · · · ⊗ V±a︸ ︷︷ ︸
n−times

) ∈ A[[λ]]((ℏ)).

⊚ Observables: components of sN = (sN1 )dτ + (sN2 )dξ act in the following way

sN1,2 :
(
g ∈ C∞

c (M2), φ ∈ E (M2)
)
7→ sN1,2(g)[φ] =

∫
M2

sN1,2(φ) g .
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First main result

We consider the unrenormalized retarded components

(šN1,2)ret =
ℏ
i

d

dκ

(
Š(λLint)

⋆−1 ⋆ Š(λLint + κsN1,2)
)∣∣∣

κ=0
=

∞∑
n=0

λn

n!ℏn
Řn

(
L⊗n
int , s

N
1,2

)
.

Theorem

The scaling degree of the unrenormalized retarded products above is uniformly bounded by the
degree of the components. More specifically, for every n ≥ 1 it holds:

sd
(
Řn

(
L⊗n
int , s

N
1

))
= deg(sN1 ) = 2N,

sd
(
Řn

(
L⊗n
int , s

N
2

))
= deg(sN2 ) = 2(N + 1).



Super-renormalizability

Corollary

The unrenormalized retarded components (šN1,2)ret are super-renormalizable by power counting.

� Idea: The uniform bound on the scaling degree of the retarded products implies:

N(Lint, s
N
1 , n) = sd

(
Řn(L

⊗n
int , s

N
1 )

)
− 2n − N(Lint, s

N
1 , n − 1) + 1

= 2N − 2n − N(Lint, s
N
1 , n − 1) + 1 ≤ 2N − 2n + 1,

and

N(Lint, s
N
2 , n) = sd

(
Řn(L

⊗n
int , s

N
2 )

)
− 2n − N(Lint, s

N
2 , n − 1) + 1

= 2(N + 1)− 2n − N(Lint, s
N
2 , n − 1) + 1 ≤ 2(N + 1)− 2n + 1.
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Gaussian states and summability of the S-matrix

Definition

Fix a configuration φ ∈ E (M2). The Gaussian state ωφ is the evaluation map:

ωφ : A[[ℏ, λ]]→ C[[ℏ, λ]]
F 7→ ωφ(F ) = F [φ].

Theorem (Bahns, Rejzner)

Under proper technical conditions, there exists a constant C = C (γ, f ), f ∈ E (Mn
2), such that for

all n, the expectation value of the n-th order contribution to the S-matrix of sine-Gordon model in
the state ωφ satisfies the following inequality:

|ωφ (Sn(Lint)(f ))| = |Sn(Lint)(f )[φ]| ≤
[ n2 ]C

n(
[ n2 ]!

)1− 1
γ



Second main result

Consider the renormalized retarded components (sN1,2)ret =
∑∞

n=0 λ
n 1

n!ℏn
Rn(L

⊗n
int , s

N
1,2)︸ ︷︷ ︸

Rn(Lint,s
N
1,2)

.

Theorem

Under the same hypothesis as above, there exist two pairs of constants Ks1
γ,f ,aℏ,N , C

s1
γ,f and

Ks2
γ,f ,aℏ,N , C

s2
γ,f such that for all n ≥ 1, the expectation values ωφ

(
Rn(Lint, s

N
1,2)(f )

)
satisfy the

inequalities:

∣∣ωφ

(
Rn(Lint, s

N
1 )(f )

)∣∣ = ∣∣∣Rn(Lint, s
N
1 )(f )[φ]

∣∣∣ ≤ Ks1
γ,f ,aℏ,N

(n + 1)2n2N
(
Cs1γ,g

)n([
n
2

]
!
)1− 1

γ

,

∣∣ωφ

(
Rn(Lint, s

N
2 )(f )

)∣∣ = ∣∣∣Rn(Lint, s
N
2 )(f )[φ]

∣∣∣ ≤ Ks2
γ,f ,aℏ,N

[
n
2

]
n2N

(
Cs2γ,f

)n([
n
2

]
!
)1− 1

γ

,



Some future research directions

⊚ Conservation and involutivity: Classically, the higher currents are conserved on-shell.
Also, they are in involution w.r.t. the Peierl’s bracket. In pAQFT, can
renormalization be done in such a way to preserve conservation and involutivity?

� Idea: Adopt the point of view of Bahns and Wrochna in the analysis of the
extensions of distributions satisfying a given set of PDEs.

⊚ Symmetries: Is it possible to formulate the mechanism of production of the
(classical) higher currents in a more general mathematical framework?

� Idea: Noether’s Theorem for actions of Lie groupoids of symmetries,
multisymplectic geometry . . .



“The art of doing mathematics consists in
finding that special case which contains all

the germs of generality.”

David Hilbert


