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2-parameters quantization of GL.(2)

We know from [N.Jing-M.Liu, 2014] that the 2-parameters
quantum coordinate algebra Func(GL s(2)) is generated by ¢,
det:] with relations:

tiitip = r~ THatyy, tity = Staityy, byt = r oty

tiolp = Shotip, bl = rStitiz, tiito — oty = (S—1)b1t2,

detr”gdet;; == det;; detr,s == 1, detr’st,‘j - (rs)l_‘/t,j(detr’s),

det, s = ti1top — Stortip = tptiy — rlartip = tiitao — 1™ tatps.



How to do 2-parameters quantization of SL,(2)?

If we consider this 2-parameters quantum algebra from
GL,s(2) to SL; s(2), then we have det, s = 1.

Replacing it into the relation det; stj = (rs)'~/t;(det; s), we get
r = s, that is, 2-parameter quantum algebra Fun(GL, s(2)) is
degenerated into one parameter quantum algebra Fun(GL,(2)).

It means that this method of 2-parameters quantization
Fun(GL, s(2)) of Fun(GL,(2)) has no effect on the special
quantum linear group SL,(2).

We will finish this task via the so-called 2nd-stage quantization
of quantum cluster algebras.



Definition of quantum cluster algebras
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@ For n< me N, denote T, the n-regular tree with vertices
t € Th. Let A(f) = (A\j)mxm be a skew-symmetric integer
matrix.




Definition of quantum cluster algebras

@ For n< me N, denote T, the n-regular tree with vertices
t € Th. Let A(f) = (A\j)mxm be a skew-symmetric integer
matrix.

o Let {g}", be the standard basis for Z"™.
Define a skew-symmetric bilinear form A; : Z™ x Z™ — Z
satisfying that

m m
/\t(e, f) = Z aibj/\t(eiv ej) = Z a"binj’

ij=1 ij=1

m m
where e = ) aje;, f = ) bje;.
i=1 j=1
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@ Give a set of variables
X(t) = {X, -, XFr, X1 ... XOm}

which is called the extended cluster at ¢, where
X;',i € [1,n] are called the cluster variables at t while
X€. i € [n+ 1, m] are called frozen variables.




Definition of quantum cluster algebras

@ Give a set of variables
X(t) = {X, -, XFr, X1 ... XOm}

which is called the extended cluster at ¢, where
X;',i € [1,n] are called the cluster variables at t while
X€. i € [n+ 1, m] are called frozen variables.

@ For the rational Laurent polynomial ring Q[qi%], define a
Q[qi%]—algebra 7¢ generated by X(t) satisfying the
following relations:

XeXT = qzhiXTT vije 1, m]

We call 7; the quantum torus at ¢.
Denoted by .7, the skew-field of fractions of 7.




Definition of quantum cluster algebras

@ Ingeneral, Ve € Z™, let Xf denote the variable
corresponding to e.

@ Due to the bilinearity of A; and e generated by
{ej|li € [1, m]}, we obtain that




Definition of quantum cluster algebras

o Let

By B(t)nxn _
B(t) B (81(t)(m—n)><n> B (bij)mxn

be an integer matrix called the extended exchange
matrix at ¢, such that 3 diagonal matrix

ad
D =
dn
di € Z,Vi € [1, n] satisfying
B)'ANt)=(D ©O), )

by this, B(t) is a skew-symmetrizable matrix.

Then B(t) is called the exchange matrix at t and (B(t), A)
is called a compatible pair.

—




Definition of quantum cluster algebras

Definition

[BZ] (a)Give a fixed ty € T,, denote () = (X(t), B(t), A(f))
an initial quantum seed.

(b)Let t € T, be an adjacent vertex of fy, i.e. t — fy is an edge in
T, labeled k € [1, n]. Let bx(t) be the k-th column of B(ty).
Define the mutation y at direction k satisfying that

Xtek _ Mk(Xtik) _ Xt;ek+[bk(fo)]+ + XgekJF[*bk(tO)]Jr

where [a]; = max {a,0} for a € R. Then,
X(1) = (X { X Hu {X}

B(t) = ux(B(t))

satisfying that




Definition of quantum cluster algebras

bi(t) — 4 —~PLi(fo) if i=kor j=ik
i) = { bjj(to) + sgn(bix(to))[bix (fo) bij(to)]+ otherwise

And, A(t) = (Aj(t))mxm where

~Ngllo) + S bu(@)l o) T i=k

—\ii(t) if j=k
Nij(to) otherwise

Aj(t) =

Also, write A(t) = ux(A(f))-




Definition of quantum cluster algebras

[BZ] Given seeds X(t) = (X(t), B(t),A(t)) at t € Tp, if £(t) and
Y (t') can do mutation to each other for any adjacent pair of
vertices t — t' in Tj, then the Q[qi%]—subalgebra of F4

generated by all variables in |J X(t) is called the quantum
teTh
cluster algebra A;(X) or simply A, associated with X

Here, the matrix A(t) at t is called the first deformation matrix
of Ag.

V.
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Compatible Poisson structures on Ay
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@ For a quantum cluster algebra Aq with Poisson structure
{—,—}, acluster X = (Xi,---, Xin) is said to be
log-canonical if {Xj, Xj} = w;X®", where

wj € Qlg*2],Vi,j € [1,m].
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Compatible Poisson structures on Ay

@ For a quantum cluster algebra Aq with Poisson structure
{—,—}, acluster X = (Xi,---, Xin) is said to be
log-canonical if {Xj, Xj} = w;X®", where

1 2 g
wj € Qg*2],vi,j € [1,m].

@ A Poisson structure {—, —} on A, is called compatible
with Aq if all clusters in A4 are log-canonical with respect to
{_7 _}'

@ Q = (wj)mxm is called the Poisson matrix of the
extended cluster X.

@ In the following, we always assume Poisson structures are
nontrivial, that is, w;; # 0 for some /.



Mutation of Poisson matrices on A,

Lemma 1

If a Poisson structure {—, —} is compatible on Ay with
{Xi, X} = wjXeTe Vi je[1,m], then V) # k, where j € [1,m]
while k € [1, n], we have

ot S ([bils ) Ni—h; P+ 32 Aglbud
H = Z (wtjq% Z g~ e It) _wquz W ey T
by >0 h=1 (3)
[—bul+ f;([_b,-] —8i)Ni—hX; I+ f) Nji[—bix]
_ E (w[jq% Z q= ik |+ — Ok ) Aji lt)—wquz K Y kl+

by <0 h=1




Mutation of Poisson matrices on A,

Lemma 1 (continue)

when X’ is log-canonical with respect to {—, —}, we will have
mutation of Q at direction k

q;()‘jk_én%[btkh)\jt)H

, if i=k
YiT Y - if j=k
wij otherwise

where H denotes the left or right side of (3).




Compatible Poisson structures on A

The following is an equivalent condition for a poisson structure
to be compatible with a quantum cluster algebra.

If X is log-canonical with a nontrivial Poisson structure {—, —}
and {X;, X;} = w;X®"€ forany i,j € [1, m], then

pk(X) = X' = {X/} is log-canonical with {—, —}

if and only if the following conditions hold for any
jelt,m.,ke1,n],k#j:

@ Forany u e [1,m],if by # 0, then 24 qf A q2 Aju
w/ q2>‘kj q2 A

o Forany u,v € [1, m], if bubyk # O, then 24 qi/_qw

q2"v—q2 Ajv

o Z wtjbtk =0.
Aj=0




2nd-stage quantization of A,

Denote [a]q = fjjf € N(g*") for g € C.

Let (X(t), B(t), A(t)) be a seed of a quantum cluster algebra A,
att e Tpand {—, —} a compatible poisson bracket on Aj,.

Let Q(t) be the Poisson matrix of A4 associated to the seed at .
Define an m x m skew-symmetric matrix W(t) = (W) as

WA \i £ 0
W,-,-{ M @

w,-j )\,'/':0

The matrix W(t) is called the 2nd-stage deformation matrix
of Agatt e Th.
2w, LEWNARREEFTQL), TE5E—HETHARZLE.



2nd stage quantization of A,

Conversely, from a 2nd-stage deformation matrices
W(t) = (Wj) of Aq, we can obtain the Poisson matrices Q(t) of
a Poisson structure of Aq via the following:

Wi 3

VV,'/' >‘ij =0.

In fact, any one of W(t), A(f),2(t) can be determined by
other two ones.



2nd-stage quantization of Aq

Definition

The triple (B(t), A(t), Q(t)) is called compatible if (B(t), A(t)) is
a compatible pair for a quantum cluster algebra A; and Q(f) is a
Poisson matrix for a Poisson structure compatible with A,

associated to (B(t), A(t)).

| A

Theorem

Let (X(t), B(t),\(t)) be a seed of a quantum cluster algebra Aq
att e T,and {—, —} a compatible Poisson structure on A,.
Then the 2nd-stage deformation matrix W(t) satisfies that

B()"W(t) = c(D 0),

that is, (B(t), W(t)) is a compatible pair,
where ¢ € Z[qi%] and D is the skew-symmetrizer of B(t).




2nd-stage quantization of A,

Given a compatible triple (B(t), A(t), Q(t)) assigned to vertex f,
as usual we define the cluster at f € T to be a set of variables

Y(t) = {YZ, Y&, Ve Yo .. yeml.

where e; € Z™ are the standard basis.



2nd-stage quantization of A,

For p,q € C, let T be the Z[p*z, g*2]-algebra generated by
Y (t) satisfying the relation

Yoy = pzWig2 Ny PO i j e [1, m. (5)

We call 7; the ll-quantum torus at {, or say, the
(p, 9)-quantum torus.

Denote by Fp q the skew-field of fractions of 7;. Thus, 7; is a
subalgebra of Fp 4.

We call Z;(t) = (Y(t), B(t), A(t), (1)) a ll-quantum seed at t
for a compatible triple (B(t), A(t), Q(t)).



2nd-stage quantization of Aq

Let >(t) and (") be two ll-quantum seeds at ¢ and t'
respectively. Denote by b; the i-column of B(t).
Let t and t’ be adjacent vertices by an edge labeled k in T,.

We say that ¥ (t) is obtained from X ;(t) by a mutation in

direction k if _ )
Lp(t) = pk(Zu(t)) = (e(Y(8), b (B()), b (A(D)), 12k (2(2))),
where

Y(t') = u(Y (1) = (Y(O\ YD) UL (Y
yﬁk _ :u’k(Ytek) _ Y;ek+[bk(t)]+ + Yt*ek+[*bk(t)]+

while the mutations of matrices B(t), A(t) and Q(t) are the
same as those we introduced before.




2nd-stage quantization of A,

The 2nd-stage deformation matrix W(t) is determined by A(t)
and Q(t) in the ll-quantum seed X ;(t) = (Y(f), B(t), A(t), Q(t)).

t)i




2nd-stage quantization of A,

The 2nd-stage deformation matrix W(t) is determined by A(t)
and Q(t) in the ll-quantum seed X ;(t) = (Y(f), B(t), A(t), Q(t)).

@ As the mutation of (1), ux(Zy(t)) = (Y, B, N, Q) is also
a ll-quantum seed.

t)i




2nd-stage quantization of A,

The 2nd-stage deformation matrix W(t) is determined by A(t)
and Q(t) in the ll-quantum seed X ;(t) = (Y(f), B(t), A(t), Q(t)).

@ As the mutation of ¥ (t), u(Zu(t)) = (Y, B, N, ) is also
a ll-quantum seed.

@ Assume W(t) = (Wj(t)), W(t') = (Wj(t)) and
W(t") = nuk(W(t)), then

t)i

—Wig(t) + /f;[b,k(t)]w!//,-(t) iti=k# )

w(f) + é[b/k(tm Wity ifj=k+#i
Wi(t) - otherwise

Wj(t') =

This means the formula of the mutation of W(t).




2nd-stage quantization of Aq

Definition
Assign ll-quantum seeds X j/(t) to every vertex t in T,.

Denote by Ap g = Ap (X)) the Z[p*2, g*2]-subalgebra of Fp 4
generated by J Y/(t), which is defined as

teTh

the 2nd-stage quantization of Aj.
We call Ay (X)) the 2nd-stage quantized cluster algebra

associated to T as a Z[p*2, g*2]-subalgebra of e




2nd-stage quantization of Aq

Observation 1

Assume a quantum cluster algebra Aq with the exchange
matrices B(t). Then, we have the following one-by-one
correspondence:

{Compatible Poisson structures of Ay}
+— {2nd-stage Quantizations of Aq}
= {2nd stage quantized cluster algebras A, 4 }
via
. {Poisson matrices of A;} «— {2nd-stage deformation
matrices of Ap q}.




2nd-stage quantization of Aq

Observation 2

Therefore, we have the following two ways of quantization
induced by a triple (B, A, W):

B,A) (B, A, W)
—_—
w&\@ (4,4) A, Apg
>
Q9%
+ L
A o e Al
— 2
p%o) Z[g" 2]
2
I‘QOtQ 3 .
& (B,W) (B, W, ah)
(A, W) -y
P q.p

Figure: Two ways of quantization




In case Aq without coefficients

In the sequel, assume Aq is without coefficients.
In this case, the formula (2) becomes to that

B(t)"A(t) = Dnxn (6)

Due to this, we obtain the invertibility of B(t) and A(t) for any t,
which will be needed in our following proof. This is the reason
we need the condition for A4 to be without coefficients.



Compatible Poisson structures on A, without

coefficients

Assume Aq is a quantum cluster algebra without coefficients
and (X, B, A\) is its initial seed.

Suppose B has decomposition B= By | | Bz | |---| | Bs, where
B; is indecomposable.

Then as a Poisson algebra, Aq has a decomposition

Aq = Aq(1) D Ag(2) D - - D Aqg(5)-

Then, we have:

Let Ay be a quantum cluster algebra without coefficients.

Then a Poisson structure {—, —} on Aq is compatible with Ay if
and only if it is piecewise standard on Ag.




2nd-stage quantization of A, without coefficients

Therefore without loss of generality, in the following we can
assume Aq is indecomposable. Then in a compatible triple,

Q-a [Am]q% 0 o Pan gz
[Am]q% [)\nzlq% e 0

where ais an integer. Then Wj; = a\; for any i,j € [1, n].
Therefore in this case,

YEYY = ()Y vij e (1.l

So, the 2nd-stage quantized cluster algebra Ap 4 is essentially a
quantum cluster algebra, too.



2nd-stage quantization of A, without coefficients

Hence, in general, for a (decomposable) quantum cluster
algebra Ag, its 2nd-stage quantization A, 4 can be
decomposable into a direct sum of some quantum cluster

algebras as Z[(paq)i%]-subalgebras.

So, this 2nd-stage quantization A, 4 is essentially a sum of
some 1st-stage quantum cluster algebras.

In this case, we say the 2nd-stage quantization A, ; to be
trivial.

There is no non-trivial 2nd-stage quantization for a quantum
cluster algebra without coefficients.




non-trivial 2nd-stage quantization

The quantum coordinate algebra (or say, quantum matrix
algebra) Func(SLq(2)) is generated by a, b, ¢, d with relations:

ab=q 'ba, ac=q 'ca, db= qbd,
dc = qed, bc = cb,ad — da= (g~ — q)bc

and
ad—q 'bc=1,

where 0 # g € C is a parameter.




non-trivial 2nd-stage quantization

Example (continuing)
Func(SLy(2)) has a quantum cluster structure:

Let P = C[b, c]. In the 1-regular tree Ty: fye ol , We

~ —_—~

assign the quantum seed X (f) = (X(%), B(f), A(fy)) on the
vertex to, where X(t) = {a}, X = {b,c}, X{' = a,
ngzxezzb,xgs:)(eszc;

0 -1 -1\ _ 0
/\(to)<1 0 0 ),B(to)(1).
1.0 0 1

Then Func(SLg(2)) = Aq(X(t))-




non-trivial 2nd-stage quantization

Example (continuing)

By definition, it can be calculated that the 2nd-stage
deformation matrix W(f) must be of the form

0o - wy —Wo
W(tO) =W 0 0 )
Wo 0 0

where wy + w, # 0. The 2nd-stage quantization induced by
(B(ty), N(fo), W(lp)) is trivial if and only if W(fp) = hA(fp) for
some constant h, which means wy = wo. Therefore, when

wy + wo # 0 and wy # we, the obtained 2nd-stage quantization
Ap.q of Func(SLg(2)) is non-trivial.




non-trivial 2nd-stage quantization

Example (continuing)
In this case, the relations of quantum tori are

XoX7 = paW-Ere) gat(ee) xetei v j=1,23x=to,t.

So the 2nd-stage quantized cluster algebra A, 4 of

Func(SLy(2)) can be realized as the C[qi%]-algebra generated
by a, b, ¢, d satisfying the relations as follows:

ab=r""ba, ac=s""'ca, db=rbd, dc = scd,
bc = cb, ad — da =[(rs)"z — (rs)z]bc

and 1
ad — (rs)"2bc =1,

where r = p"iq, s = p"2q.




non-trivial 2nd-stage quantization

So, we can say that the 2nd-stage quantization A, 4(SL(2))
provides a way to realize two-parameters quantization of the
special quantum linear group SL4(2),

as a parallel supplement to the method of two parameters
quantization of the general quantum linear group.



Other examples of non-trivial 2nd-stage quantizations

Example A

Let ¥ = (X, B, A) be an arbitrary quantum seed of a quantum
cluster algebra A;. Then there is a cluster extension

¥’ = (X', B, \') of X such that the cluster extension A, of A
admits a non-trivial 2nd-stage quantization Ay, .

| \

Example B from oriented Riemann surfaces

Let T be a triangulation of a surface with n marked points,
where n > 0 is an odd number. Then,

A compatible pair (Br, A7) can be constructed satisfying that
p~(A7) = Ar for any v and T’ is obtained from T by flipping at

.

Following this, (BT, A1) induces a quantum cluster algebra Aq
admitting a non-trivial 2nd-stage quantization Ag p.




Thanks for your attention!



