On 2nd-stage quantization of quantum cluster algebras

Fang Li (Zhejiang University)

Joint work with Jie Pan

Algebraic, Analytic and Geometric Structures Emerging from Quantum Field Theory Sichuan Univ, Chengdu, Mar. 12, 2024

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

We know from [N.Jing-M.Liu, 2014] that the 2-parameters quantum coordinate algebra $Fun_{\mathbb{C}}(GL_{r,s}(2))$ is generated by t_{ij} , $det_{r,s}^{\pm 1}$ with relations:

$$t_{11}t_{12} = r^{-1}t_{12}t_{11}, \quad t_{11}t_{21} = st_{21}t_{11}, \quad t_{21}t_{22} = r^{-1}t_{22}t_{21},$$

$$t_{12}t_{22} = st_{22}t_{12}, \quad t_{12}t_{21} = rst_{21}t_{12}, \quad t_{11}t_{22} - t_{22}t_{11} = (s-r)t_{21}t_{12},$$

$$det_{r,s}det_{r,s}^{-1} = det_{r,s}^{-1}det_{r,s} = 1, \quad det_{r,s}t_{ij} = (rs)^{i-j}t_{ij}(det_{r,s}),$$

$$det_{r,s} = t_{11}t_{22} - st_{21}t_{12} = t_{22}t_{11} - rt_{21}t_{12} = t_{11}t_{22} - r^{-1}t_{12}t_{21}.$$

If we consider this 2-parameters quantum algebra from $GL_{r,s}(2)$ to $SL_{r,s}(2)$, then we have $det_{r,s} = 1$.

Replacing it into the relation $det_{r,s}t_{ij} = (rs)^{i-j}t_{ij}(det_{r,s})$, we get $r = s^{-1}$, that is, 2-parameter quantum algebra $Fun(GL_{r,s}(2))$ is degenerated into one parameter quantum algebra $Fun(GL_r(2))$.

It means that this method of 2-parameters quantization $Fun(GL_{r,s}(2))$ of $Fun(GL_r(2))$ has no effect on the special quantum linear group $SL_r(2)$.

We will finish this task via the so-called 2nd-stage quantization of quantum cluster algebras.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- For n ≤ m ∈ N, denote T_n the n-regular tree with vertices t ∈ T_n. Let Λ(t) = (λ_{ij})_{m×m} be a skew-symmetric integer matrix.
- Let {e_i}^m_{i=1} be the standard basis for Z^m.
 Define a skew-symmetric bilinear form Λ_t : Z^m × Z^m → Z satisfying that

$$\Lambda_l(e, f) = \sum_{i,j=1}^m a_i b_j \Lambda_l(e_i, e_j) = \sum_{i,j=1}^m a_i b_j \lambda_{ij},$$

ere $e = \sum_{i=1}^m a_i e_i, f = \sum_{i=1}^m b_j e_j.$

- For n ≤ m ∈ N, denote T_n the n-regular tree with vertices t ∈ T_n. Let Λ(t) = (λ_{ij})_{m×m} be a skew-symmetric integer matrix.
- Let {e_i}^m_{i=1} be the standard basis for Z^m.
 Define a skew-symmetric bilinear form Λ_t : Z^m × Z^m → Z satisfying that

$$\Lambda_t(e, f) = \sum_{i,j=1}^m a_i b_j \Lambda_t(e_i, e_j) = \sum_{i,j=1}^m a_i b_j \lambda_{ij},$$

here $e = \sum_{i=1}^m a_i e_i, f = \sum_{j=1}^m b_j e_j.$

whe

- For n ≤ m ∈ N, denote T_n the n-regular tree with vertices t ∈ T_n. Let Λ(t) = (λ_{ij})_{m×m} be a skew-symmetric integer matrix.
- Let {e_i}^m_{i=1} be the standard basis for Z^m.
 Define a skew-symmetric bilinear form Λ_t : Z^m × Z^m → Z satisfying that

$$\Lambda_t(\boldsymbol{e}, f) = \sum_{i,j=1}^m a_i b_j \Lambda_t(\boldsymbol{e}_i, \boldsymbol{e}_j) = \sum_{i,j=1}^m a_i b_j \lambda_{ij},$$

Here $\boldsymbol{e} = \sum_{i=1}^m a_i \boldsymbol{e}_i, f = \sum_{j=1}^m b_j \boldsymbol{e}_j.$

• Give a set of variables

$$ilde{X}(t) = \left\{X_t^{e_1}, \cdots, X_t^{e_n}, X^{e_{n+1}}, \cdots, X^{e_m}
ight\}$$

which is called the **extended cluster** at *t*, where $X_t^{e_i}, i \in [1, n]$ are called the **cluster variables** at *t* while $X^{e_i}, i \in [n + 1, m]$ are called **frozen variables**.

For the rational Laurent polynomial ring Q[q^{±1/2}], define a Q[q^{±1/2}]-algebra T_t generated by X(t) satisfying the following relations:

$$X_t^{e_i}X_t^{e_j} = q^{rac{1}{2}\lambda_{ij}}X_t^{e_i+e_j}, \forall i,j \in [1,m]$$

We call \mathcal{T}_t the **quantum torus** at t. Denoted by \mathscr{F}_q the skew-field of fractions of \mathcal{T}_{t_0}

Give a set of variables

$$ilde{X}(t) = \left\{X^{e_1}_t, \cdots, X^{e_n}_t, X^{e_{n+1}}, \cdots, X^{e_m}
ight\}$$

which is called the **extended cluster** at *t*, where $X_t^{e_i}, i \in [1, n]$ are called the **cluster variables** at *t* while $X^{e_i}, i \in [n + 1, m]$ are called **frozen variables**.

For the rational Laurent polynomial ring Q[q^{±1/2}], define a Q[q^{±1/2}]-algebra T_t generated by X(t) satisfying the following relations:

$$X_t^{e_i}X_t^{e_j} = q^{rac{1}{2}\lambda_{ij}}X_t^{e_i+e_j}, \forall i,j \in [1,m]$$

We call \mathcal{T}_t the **quantum torus** at t. Denoted by \mathscr{F}_q the skew-field of fractions of \mathcal{T}_{t_0}

• Give a set of variables

$$ilde{X}(t) = \left\{X^{e_1}_t, \cdots, X^{e_n}_t, X^{e_{n+1}}, \cdots, X^{e_m}
ight\}$$

which is called the **extended cluster** at *t*, where $X_t^{e_i}, i \in [1, n]$ are called the **cluster variables** at *t* while $X^{e_i}, i \in [n + 1, m]$ are called **frozen variables**.

For the rational Laurent polynomial ring Q[q^{±1/2}], define a Q[q^{±1/2}]-algebra T_t generated by X̃(t) satisfying the following relations:

$$X_t^{e_i}X_t^{e_j} = q^{rac{1}{2}\lambda_{ij}}X_t^{e_i+e_j}, \forall i,j \in [1,m]$$

We call \mathcal{T}_t the **quantum torus** at *t*. Denoted by \mathscr{F}_q the skew-field of fractions of \mathcal{T}_{t_0} .

- In general, ∀e ∈ Z^m, let X^e_t denote the variable corresponding to e.
- Due to the bilinearity of Λ_t and *e* generated by $\{e_i | i \in [1, m]\}$, we obtain that

$$X_t^e X_t^f = q^{\frac{1}{2}\Lambda_t(e,f)} X_t^{e+f}$$
(1)

<ロト <四ト <注入 <注下 <注下 <

Let

$$ilde{B}(t) = egin{pmatrix} B(t)_{n imes n} \ B_1(t)_{(m-n) imes n} \end{pmatrix} = (b_{ij})_{m imes n}$$

be an integer matrix called the **extended exchange matrix** at *t*, such that \exists diagonal matrix

$$D = \begin{pmatrix} d_1 & & \\ & \ddots & \\ & & d_n \end{pmatrix}$$

 $d_i \in \mathbb{Z}, \forall i \in [1, n]$ satisfying

$$\tilde{\boldsymbol{B}}(t)^{\mathsf{T}} \boldsymbol{\Lambda}(t) = \begin{pmatrix} \boldsymbol{D} & \boldsymbol{O} \end{pmatrix}_{n \times m}$$
(2)

by this, B(t) is a skew-symmetrizable matrix.

Then B(t) is called the **exchange matrix** at *t* and $(\tilde{B}(t), \Lambda)$ is called a **compatible pair**.

Definition

[BZ] (a)Give a fixed $t_0 \in T_n$, denote $\Sigma(t_0) = (\tilde{X}(t_0), \tilde{B}(t_0), \Lambda(t_0))$ an initial quantum seed.

(b)Let $t \in T_n$ be an adjacent vertex of t_0 , i.e. $t - t_0$ is an edge in T_n labeled $k \in [1, n]$. Let $b_k(t_0)$ be the *k*-th column of $\tilde{B}(t_0)$. Define the **mutation** μ_k at direction *k* satisfying that

$$X_t^{m{e}_k} = \mu_k(X_{t_0}^{m{e}_k}) = X_{t_0}^{-m{e}_k + [b_k(t_0)]_+} + X_{t_0}^{-m{e}_k + [-b_k(t_0)]_+}$$

where $[a]_+ = max \{a, 0\}$ for $a \in \mathbb{R}$. Then,

$$egin{aligned} ilde{X}(t) &= (ilde{X}(t_0) ig ig \{X^{m{e}_k}_{t_0}ig \}) \cup ig \{X^{m{e}_k}_tig \}\,. \ & ilde{B}(t) = \mu_k(ilde{B}(t_0)) \end{aligned}$$

satisfying that

$$b_{ij}(t) = \begin{cases} -b_{ij}(t_0) & \text{if } i = k \text{ or } j = k \\ b_{ij}(t_0) + sgn(b_{ik}(t_0))[b_{ik}(t_0)b_{kj}(t_0)]_+ & \text{otherwise} \end{cases}$$

And, $\Lambda(t) = (\lambda_{ij}(t))_{m \times m}$ where

$$\lambda_{ij}(t) = \begin{cases} -\lambda_{kj}(t_0) + \sum_{l=1}^{m} [b_{lk}(t_0)]_+ \lambda_{lj}(t_0) & \text{if } i = k \\ -\lambda_{ji}(t) & \text{if } j = k \\ \lambda_{ij}(t_0) & \text{otherwise} \end{cases}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Also, write $\Lambda(t) = \mu_k(\Lambda(t_0))$.

[BZ] Given seeds $\Sigma(t) = (\tilde{X}(t), \tilde{B}(t), \Lambda(t))$ at $t \in T_n$, if $\Sigma(t)$ and $\Sigma(t')$ can do mutation to each other for any adjacent pair of vertices t - t' in T_n , then the $\mathbb{Q}[q^{\pm \frac{1}{2}}]$ -subalgebra of \mathscr{F}_q generated by all variables in $\bigcup_{t \in T_n} \tilde{X}(t)$ is called the **quantum** cluster algebra $A_q(\Sigma)$ or simply A_q associated with Σ .

Here, the matrix $\Lambda(t)$ at *t* is called the **first deformation matrix** of A_q .

有意思的是,这个矩阵 $\Lambda(t)$ 恰是量子丛代数 A_q 的对应的非量子丛 代数A在t-点的Poisson代数结构的Poisson矩阵.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

而这给我们做二阶量子化提供了思路.

Definition

- For a quantum cluster algebra A_q with Poisson structure $\{-, -\}$, a cluster $X = (X_1, \dots, X_m)$ is said to be **log-canonical** if $\{X_i, X_j\} = \omega_{ij} X^{e_i + e_j}$, where $\omega_{ij} \in \mathbb{Q}[q^{\pm \frac{1}{2}}], \forall i, j \in [1, m].$
- A Poisson structure {−, −} on A_q is called **compatible** with A_q if all clusters in A_q are log-canonical with respect to {−, −}.
- $\Omega = (\omega_{ij})_{m \times m}$ is called the **Poisson matrix** of the extended cluster *X*.
- In the following, we always assume Poisson structures are nontrivial, that is, $\omega_{ij} \neq 0$ for some *i*, *j*.

・ロン・(語)・ (語)・ (語)・ (語)

Definition

- For a quantum cluster algebra A_q with Poisson structure $\{-,-\}$, a cluster $X = (X_1, \cdots, X_m)$ is said to be **log-canonical** if $\{X_i, X_j\} = \omega_{ij}X^{e_i+e_j}$, where $\omega_{ij} \in \mathbb{Q}[q^{\pm \frac{1}{2}}], \forall i, j \in [1, m].$
- A Poisson structure {−, −} on A_q is called **compatible** with A_q if all clusters in A_q are log-canonical with respect to {−,−}.
- $\Omega = (\omega_{ij})_{m \times m}$ is called the **Poisson matrix** of the extended cluster *X*.
- In the following, we always assume Poisson structures are nontrivial, that is, $\omega_{ij} \neq 0$ for some *i*, *j*.

・ロト・日本・日本・日本・日本・日本

Definition

- For a quantum cluster algebra A_q with Poisson structure $\{-,-\}$, a cluster $X = (X_1, \cdots, X_m)$ is said to be **log-canonical** if $\{X_i, X_j\} = \omega_{ij}X^{e_i+e_j}$, where $\omega_{ij} \in \mathbb{Q}[q^{\pm \frac{1}{2}}], \forall i, j \in [1, m].$
- A Poisson structure {-, -} on A_q is called compatible with A_q if all clusters in A_q are log-canonical with respect to {-, -}.
- $\Omega = (\omega_{ij})_{m \times m}$ is called the **Poisson matrix** of the extended cluster *X*.
- In the following, we always assume Poisson structures are nontrivial, that is, $\omega_{ij} \neq 0$ for some *i*, *j*.

Definition

- For a quantum cluster algebra A_q with Poisson structure $\{-,-\}$, a cluster $X = (X_1, \cdots, X_m)$ is said to be **log-canonical** if $\{X_i, X_j\} = \omega_{ij}X^{e_i+e_j}$, where $\omega_{ij} \in \mathbb{Q}[q^{\pm \frac{1}{2}}], \forall i, j \in [1, m].$
- A Poisson structure {-, -} on A_q is called compatible with A_q if all clusters in A_q are log-canonical with respect to {-,-}.
- Ω = (ω_{ij})_{m×m} is called the **Poisson matrix** of the extended cluster X.
- In the following, we always assume Poisson structures are nontrivial, that is, $\omega_{ij} \neq 0$ for some *i*, *j*.

Definition

- For a quantum cluster algebra A_q with Poisson structure $\{-,-\}$, a cluster $X = (X_1, \cdots, X_m)$ is said to be **log-canonical** if $\{X_i, X_j\} = \omega_{ij}X^{e_i+e_j}$, where $\omega_{ij} \in \mathbb{Q}[q^{\pm \frac{1}{2}}], \forall i, j \in [1, m].$
- A Poisson structure {-, -} on A_q is called compatible with A_q if all clusters in A_q are log-canonical with respect to {-,-}.
- Ω = (ω_{ij})_{m×m} is called the **Poisson matrix** of the extended cluster X.
- In the following, we always assume Poisson structures are nontrivial, that is, ω_{ij} ≠ 0 for some *i*, *j*.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Lemma 1

If a Poisson structure $\{-, -\}$ is compatible on A_q with $\{X_i, X_j\} = \omega_{ij}X^{e_i+e_j}, \forall i, j \in [1, m]$, then $\forall j \neq k$, where $j \in [1, m]$ while $k \in [1, n]$, we have

$$H = \sum_{b_{ik}>0} (\omega_{ij} q^{\frac{1}{2}} \sum_{h=1}^{[b_{ik}]_{+}} q^{\sum_{i=t}^{m} ([b_{ik}]_{+} - \delta_{ik})\lambda_{ji} - h\lambda_{jt}}) - \omega_{kj} q^{\frac{1}{2}\lambda_{kj} + \sum_{i=k+1}^{m} \lambda_{ji} [b_{ik}]_{+}}$$

$$= \sum_{b_{ik}<0} (\omega_{ij} q^{\frac{1}{2}} \sum_{h=1}^{[-b_{ik}]_{+}} q^{\sum_{i=t}^{m} ([-b_{ik}]_{+} - \delta_{ik})\lambda_{ji} - h\lambda_{jt}}) - \omega_{kj} q^{\frac{1}{2}\lambda_{kj} + \sum_{i=k+1}^{m} \lambda_{ji} [-b_{ik}]_{+}}$$
(3)

<ロト <四ト <注入 <注下 <注下 <

Lemma 1 (continue)

when X' is log-canonical with respect to $\{-,-\}$, we will have mutation of Ω at direction k

$$\omega_{ij}' = \begin{cases} q^{\frac{1}{2}(\lambda_{jk} - \sum_{t=1}^{m} [b_{tk}] + \lambda_{jt})} H & \text{if } i = k \\ -\omega_{ki}' & \text{if } j = k \\ \omega_{ij} & \text{otherwise} \end{cases}$$

《曰》 《聞》 《臣》 《臣》 三臣 …

where H denotes the left or right side of (3).

The following is an equivalent condition for a poisson structure to be compatible with a quantum cluster algebra.

Lemma 3

If X is log-canonical with a nontrivial Poisson structure $\{-,-\}$ and $\{X_i, X_j\} = \omega_{ij}X^{e_i+e_j}$ for any $i, j \in [1, m]$, then $\mu_k(X) = X' = \{X'_i\}$ is log-canonical with $\{-,-\}$

if and only if the following conditions hold for any $j \in [1, m], k \in [1, n], k \neq j$:

• For any
$$u \in [1, m]$$
, if $b_{uk} \neq 0$, then $\frac{\omega_{uj}}{\omega_{kj}} = \frac{q^{\frac{1}{2}\lambda_{uj}} - q^{\frac{1}{2}\lambda_{uj}}}{q^{\frac{1}{2}\lambda_{kj}} - q^{\frac{1}{2}\lambda_{uj}}}$

• For any
$$u, v \in [1, m]$$
, if $b_{uk}b_{vk} \neq 0$, then $\frac{\omega_{uj}}{\omega_{vj}} = \frac{q^{\frac{1}{2}\lambda_{uj}} - q^{\frac{1}{2}\lambda_{uj}}}{q^{\frac{1}{2}\lambda_{vj}} - q^{\frac{1}{2}\lambda_{uj}}}$

•
$$\sum_{\lambda_{tj}=0} \omega_{tj} b_{tk} = 0.$$

Denote
$$[a]_q=rac{q^a-q^{-a}}{q-q^{-1}}\in\mathbb{N}(q^{\pm 1})$$
 for $q\in\mathbb{C}.$

Let $(\tilde{X}(t), \tilde{B}(t), \Lambda(t))$ be a seed of a quantum cluster algebra A_q at $t \in \mathbb{T}_n$ and $\{-, -\}$ a compatible poisson bracket on A_q .

Let $\Omega(t)$ be the Poisson matrix of A_q associated to the seed at t.

Define an $m \times m$ skew-symmetric matrix $W(t) = (W_{ij})$ as

$$W_{ij} = \begin{cases} \frac{\omega_{ij}\lambda_{ij}}{[\lambda_{ij}]_{q^2}} & \lambda_{ij} \neq \mathbf{0} \\ \omega_{ij} & \lambda_{ij} = \mathbf{0} \end{cases}$$
(4)

The matrix W(t) is called the **2nd-stage deformation matrix** of A_q at $t \in \mathbb{T}_n$. 注意,这里W(t)不是直接等于 $\Omega(t)$,这与一阶量子化不完全同. Conversely, from a 2nd-stage deformation matrices $W(t) = (W_{ij})$ of A_q , we can obtain the Poisson matrices $\Omega(t)$ of a Poisson structure of A_q via the following:

$$\omega_{ij} = \left\{ egin{array}{c} rac{\mathcal{W}_{ij}[\lambda_{ij}]_{q^{rac{1}{2}}}}{\lambda_{ij}} & \lambda_{ij}
eq 0 \ \mathcal{W}_{ij} & \lambda_{ij} = 0. \end{array}
ight.$$

In fact, any one of W(t), $\Lambda(t)$, $\Omega(t)$ can be determined by other two ones.

Definition

The triple $(\tilde{B}(t), \Lambda(t), \Omega(t))$ is called **compatible** if $(\tilde{B}(t), \Lambda(t))$ is a compatible pair for a quantum cluster algebra A_q and $\Omega(t)$ is a Poisson matrix for a Poisson structure compatible with A_q associated to $(\tilde{B}(t), \Lambda(t))$.

Theorem

Let $(\tilde{X}(t), \tilde{B}(t), \Lambda(t))$ be a seed of a quantum cluster algebra A_q at $t \in \mathbb{T}_n$ and $\{-, -\}$ a compatible Poisson structure on A_q . Then the 2nd-stage deformation matrix W(t) satisfies that

 $\tilde{B}(t)^T W(t) = c(D O),$

that is, $(\tilde{B}(t), W(t))$ is a compatible pair, where $c \in \mathbb{Z}[q^{\pm \frac{1}{2}}]$ and *D* is the skew-symmetrizer of $\tilde{B}(t)$. Given a compatible triple $(\tilde{B}(t), \Lambda(t), \Omega(t))$ assigned to vertex *t*, as usual we define the **cluster** at $t \in \mathbb{T}$ to be a set of variables

$$\tilde{Y}(t) = \left\{ Y_t^{e_1}, Y_t^{e_2}, \cdots, Y_t^{e_n}, Y^{e_{n+1}}, \cdots, Y^{e_m} \right\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where $e_i \in \mathbb{Z}^m$ are the standard basis.

For $p, q \in \mathbb{C}$, let \mathcal{T}_t be the $\mathbb{Z}[p^{\pm \frac{1}{2}}, q^{\pm \frac{1}{2}}]$ -algebra generated by $\tilde{Y}(t)$ satisfying the relation

$$Y_{t}^{e_{i}}Y_{t}^{e_{j}} = p^{\frac{1}{2}W_{ij}}q^{\frac{1}{2}\lambda_{ij}}Y_{t}^{e_{i}+e_{j}}, \forall i, j \in [1, m].$$
(5)

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

We call T_t the **II-quantum torus** at *t*, or say, the (p, q)-quantum torus.

Denote by $\mathcal{F}_{p,q}$ the skew-field of fractions of \mathcal{T}_t . Thus, \mathcal{T}_t is a subalgebra of $\mathcal{F}_{p,q}$.

We call $\Sigma_{II}(t) = (\tilde{Y}(t), \tilde{B}(t), \Lambda(t), \Omega(t))$ a **II-quantum seed** at *t* for a compatible triple $(\tilde{B}(t), \Lambda(t), \Omega(t))$.

Let $\Sigma_{II}(t)$ and $\Sigma_{II}(t')$ be two II-quantum seeds at *t* and *t'* respectively. Denote by b_i the i-column of $\tilde{B}(t)$. Let *t* and *t'* be adjacent vertices by an edge labeled *k* in \mathbb{T}_n .

We say that $\Sigma_{II}(t')$ is obtained from $\Sigma_{II}(t)$ by a **mutation** in direction *k* if $\Sigma_{II}(t') = \mu_k(\Sigma_{II}(t)) = (\mu_k(\tilde{Y}(t)), \mu_k(\tilde{B}(t)), \mu_k(\Lambda(t)), \mu_k(\Omega(t)))$, where

$$\begin{split} \tilde{Y}(t') &= \mu_k(\tilde{Y}(t)) = (\tilde{Y}(t) \setminus \{Y_t^{e_k}\}) \bigcup \{\mu_k(Y_t^{e_k})\}, \\ Y_{t'}^{e_k} &= \mu_k(Y_t^{e_k}) = Y_t^{-e_k + [b_k(t)]_+} + Y_t^{-e_k + [-b_k(t)]_+} \end{split}$$

while the mutations of matrices $\tilde{B}(t)$, $\Lambda(t)$ and $\Omega(t)$ are the same as those we introduced before.

The 2nd-stage deformation matrix W(t) is determined by $\Lambda(t)$ and $\Omega(t)$ in the II-quantum seed $\Sigma_{II}(t) = (\tilde{Y}(t), \tilde{B}(t), \Lambda(t), \Omega(t))$.

Theorem

- As the mutation of $\Sigma_{II}(t)$, $\mu_k(\Sigma_{II}(t)) = (\tilde{Y}', \tilde{B}', \Lambda', \Omega')$ is also a II-quantum seed.
- Assume $W(t) = (W_{ij}(t)), W(t') = (W_{ij}(t'))$ and $W(t') = \mu_k(W(t))$, then

$$W_{ij}(t') = \begin{cases} -W_{kj}(t) + \sum_{l=1}^{m} [b_{lk}(t)]_{+} W_{lj}(t) & \text{if } i = k \neq j \\ -W_{ik}(t) + \sum_{l=1}^{m} [b_{lk}(t)]_{+} W_{il}(t) & \text{if } j = k \neq i \\ W_{ij}(t) & \text{otherwise} \end{cases}$$

This means the formula of the mutation of W(t).

The 2nd-stage deformation matrix W(t) is determined by $\Lambda(t)$ and $\Omega(t)$ in the II-quantum seed $\Sigma_{II}(t) = (\tilde{Y}(t), \tilde{B}(t), \Lambda(t), \Omega(t))$.

Theorem

- As the mutation of Σ_{II}(t), μ_k(Σ_{II}(t)) = (Υ̃', B̃', Λ', Ω') is also a II-quantum seed.
- Assume $W(t) = (W_{ij}(t)), W(t') = (W_{ij}(t'))$ and $W(t') = \mu_k(W(t))$, then

$$W_{ij}(t') = \begin{cases} -W_{kj}(t) + \sum_{l=1}^{m} [b_{lk}(t)]_{+} W_{lj}(t) & \text{if } i = k \neq j \\ -W_{ik}(t) + \sum_{l=1}^{m} [b_{lk}(t)]_{+} W_{il}(t) & \text{if } j = k \neq i \\ W_{ij}(t) & \text{otherwise} \end{cases}$$

This means the formula of the mutation of W(t).

The 2nd-stage deformation matrix W(t) is determined by $\Lambda(t)$ and $\Omega(t)$ in the II-quantum seed $\Sigma_{II}(t) = (\tilde{Y}(t), \tilde{B}(t), \Lambda(t), \Omega(t))$.

Theorem

- As the mutation of Σ_{II}(t), μ_k(Σ_{II}(t)) = (Υ̃', B̃', Λ', Ω') is also a II-quantum seed.
- Assume $W(t) = (W_{ij}(t)), W(t') = (W_{ij}(t'))$ and $W(t') = \mu_k(W(t))$, then

$$W_{ij}(t') = \begin{cases} -W_{kj}(t) + \sum_{l=1}^{m} [b_{lk}(t)]_{+} W_{lj}(t) & \text{if } i = k \neq j \\ -W_{ik}(t) + \sum_{l=1}^{m} [b_{lk}(t)]_{+} W_{il}(t) & \text{if } j = k \neq i \\ W_{ij}(t) & \text{otherwise} \end{cases}$$

This means the formula of the mutation of W(t).

Definition

Assign II-quantum seeds $\Sigma_{II}(t)$ to every vertex *t* in \mathbb{T}_n .

Denote by $A_{p,q} = A_{p,q}(\Sigma_{II})$ the $\mathbb{Z}[p^{\pm \frac{1}{2}}, q^{\pm \frac{1}{2}}]$ -subalgebra of $\mathcal{F}_{p,q}$ generated by $\bigcup_{t \in \mathbb{T}_n} \tilde{Y}(t)$, which is defined as the **2nd-stage quantization** of A_q .

We call $A_{p,q}(\Sigma_{II})$ the **2nd-stage quantized cluster algebra** associated to Σ_{II} as a $\mathbb{Z}[p^{\pm \frac{1}{2}}, q^{\pm \frac{1}{2}}]$ -subalgebra of $\mathcal{F}_{p,q}$.

Observation 1

Assume a quantum cluster algebra A_q with the exchange matrices $\tilde{B}(t)$. Then, we have the following one-by-one correspondence:

{Compatible Poisson structures of A_q } . \longleftrightarrow {2nd-stage Quantizations of A_q } = {2nd stage quantized cluster algebras $A_{p,q}$ } via

. {Poisson matrices of A_q } \longleftrightarrow {2nd-stage deformation matrices of $A_{p,q}$ }.

Observation 2

Therefore, we have the following two ways of quantization induced by a triple (\tilde{B}, Λ, W) :

In the sequel, assume A_q is without coefficients. In this case, the formula (2) becomes to that

$$B(t)^{T} \Lambda(t) = D_{n \times n} \tag{6}$$

Due to this, we obtain the invertibility of B(t) and $\Lambda(t)$ for any t, which will be needed in our following proof. This is the reason we need the condition for A_q to be without coefficients.

Compatible Poisson structures on A_q without coefficients

Assume A_q is a quantum cluster algebra without coefficients and (X, B, Λ) is its initial seed.

Suppose *B* has decomposition $B = B_1 \bigsqcup B_2 \bigsqcup \cdots \bigsqcup B_s$, where B_i is indecomposable.

Then as a Poisson algebra, A_q has a decomposition $A_q = A_q(1) \bigoplus A_q(2) \bigoplus \cdots \bigoplus A_q(s)$.

Then, we have:

Theorem

Let A_q be a quantum cluster algebra without coefficients.

Then a Poisson structure $\{-,-\}$ on A_q is compatible with A_q if and only if it is piecewise standard on A_q .

2nd-stage quantization of A_q without coefficients

Therefore without loss of generality, in the following we can assume A_q is indecomposable. Then in a compatible triple,

$$\Omega = a \begin{pmatrix} 0 & [\lambda_{12}]_{q^{\frac{1}{2}}} & \cdots & [\lambda_{1n}]_{q^{\frac{1}{2}}} \\ [\lambda_{21}]_{q^{\frac{1}{2}}} & 0 & \cdots & [\lambda_{2n}]_{q^{\frac{1}{2}}} \\ \vdots & \vdots & \ddots & \vdots \\ [\lambda_{n1}]_{q^{\frac{1}{2}}} & [\lambda_{n2}]_{q^{\frac{1}{2}}} & \cdots & 0 \end{pmatrix}$$

where *a* is an integer. Then $W_{ij} = a\lambda_{ij}$ for any $i, j \in [1, n]$. Therefore in this case,

$$Y_t^{m{e}_i}Y_t^{m{e}_j}=(m{
ho}^{m{a}}m{q})^{rac{1}{2}\lambda_{ij}}Y_t^{m{e}_i+m{e}_j},orall i,j\in[1,n].$$

So, the 2nd-stage quantized cluster algebra $A_{p,q}$ is essentially a quantum cluster algebra, too.

2nd-stage quantization of A_q without coefficients

Hence, in general, for a (decomposable) quantum cluster algebra A_q , its 2nd-stage quantization $A_{p,q}$ can be decomposable into a direct sum of some quantum cluster algebras as $\mathbb{Z}[(p^a q)^{\pm \frac{1}{2}}]$ -subalgebras.

So, this 2nd-stage quantization $A_{p,q}$ is essentially a sum of some **1st-stage** quantum cluster algebras.

In this case, we say the 2nd-stage quantization $A_{p,q}$ to be trivial.

Theorem

There is no non-trivial 2nd-stage quantization for a quantum cluster algebra without coefficients.

Example

The quantum coordinate algebra (or say, quantum matrix algebra) $Fun_{\mathbb{C}}(SL_q(2))$ is generated by a, b, c, d with relations:

$$ab=q^{-1}ba,\;ac=q^{-1}ca,\;db=qbd,$$
 $dc=qcd,\;bc=cb,ad-da=(q^{-1}-q)bc$

and

$$ad-q^{-1}bc=1,$$

《曰》 《聞》 《臣》 《臣》 三臣 …

where $0 \neq q \in \mathbb{C}$ is a parameter.

Example (continuing)

 $Fun_{\mathbb{C}}(SL_q(2))$ has a quantum cluster structure:

Let $\mathbb{P} = \mathbb{C}[b, c]$. In the 1-regular tree T_1 : $t_0 \bullet - \bullet t_1$, we assign the quantum seed $\Sigma(t_0) = (\widetilde{X}(t_0), \widetilde{B(t_0)}, \Lambda(t_0))$ on the vertex t_0 , where $X(t_0) = \{a\}, X_{fr} = \{b, c\}, X_{t_0}^{e_1} = a,$ $X_{t_0}^{e_2} = X^{e_2} = b, X_{t_0}^{e_3} = X^{e_3} = c;$ $\Lambda(t_0) = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \ \widetilde{B}(t_0) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$ Then $Fun_{\mathbb{C}}(SL_q(2)) = A_q(\Sigma(t_0)).$

▲ロト ▲母ト ▲臣ト ▲臣ト 三臣 … のへで

Example (continuing)

By definition, it can be calculated that the 2nd-stage deformation matrix $W(t_0)$ must be of the form

$$W(t_0) = egin{pmatrix} 0 & -w_1 & -w_2 \ w_1 & 0 & 0 \ w_2 & 0 & 0 \end{pmatrix},$$

where $w_1 + w_2 \neq 0$. The 2nd-stage quantization induced by $(\tilde{B}(t_0), \Lambda(t_0), W(t_0))$ is trivial if and only if $W(t_0) = h\Lambda(t_0)$ for some constant *h*, which means $w_1 = w_2$. Therefore, when $w_1 + w_2 \neq 0$ and $w_1 \neq w_2$, the obtained 2nd-stage quantization $A_{p,q}$ of $Fun_{\mathbb{C}}(SL_q(2))$ is non-trivial.

Example (continuing)

In this case, the relations of quantum tori are

$$X_*^{e_i}X_*^{e_j} = p^{\frac{1}{2}W_*(e_i,e_j)}q^{\frac{1}{2}\Lambda_*(e_i,e_j)}X^{e_i+e_j}, \quad \forall i,j=1,2,3,*=t_0,t_1.$$

So the 2nd-stage quantized cluster algebra $A_{p,q}$ of $Fun_{\mathbb{C}}(SL_q(2))$ can be realized as the $\mathbb{C}[q^{\pm \frac{1}{2}}]$ -algebra generated by a, b, c, d satisfying the relations as follows:

$$ab = r^{-1}ba, \ ac = s^{-1}ca, \ db = rbd, \ dc = scd,$$

 $bc = cb, ad - da = [(rs)^{-\frac{1}{2}} - (rs)^{\frac{1}{2}}]bc$

and

$$ad-(rs)^{-\frac{1}{2}}bc=1,$$

where $r = p^{w_1}q, s = p^{w_2}q$.

So, we can say that the 2nd-stage quantization $A_{p,q}(SL(2))$ provides a way to realize two-parameters quantization of the special quantum linear group $SL_q(2)$,

as a parallel supplement to the method of two parameters quantization of the general quantum linear group.

Other examples of non-trivial 2nd-stage quantizations

Example A

Let $\Sigma = (\tilde{X}, \tilde{B}, \Lambda)$ be an arbitrary quantum seed of a quantum cluster algebra A_q . Then there is a **cluster extension** $\Sigma' = (\tilde{X}', \tilde{B}', \Lambda')$ of Σ such that the cluster extension A'_q of A_q admits a non-trivial 2nd-stage quantization $A'_{p,q}$.

Example B from oriented Riemann surfaces

Let *T* be a triangulation of a surface with *n* marked points, where n > 0 is an odd number. Then,

A compatible pair $(\bar{B}_T, \bar{\Lambda}_T)$ can be constructed satisfying that $\mu_{\gamma}(\bar{\Lambda}_T) = \bar{\Lambda}_{T'}$ for any γ and T' is obtained from T by flipping at γ .

Following this, $(\bar{B}_T, \bar{\Lambda}_T)$ induces a quantum cluster algebra A_q admitting a non-trivial 2nd-stage quantization $A_{q,p}$.

Thanks for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで