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2-parameters quantization of GLr(2)

We know from [N.Jing-M.Liu, 2014] that the 2-parameters
quantum coordinate algebra FunC(GLr ,s(2)) is generated by tij ,
det±1

r ,s with relations:

t11t12 = r−1t12t11, t11t21 = st21t11, t21t22 = r−1t22t21,

t12t22 = st22t12, t12t21 = rst21t12, t11t22− t22t11 = (s−r)t21t12,

detr ,sdet−1
r ,s = det−1

r ,s detr ,s = 1, detr ,stij = (rs)i−j tij(detr ,s),

detr ,s = t11t22 − st21t12 = t22t11 − rt21t12 = t11t22 − r−1t12t21.



How to do 2-parameters quantization of SLr(2)?

If we consider this 2-parameters quantum algebra from
GLr ,s(2) to SLr ,s(2), then we have detr ,s = 1.

Replacing it into the relation detr ,stij = (rs)i−j tij(detr ,s), we get
r = s−1, that is, 2-parameter quantum algebra Fun(GLr ,s(2)) is
degenerated into one parameter quantum algebra Fun(GLr (2)).

It means that this method of 2-parameters quantization
Fun(GLr ,s(2)) of Fun(GLr (2)) has no effect on the special
quantum linear group SLr (2).

We will finish this task via the so-called 2nd-stage quantization
of quantum cluster algebras.
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Definition of quantum cluster algebras

For n 6 m ∈ N, denote Tn the n-regular tree with vertices
t ∈ Tn. Let Λ(t) = (λij)m×m be a skew-symmetric integer
matrix.

Let {ei}mi=1 be the standard basis for Zm.
Define a skew-symmetric bilinear form Λt : Zm × Zm → Z
satisfying that

Λt (e, f ) =
m∑

i,j=1

aibjΛt (ei ,ej) =
m∑

i,j=1

aibjλij ,

where e =
m∑

i=1
aiei , f =

m∑
j=1

bjej .
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Definition of quantum cluster algebras
Give a set of variables

X̃ (t) =
{

X e1
t , · · · ,X en

t ,X en+1 , · · · ,X em
}

which is called the extended cluster at t , where
X ei

t , i ∈ [1,n] are called the cluster variables at t while
X ei , i ∈ [n + 1,m] are called frozen variables.

For the rational Laurent polynomial ring Q[q±
1
2 ], define a

Q[q±
1
2 ]-algebra Tt generated by X̃ (t) satisfying the

following relations:

X ei
t X ej

t = q
1
2λij X ei +ej

t ,∀i , j ∈ [1,m]

We call Tt the quantum torus at t .
Denoted by Fq the skew-field of fractions of Tt0 .
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Definition of quantum cluster algebras

In general, ∀e ∈ Zm, let X e
t denote the variable

corresponding to e.
Due to the bilinearity of Λt and e generated by
{ei |i ∈ [1,m]}, we obtain that

X e
t X f

t = q
1
2 Λt (e,f )X e+f

t (1)



Definition of quantum cluster algebras
Let

B̃(t) =

(
B(t)n×n

B1(t)(m−n)×n

)
= (bij)m×n

be an integer matrix called the extended exchange
matrix at t , such that ∃ diagonal matrix

D =

d1
. . .

dn


di ∈ Z,∀i ∈ [1,n] satisfying

B̃(t)T Λ(t) =
(
D O

)
n×m (2)

by this, B(t) is a skew-symmetrizable matrix.

Then B(t) is called the exchange matrix at t and (B̃(t),Λ)
is called a compatible pair.



Definition of quantum cluster algebras

Definition

[BZ] (a)Give a fixed t0 ∈ Tn, denote Σ(t0) = (X̃ (t0), B̃(t0),Λ(t0))
an initial quantum seed.
(b)Let t ∈ Tn be an adjacent vertex of t0, i.e. t − t0 is an edge in
Tn labeled k ∈ [1,n]. Let bk (t0) be the k -th column of B̃(t0).
Define the mutation µk at direction k satisfying that

X ek
t = µk (X ek

t0 ) = X−ek +[bk (t0)]+

t0 + X−ek +[−bk (t0)]+

t0

where [a]+ = max {a,0} for a ∈ R. Then,

X̃ (t) = (X̃ (t0)\
{

X ek
t0

}
) ∪
{

X ek
t
}
.

B̃(t) = µk (B̃(t0))

satisfying that



Definition of quantum cluster algebras

bij(t) =

{
−bij(t0) if i = k or j = k
bij(t0) + sgn(bik (t0))[bik (t0)bkj(t0)]+ otherwise

And, Λ(t) = (λij(t))m×m where

λij(t) =


−λkj(t0) +

m∑
l=1

[blk (t0)]+λlj(t0) if i = k

−λji(t) if j = k
λij(t0) otherwise

Also, write Λ(t) = µk (Λ(t0)).



Definition of quantum cluster algebras

[BZ] Given seeds Σ(t) = (X̃ (t), B̃(t),Λ(t)) at t ∈ Tn, if Σ(t) and
Σ(t ′) can do mutation to each other for any adjacent pair of
vertices t − t ′ in Tn, then the Q[q±

1
2 ]-subalgebra of Fq

generated by all variables in
⋃

t∈Tn

X̃ (t) is called the quantum

cluster algebra Aq(Σ) or simply Aq associated with Σ.

Here, the matrix Λ(t) at t is called the first deformation matrix
of Aq.

k¿g�´§ù�Ý
Λ(t)T´þfm�êAq�éA��þfm
�êA3t-:�Poisson�ê(��PoissonÝ
.


ù�·����þfzJø
g´.



beamer-tu-logo

Compatible Poisson structures on Aq

Definition
For a quantum cluster algebra Aq with Poisson structure
{−,−}, a cluster X = (X1, · · · ,Xm) is said to be
log-canonical if

{
Xi ,Xj

}
= ωijX ei +ej , where

ωij ∈ Q[q±
1
2 ],∀i , j ∈ [1,m].

A Poisson structure {−,−} on Aq is called compatible
with Aq if all clusters in Aq are log-canonical with respect to
{−,−}.
Ω = (ωij)m×m is called the Poisson matrix of the
extended cluster X .

In the following, we always assume Poisson structures are
nontrivial, that is, ωij 6= 0 for some i , j .
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Mutation of Poisson matrices on Aq

Lemma 1
If a Poisson structure {−,−} is compatible on Aq with{

Xi ,Xj
}

= ωijX ei +ej , ∀i , j ∈ [1,m], then ∀j 6= k , where j ∈ [1,m]
while k ∈ [1,n], we have

H =
∑

btk>0
(ωtjq

1
2

[btk ]+∑
h=1

q
m∑

i=t
([bik ]+−δik )λji−hλjt

)− ωkjq
1
2λkj +

m∑
i=k+1

λji [bik ]+

=
∑

btk<0
(ωtjq

1
2

[−btk ]+∑
h=1

q
m∑

i=t
([−bik ]+−δik )λji−hλjt

)− ωkjq
1
2λkj +

m∑
i=k+1

λji [−bik ]+

(3)



Mutation of Poisson matrices on Aq

Lemma 1 (continue)

when X ′ is log-canonical with respect to {−,−}, we will have
mutation of Ω at direction k

ω′ij =


q

1
2 (λjk−

m∑
t=1

[btk ]+λjt )
H if i = k

−ω′ki if j = k
ωij otherwise

where H denotes the left or right side of (3).



Compatible Poisson structures on Aq

The following is an equivalent condition for a poisson structure
to be compatible with a quantum cluster algebra.
Lemma 3
If X is log-canonical with a nontrivial Poisson structure {−,−}
and

{
Xi ,Xj

}
= ωijX ei +ej for any i , j ∈ [1,m], then

µk (X ) = X ′ = {X ′i } is log-canonical with {−,−}

if and only if the following conditions hold for any
j ∈ [1,m], k ∈ [1,n], k 6= j :

For any u ∈ [1,m], if buk 6= 0, then ωuj
ωkj

= q
1
2 λuj−q

1
2 λju

q
1
2 λkj−q

1
2 λjk

.

For any u, v ∈ [1,m], if bukbvk 6= 0, then ωuj
ωvj

= q
1
2 λuj−q

1
2 λju

q
1
2 λvj−q

1
2 λjv

.∑
λtj =0

ωtjbtk = 0.



2nd-stage quantization of Aq

Denote [a]q = qa−q−a

q−q−1 ∈ N(q±1) for q ∈ C.

Let (X̃ (t), B̃(t),Λ(t)) be a seed of a quantum cluster algebra Aq
at t ∈ Tn and {−,−} a compatible poisson bracket on Aq.

Let Ω(t) be the Poisson matrix of Aq associated to the seed at t .

Define an m ×m skew-symmetric matrix W (t) = (Wij) as

Wij =


ωijλij

[λij ]
q

1
2

λij 6= 0

ωij λij = 0
(4)

The matrix W (t) is called the 2nd-stage deformation matrix
of Aq at t ∈ Tn.
5¿§ùpW (t)Ø´���uΩ(t)§ù���þfzØ��Ó.



2nd stage quantization of Aq

Conversely, from a 2nd-stage deformation matrices
W (t) = (Wij) of Aq, we can obtain the Poisson matrices Ω(t) of
a Poisson structure of Aq via the following:

ωij =


Wij [λij ]

q
1
2

λij
λij 6= 0

Wij λij = 0.

In fact, any one of W (t),Λ(t),Ω(t) can be determined by
other two ones.



2nd-stage quantization of Aq

Definition

The triple (B̃(t),Λ(t),Ω(t)) is called compatible if (B̃(t),Λ(t)) is
a compatible pair for a quantum cluster algebra Aq and Ω(t) is a
Poisson matrix for a Poisson structure compatible with Aq

associated to (B̃(t),Λ(t)).

Theorem

Let (X̃ (t), B̃(t),Λ(t)) be a seed of a quantum cluster algebra Aq
at t ∈ Tn and {−,−} a compatible Poisson structure on Aq.
Then the 2nd-stage deformation matrix W (t) satisfies that

B̃(t)T W (t) = c(D O),

that is, (B̃(t),W (t)) is a compatible pair,
where c ∈ Z[q±

1
2 ] and D is the skew-symmetrizer of B̃(t).
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2nd-stage quantization of Aq

Given a compatible triple (B̃(t),Λ(t),Ω(t)) assigned to vertex t ,
as usual we define the cluster at t ∈ T to be a set of variables

Ỹ (t) =
{

Y e1
t ,Y e2

t , · · · ,Y en
t ,Y en+1 , · · · ,Y em

}
.

where ei ∈ Zm are the standard basis.



2nd-stage quantization of Aq

For p,q ∈ C, let Tt be the Z[p±
1
2 ,q±

1
2 ]-algebra generated by

Ỹ (t) satisfying the relation

Y ei
t Y ej

t = p
1
2 Wij q

1
2λij Y ei +ej

t ,∀i , j ∈ [1,m]. (5)

We call Tt the II-quantum torus at t , or say, the
(p,q)-quantum torus.

Denote by Fp,q the skew-field of fractions of Tt . Thus, Tt is a
subalgebra of Fp,q.

We call ΣII(t) = (Ỹ (t), B̃(t),Λ(t),Ω(t)) a II-quantum seed at t
for a compatible triple (B̃(t),Λ(t),Ω(t)).



2nd-stage quantization of Aq

Let ΣII(t) and ΣII(t ′) be two II-quantum seeds at t and t ′

respectively. Denote by bi the i-column of B̃(t).
Let t and t ′ be adjacent vertices by an edge labeled k in Tn.

We say that ΣII(t ′) is obtained from ΣII(t) by a mutation in
direction k if
ΣII(t ′) = µk (ΣII(t)) = (µk (Ỹ (t)), µk (B̃(t)), µk (Λ(t)), µk (Ω(t))),
where

Ỹ (t ′) = µk (Ỹ (t)) = (Ỹ (t) \ {Y ek
t })

⋃
{µk (Y ek

t )},

Y ek
t ′ = µk (Y ek

t ) = Y−ek +[bk (t)]+

t + Y−ek +[−bk (t)]+

t

while the mutations of matrices B̃(t), Λ(t) and Ω(t) are the
same as those we introduced before.
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2nd-stage quantization of Aq
The 2nd-stage deformation matrix W (t) is determined by Λ(t)
and Ω(t) in the II-quantum seed ΣII(t) = (Ỹ (t), B̃(t),Λ(t),Ω(t)).

Theorem

As the mutation of ΣII(t), µk (ΣII(t)) = (Ỹ ′, B̃′,Λ′,Ω′) is also
a II-quantum seed.
Assume W (t) = (Wij(t)), W (t ′) = (Wij(t ′)) and
W (t ′) = µk (W (t)), then

Wij(t ′) =


−Wkj(t) +

m∑
l=1

[blk (t)]+Wlj(t) if i = k 6= j

−Wik (t) +
m∑

l=1
[blk (t)]+Wil(t) if j = k 6= i

Wij(t) otherwise

This means the formula of the mutation of W (t).
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2nd-stage quantization of Aq

Definition
Assign II-quantum seeds ΣII(t) to every vertex t in Tn.

Denote by Ap,q = Ap,q(ΣII) the Z[p±
1
2 ,q±

1
2 ]-subalgebra of Fp,q

generated by
⋃

t∈Tn

Ỹ (t), which is defined as

the 2nd-stage quantization of Aq.

We call Ap,q(ΣII) the 2nd-stage quantized cluster algebra
associated to ΣII as a Z[p±

1
2 ,q±

1
2 ]-subalgebra of Fp,q.



2nd-stage quantization of Aq

Observation 1
Assume a quantum cluster algebra Aq with the exchange
matrices B̃(t). Then, we have the following one-by-one
correspondence:

{Compatible Poisson structures of Aq}
. ←→ {2nd-stage Quantizations of Aq}
= {2nd stage quantized cluster algebras Ap,q }
via
. {Poisson matrices of Aq} ←→ {2nd-stage deformation
matrices of Ap,q}.



2nd-stage quantization of Aq

Observation 2
Therefore, we have the following two ways of quantization
induced by a triple (B̃,Λ,W ):

A

(A;Λ)

(A;W )

Aq

A0

p

Ap;q

A0

q;p

( ~B;Λ)

( ~B;W )

( ~B;Λ;W )

( ~B;W; aΛ)

∼
=

Po
iss
on

str
uct

ure

Poisson structure

Figure: Two ways of quantization



In case Aq without coefficients

In the sequel, assume Aq is without coefficients.
In this case, the formula (2) becomes to that

B(t)T Λ(t) = Dn×n (6)

Due to this, we obtain the invertibility of B(t) and Λ(t) for any t ,
which will be needed in our following proof. This is the reason
we need the condition for Aq to be without coefficients.



Compatible Poisson structures on Aq without
coefficients

Assume Aq is a quantum cluster algebra without coefficients
and (X ,B,Λ) is its initial seed.

Suppose B has decomposition B = B1
⊔

B2
⊔
· · ·
⊔

Bs, where
Bi is indecomposable.

Then as a Poisson algebra, Aq has a decomposition
Aq = Aq(1)

⊕
Aq(2)

⊕
· · ·
⊕

Aq(s).

Then, we have:

Theorem
Let Aq be a quantum cluster algebra without coefficients.

Then a Poisson structure {−,−} on Aq is compatible with Aq if
and only if it is piecewise standard on Aq.



2nd-stage quantization of Aq without coefficients

Therefore without loss of generality, in the following we can
assume Aq is indecomposable. Then in a compatible triple,

Ω = a


0 [λ12]

q
1
2
· · · [λ1n]

q
1
2

[λ21]
q

1
2

0 · · · [λ2n]
q

1
2

...
...

. . .
...

[λn1]
q

1
2

[λn2]
q

1
2
· · · 0

 .

where a is an integer. Then Wij = aλij for any i , j ∈ [1,n].
Therefore in this case,

Y ei
t Y ej

t = (paq)
1
2λij Y ei +ej

t ,∀i , j ∈ [1,n].

So, the 2nd-stage quantized cluster algebra Ap,q is essentially a
quantum cluster algebra, too.
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2nd-stage quantization of Aq without coefficients

Hence, in general, for a (decomposable) quantum cluster
algebra Aq, its 2nd-stage quantization Ap,q can be
decomposable into a direct sum of some quantum cluster
algebras as Z[(paq)±

1
2 ]-subalgebras.

So, this 2nd-stage quantization Ap,q is essentially a sum of
some 1st-stage quantum cluster algebras.

In this case, we say the 2nd-stage quantization Ap,q to be
trivial.

Theorem
There is no non-trivial 2nd-stage quantization for a quantum
cluster algebra without coefficients.



non-trivial 2nd-stage quantization

Example
The quantum coordinate algebra (or say, quantum matrix
algebra) FunC(SLq(2)) is generated by a,b, c,d with relations:

ab = q−1ba, ac = q−1ca, db = qbd ,

dc = qcd , bc = cb,ad − da = (q−1 − q)bc

and
ad − q−1bc = 1,

where 0 6= q ∈ C is a parameter.



non-trivial 2nd-stage quantization

Example (continuing)

FunC(SLq(2)) has a quantum cluster structure:

Let P = C[b, c]. In the 1-regular tree T1: t0• •t1 , we

assign the quantum seed Σ(t0) = (X̃ (t0), B̃(t0),Λ(t0)) on the
vertex t0, where X (t0) = {a}, Xfr = {b, c}, X e1

t0 = a,
X e2

t0 = X e2 = b, X e3
t0 = X e3 = c;

Λ(t0) =

 0 −1 −1
1 0 0
1 0 0

 , B̃(t0) =

 0
1
1

.

Then FunC(SLq(2)) = Aq(Σ(t0)).



non-trivial 2nd-stage quantization

Example (continuing)
By definition, it can be calculated that the 2nd-stage
deformation matrix W (t0) must be of the form

W (t0) =

 0 −w1 −w2
w1 0 0
w2 0 0

 ,

where w1 + w2 6= 0. The 2nd-stage quantization induced by
(B̃(t0),Λ(t0),W (t0)) is trivial if and only if W (t0) = hΛ(t0) for
some constant h, which means w1 = w2. Therefore, when
w1 + w2 6= 0 and w1 6= w2, the obtained 2nd-stage quantization
Ap,q of FunC(SLq(2)) is non-trivial.



non-trivial 2nd-stage quantization

Example (continuing)
In this case, the relations of quantum tori are

X ei
∗ X ej
∗ = p

1
2 W∗(ei ,ej )q

1
2 Λ∗(ei ,ej )X ei +ej , ∀i , j = 1,2,3, ∗ = t0, t1.

So the 2nd-stage quantized cluster algebra Ap,q of
FunC(SLq(2)) can be realized as the C[q±

1
2 ]-algebra generated

by a,b, c,d satisfying the relations as follows:

ab = r−1ba, ac = s−1ca, db = rbd , dc = scd ,

bc = cb,ad − da =[(rs)−
1
2 − (rs)

1
2 ]bc

and
ad − (rs)−

1
2 bc = 1,

where r = pw1q, s = pw2q.



non-trivial 2nd-stage quantization

So, we can say that the 2nd-stage quantization Ap,q(SL(2))
provides a way to realize two-parameters quantization of the
special quantum linear group SLq(2),

as a parallel supplement to the method of two parameters
quantization of the general quantum linear group.



Other examples of non-trivial 2nd-stage quantizations

Example A

Let Σ = (X̃ , B̃,Λ) be an arbitrary quantum seed of a quantum
cluster algebra Aq. Then there is a cluster extension
Σ′ = (X̃ ′, B̃′,Λ′) of Σ such that the cluster extension A′q of Aq
admits a non-trivial 2nd-stage quantization A′p,q.

Example B from oriented Riemann surfaces
Let T be a triangulation of a surface with n marked points,
where n > 0 is an odd number. Then,

A compatible pair (B̄T , Λ̄T ) can be constructed satisfying that
µγ(Λ̄T ) = Λ̄T ′ for any γ and T ′ is obtained from T by flipping at
γ.

Following this, (B̄T , Λ̄T ) induces a quantum cluster algebra Aq
admitting a non-trivial 2nd-stage quantization Aq,p.



Thanks for your attention!


