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Plan

Lorentzian spacetime: a measure space with an order relation.

A causal set: a discrete space (counting measure) with an order relation

Free scalar QFT on a fixed causal set

Interacting QFT e.g. λϕ3

Diagrams for time ordered correlators in the in-in formalism: perturbation series
expansion terminates if causal set is past-finite

Towards a comparison with the continuum
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Lorentzian spacetime

P

Null 

Timelike 

Spacelike

S

R

Q

Q ≺ P, P ≺ S, Q ≺ S . . . etc.

The causal relation is a mathematical
order: continuum spacetime is a poset

Continuum spacetime is a measure
space (volume measure)

Theorem (Kronheimer & Penrose, 1967; Hawking, 2014; Malament, 1977)

For every distinguishing Lorentzian spacetime (d > 2) the topology, differentiable
structure and metric is encoded in the order and the measure.

Fay Dowker (Imperial College London) (A diagrammatic calculus for) Interacting scalar QFT on a causal setChengdu March 2024 3 / 12



Causal set = Discrete spacetime

A causal set (causet) (C,≺) is a discrete ordered measure space

21

0

3
4

The measure is the counting measure

Hasse diagram: no arrows needed

0 ≺ 1, 0 ≺ 2, 1 ≺ 3, 2 ≺ 3, 1 ≺ 4, 0 ≺ 3, 0 ≺ 4.

Can always think of the ground set as C ⊆ N.
Terminology: minimal, maximal, past, future, up-set,
down-set

Quantum gravity: Physically, continuum spacetime is an approximation to a
causal set and the gravitational path integral is a sum over causal sets

Regularizing continuum theories: Physically, the causal set is an approximation
to continuum.

By analogy with QFT in curved spacetime, we’ll look at QFT on a fixed causal set.
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Free real scalar QFT on finite globally hyperbolic spacetime M

The retarded Green function G is unique and (□−m2)G = δ.

The Pauli-Jordan function is ∆ := G−GT and GT equals the advanced Green
function.

[ϕx, ϕy] = i∆xy = i(Gxy −Gyx) Peierls form of CCR.

Lemma (Sorkin, 2017): Kernel(□−m2) = Image(∆)

Proof (one way): Think of i∆ as an integral operator on functions on M :

i∆fx :=

∫
M

dVy i∆xy fy

i∆ is Hermitian, (i∆) = −i∆ and so the nonzero eigenvalues come in pairs ±λ:

i∆ u := λu , i∆ u := −λ u .

If u satisfies i∆ u = λ u , λ ̸= 0 ,

then, (□−m2) i∆ u = λ (□−m2)u

i (□−m2) (G−GT )u = λ (□−m2)u

0 = λ(□−m2)u , so u is a solution.
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Free real scalar QFT on finite C (Johnston, 2009)

Let |C| = N . A scalar field history is a vector in RN .

Assume we do, somehow, have the retarded Green function Gxy, an N ×N
retarded (lower triangular) matrix on C (more later).

Then the Pauli-Jordan function is still ∆xy = Gxy −GT xy
and we require

[ϕx, ϕy] = i∆xy CCR

Motivated by Lemma: Hilbert space of solutions → image of i∆. i.e. span of
eigenvectors

i∆ uk := λk uk , i∆ uk := −λk uk , λk > 0 .

ϕ =
∑
k

√
λk (ak u + a†

k uk) , [ak, a
†
l ] = δkl.

Define |SJ⟩, the Sorkin-Johnston state, to be the state annihilated by the ak’s.
Hilbert space is then the usual Fock space.

|SJ⟩ is a distinguished “ground state”. No need for the existence of timelike
Killing vector. In contrast to the usual philosophy in Algebraic QFT.

The free theory is a finite set of oscillator modes.

(Sorkin, 2011; Sorkin, 2017): G −→ i∆ −→ W −→ ϕ
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λϕ3 theory on C = {1, 2, . . . N} (in-in formalism)
The interacting theory was first defined in path integral form (Sorkin, 2011).

Let the interaction region be a subset of C, excluding (at least) the minimal elements
of C. The Heisenberg and interaction pictures coincide on the minimal elements of C
where the state is |SJ⟩ which is the in-state.
Let ϕ denote the interaction picture field. The local interaction Hamiltonian operator
is Hx = g

3!
(ϕx)3.

The Heisenberg picture fields are defined by (Albertini, 2021; Jubb, 2023)

Φx = eiH
1

eiH
2

. . . eiH
x−1

ϕxe−iHx−1

. . . e−iH2

e−iH1

where Hy =
g

3!
(ϕy)3. Then, Φx = ϕx+ a polynomial in the ϕ’s in the past of x.

Sketch of proof : use spacelike commutativity to reorder the unitaries so that the ones
spacelike to x are next to x. Commute the spacelike unitaries through ϕx and cancel

them off. Then use e−BAeB = A+ [A,B] +
1

2!
[[A,B], B] + . . . iteratively on the rest.

An interacting QFT on a causal set was also defined in (Dable-Heath et al., 2020)
using deformation quantization. I believe they are the same theory!
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Algebras

The algebra A generated by all the Φ’s equals the algebra generated by all the ϕ’s.

Proof by induction: The Heisenberg fields are finite polynomials in the interaction
picture fields. For inclusion the other way, argue level by level. For all minimal
elements, ϕ = Φ. Now consider an x that has only minimal elements in its past.
Φx = ϕx + a polynomial in ϕ’s at minimal elements = ϕx + a polynomial in Φ’s. So
Φx is a polynomial in ϕ’s. And so on.

Result holds for subalgebras associated to subcausets that are down sets.

All algebras are finitely generated.

Haag duality does not hold in general: depends on C and what subcausets one
allows for local algebras.

Heisenberg operators at spacelike elements commute. However, the expected
relationships between algebras in subcausets (for example domains of
dependence) have to be examined.
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Causal Diagrams ((Albertini et al., 2024) after (Dickinson et al., 2014))
Simplest example: the VEV in the in-state to order 3 (assuming < ϕ >= 0)For example, expansion (4.1) can be rewritten in terms of unlabelled diagrams as,

h�H(x)i =

x

+

x

+

x

+

x

+

x

+

x

+

x

+

x

+

x

+ · · · (4.6)

4.2 In-in correlators of local operators

In Section 4.1 we gave diagrammatic rules for computing the expectation value of the

Heisenberg field, h�H(x)i. Here, we generalise these rules to in-in correlators of local

operators.

Given some causet C and an integer 1  k  |C|, let x1, x2, . . . , xk denote integers

satisfying |C| � x1 > x2 . . . > xk � 1. For each i = 1, . . . , k we write OH(xi) to denote

a local Heisenberg operator at xi. We allow for the dependence of OH(xi) on �(xi) to be

di↵erent to the dependence of OH(xj) on �(xj), but we restricts ourselves to operators

which are finite-order polynomials in the Heisenberg fields, e.g. OH(x2) = 3(�H(x2))
4. We

seek to compute the in-in correlator,

hOH(x1) . . . OH(xk)i. (4.7)

We proceed in two stages. First, we expand the operator product OH(x1) . . . OH(xk)

as a sum of locally-ordered products of interaction picture fields. Second, we apply Wick’s

theorem to compute the expectation value of each term in the expansion.

Our strategy for obtaining the expansion of OH(x1) . . . OH(xk) is to express it as a

nested product (cf. Lemma A.3),

OH(x1) . . . OH(xk) = U †
xk

O1...kUxk
, (4.8)

where O1...k is defined recursively via,

O1...p =

(
O(x1) p = 1

U †
xp�1,xpO1...p�1Uxp�1,xpO(xp) 1 < p  k.

(4.9)

This enables us to obtain the product expansion by the recursive application of the relation

(cf. Lemma A.2),

U †
x,yOUx,y =

1X

n=0

(�i)n
x�1X

z1,...zn=y


. . .


O, H(z1)

�
, H(z2)

�
. . . , H(zn)

�
⌥(z1, . . . , zn), (4.10)

where O is any (not necessarily local) operator and the n = 0 term is understood to be

equal to O. We leave the result to the Appendix (cf. Corollary A.5), but note that inside

the expectation value the expansion simplifies to (cf. Lemma A.6),

hOH(x1) . . . OH(xk)i

=
1X

n=0

(�i)n
x�1X

z1,...,zn=1

⌧
. . .


O(x1) . . . O(xk), H(z1)

�
, H(z2)

�
. . . , H(zn)

��
⌥(z1, . . . , zn),

(4.11)

– 16 –

n vertices (excluding x) at order n,

each vertex is connected to x by at least one directed path and no closed
directed cycles: explicitly causal.

each vertex z equals i
g

3!
and is summed over Past(x).

each arrowed edge a → b equals −iGba, the retarded Green fn.,

each undirected edge a b equals ∆F
ab, the Feyman propagator,

Symmetry factors from ways of connecting the half-legs,

Divide by |Aut(diagram)|, the number of automorphisms.

On C, ∆F
zz < ∞: the perturbative series terminates and is finite.
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Exploring the Relationship with Continuum QFT

Consider a causet Poisson sprinkled into some finite globally hyperbolic
spacetime.

Do simulations to approximate the sum over diagrams for examples of in-in time
ordered correlators. And compare to the continuum.

To do this in practice, need the causet analogue of G for Klein Gordon operator.

Examples:

2d Minkowski space, m = 0:
Gxy ∝ Rxy where R is the graph adjacency matrix: Rxy = 1 if y ≺ x and 0
otherwise.

4d Minkowski space, m = 0:
Gxy ∝ Lxy where L is the nearest-neighbour adjacency matrix: Kxy = 1 if y ≺ x
is a link, and 0 otherwise.

Can use fact that deSitter space is conformally flat to deduce causet G.

If one knows the massless G one can write down the massive G as a finite
expansion in convolutions.
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Discussion

All goes through for any polynomial self-interaction – can also vary.

Termination of perturbation series comes from past-finiteness: cosmology

There exists a path integral (sum-over-histories) formulation, generating
functionals.

Compare to continuum and confront the “non-continuum” modes

Renormalisation and the continuum limit of the theory as the density of
sprinkling → ∞.

G for other spacetimes. Other sorts of fields.

Back reaction on the causal set: towards quantum gravity

Fay Dowker (Imperial College London) (A diagrammatic calculus for) Interacting scalar QFT on a causal setChengdu March 2024 11 / 12



Albertini, Emma. 2021.
ϕ4 interaction in causal set theory.

Albertini, Emma, Dowker, Fay, Nasiri, Arad, & Zalel, Stav. 2024.
In-in correlators and scattering amplitudes on a causal set.
arxiv:2402.08555.

Alexandrov, A. D., & Ovchinnikova, V. V. 1953.
Notes on the foundations of relativity theory.
Vestnik leningrad. univ., 95–110.

Dable-Heath, Edmund, Fewster, Christopher J., Rejzner, Kasia, & Woods,
Nick. 2020.
Algebraic classical and quantum field theory on causal sets.
Physical review d, 101(6).

Dickinson, Robert, Forshaw, Jeff, Millington, Peter, & Cox, Brian. 2014.
Manifest causality in quantum field theory with sources and detectors.
Jhep, 06, 049.

Hawking, Stephen. 2014.
Singularities and the geometry of spacetime.
Epj h, 39, 413.

Johnston, Steven. 2009.
Fay Dowker (Imperial College London) (A diagrammatic calculus for) Interacting scalar QFT on a causal setChengdu March 2024 11 / 12



Feynman Propagator for a Free Scalar Field on a Causal Set.
Phys. rev. lett., 103, 180401.

Jubb, I. 2023.
Interacting Quantum Scalar Field Theory on a Causal Set.
In: Bambi, C., & Modesto, L. (eds), The handbook of quantum gravity.
Springer.

Kronheimer, E. H., & Penrose, R. 1967.
On the structure of causal spaces.
Mathematical proceedings of the cambridge philosophical society, 63(4), 481–501.

Malament, David B. 1977.
The class of continuous timelike curves determines the topology of spacetime.
J. math. phys., 18, 1399–1404.

Sorkin, Rafael D. 2011.
Scalar Field Theory on a Causal Set in Histories Form.
J. phys. conf. ser., 306, 012017.

Sorkin, Rafael D. 2017.
From Green Function to Quantum Field.
Int. j. geom. meth. mod. phys., 14(08), 1740007.

Zeeman, E.C. 1964.
Fay Dowker (Imperial College London) (A diagrammatic calculus for) Interacting scalar QFT on a causal setChengdu March 2024 11 / 12



Causality implies the Lorentz group.
J. math. phys., 5, 490–493.

Fay Dowker (Imperial College London) (A diagrammatic calculus for) Interacting scalar QFT on a causal setChengdu March 2024 12 / 12



Typical sprinkled causet in 2D Minkowski space

• 2D Minkowski 


• Hasse diagram (of 
covering relations)


• highly non-isotropic: null 
directions 


• highly nonlocal [BB]


• essential structure of 
Lorentzian geometry 
revealed 

Space

Ti
m
e

Not a cuddly low valance graph but a nonlocal beast!

Continuum Lorentzian spacetimes are, if not actually nonlocal themselves, then
teetering on the edge of being nonlocal.
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