A calculus for magnetic pseudodifferential super operators

Gihyun Lee

Ghent University

Gihyun.Lee@ugent.be

Algebraic, Analytic, Geometric Structures Emerging from Quantum Field Theory

@Sichuan University, Chengdu, China

March 12, 2024

This talk is based on the joint works with M. Lein [LL22, LL24].

- Von Neumann algebras
- The (magnetic) Weyl calculus
- Motivation
- The (magnetic) super Weyl calculus
- Future Projects

Let \mathscr{H} be a separable Hilbert space and $\mathcal{S} \subseteq \mathscr{L}(\mathscr{H})$. The commutant of \mathcal{S} is

$$\mathcal{S}' := \{T \in \mathscr{L}(\mathscr{H}); ST = TS \text{ for all } S \in \mathcal{S}\}.$$

We denote the bicommutant (S')' by S''.

Definition

A von Neumann algebra is a unital *-subalgebra \mathcal{N} of $\mathscr{L}(\mathscr{H})$ such that $\mathcal{N}'' = \mathcal{N}$.

The two most basic examples:

•
$$\mathcal{N} = \mathscr{L}(\mathscr{H}).$$

• $\mathcal{N} = L_{\infty}(X)$, where (X, \mathfrak{M}, μ) is a σ -finite measure space.

$$\mathcal{N}_+ := \mathcal{N} \cap \mathscr{L}(\mathscr{H})_+.$$

Definition

A trace on ${\mathcal N}$ is a map $\tau:{\mathcal N}_+\to [0,+\infty]$ satisfying

$$egin{aligned} & au(c_1S+c_2T)=c_1 au(S)+c_2 au(T) & orall S,\, T\in\mathcal{N}_+\,\,orall c_1,c_2\in\mathbb{R}_+, \ & au(USU^*)= au(S) & orall S\in\mathcal{N}_+\,\,orall unitary \,\, ext{elements}\,\,U\in\mathcal{N}. \end{aligned}$$

→ < Ξ →</p>

Definition

- τ is called faithful if $S \in \mathcal{N}_+$ and $\tau(S) = 0$ implies S = 0.
- τ is called normal if for each increasing bounded net $(S_{\alpha}) \subset \mathcal{N}_{+}$ such that $S := \sup_{\alpha} S_{\alpha} \in \mathcal{N}_{+}$, we have $\sup_{\alpha} \tau(S_{\alpha}) = \tau(S)$.
- τ is called semifinite if for each projection $P \in \mathcal{N}$, there exists an increasing net of projections $(P_{\alpha}) \subset \mathcal{N}$ such that $\tau(P_{\alpha}) < \infty \ \forall \alpha$ and $P = \inf\{Q \in \mathcal{N}; Q \text{ is a projection such that } P_{\alpha} \leq Q \ \forall \alpha\}.$

Let τ be a faithful, normal, semifinite (f.n.s.) trace on \mathcal{N} . We denote the set of τ -measurable operators affiliated with \mathcal{N} by $\mathfrak{M}(\mathcal{N}, \tau)$. For each $1 \leq p < \infty$ we define

$$\mathscr{L}_p(\mathcal{N}) = \mathscr{L}_p(\mathcal{N}, \tau) := \left\{ T \in \mathfrak{M}(\mathcal{N}, \tau); \ \tau \left(|T|^p \right)^{\frac{1}{p}} < \infty \right\}.$$

The two most basic examples:

- If N = L(H), then the standard operator trace Tr is an f.n.s. trace on L(H). We have L_p(N) = L_p, where L_p is the ideal of Schatten *p*-class operators.
- If $\mathcal{N} = L_{\infty}(X)$, then $\int d\mu$ is an f.n.s. trace on $L_{\infty}(X)$. We have $\mathscr{L}_{p}(\mathcal{N}) = L_{p}(X)$.

Phase space notations

- $\Xi = T^* \mathbb{R}^d = \mathbb{R}^d \times \mathbb{R}^{d^*}$ (the phase space)
- Elements of Ξ will be denoted by $X = (x, \xi)$, $Y = (y, \eta)$, $Z = (z, \zeta)$ with space components $x, y, z \in \mathbb{R}^d$ and momentum components $\xi, \eta, \zeta \in \mathbb{R}^d$.
- Ξ is endowed with the symplectic form $\sigma(X, Y) := \xi \cdot y x \cdot \eta$.

The canonical commutation relations (CCR),

$$-\mathrm{i}[Q_j, Q_k] = 0, \qquad -\mathrm{i}[P_j, P_k] = 0, \qquad -\mathrm{i}[Q_j, P_k] = \varepsilon \delta_{jk}.$$

can be equivalently reformulated in terms of the family of unitary operators $\{w(X)\}_{X\in\Xi}$, called the Weyl system.

$$w(X) := e^{-i\sigma(X,(Q,P))} = e^{-i(\xi \cdot Q - x \cdot P)}$$

We have

•
$$w(X)w(Y) = e^{+i\frac{\varepsilon}{2}\sigma(X,Y)}w(X+Y).$$

• {
$$w(X)$$
; $X \in \Xi$ }" = $\mathscr{L}(L_2(\mathbb{R}^d))$.

- Consider a charged particle moving in ℝ^d subjected to the magnetic field B. Pick a vector potential A so that B = dA.
- Assume one of the following two assumptions on the magnetic field *B* and associated vector potential *A*.
 - (PB) All components of B belong to $\mathcal{C}^{\infty}_{u,pol}(\mathbb{R}^d)$ and all components of A belong to $\mathcal{C}^{\infty}_{pol}(\mathbb{R}^d)$.
 - (B) All components of B belong to $C_{\rm b}^{\infty}(\mathbb{R}^d)$ and all components of A belong to $\mathcal{C}_{\rm pol}^{\infty}(\mathbb{R}^d)$.
- We introduce two small parameters [Le10], which are crucial for asymptotic expansions arise in the study of semiclassical limits.:
 - The coupling of the charge to the magnetic field λ .
 - A semiclassical parameter ε .

• In the magnetic setting, the building block observables are the position operators $Q = (Q_1, \ldots, Q_d)$ and the kinetic momentum operators $P^A = (P_1^A, \ldots, P_d^A)$ defined by

$$Q_j f(x) := \varepsilon x_j f(x), \qquad P_j^A f(x) := -\mathrm{i} \frac{\partial f}{\partial x_j}(x) - \lambda A_j(\varepsilon x) f(x).$$

• Q and P^A satisfy the commutation relations:

$$-\mathrm{i}[Q_j,Q_k]=0,\qquad -\mathrm{i}[P_j^A,P_k^A]=\varepsilon\lambda B_{jk}(Q),\qquad -\mathrm{i}[Q_j,P_k^A]=\varepsilon\delta_{jk}.$$

These relations can be encoded into the magnetic Weyl system $\{w^A(X)\}_{X\in\Xi}$ defined by

$$w^{\mathcal{A}}(X) := \mathrm{e}^{-\mathrm{i}\sigma(X,(Q,P^{\mathcal{A}}))} = \mathrm{e}^{-\mathrm{i}(\xi \cdot Q - x \cdot P^{\mathcal{A}})}.$$

We have

•
$$w^A(X)w^A(Y) = e^{+i\frac{\varepsilon}{2}\sigma(X,Y)}\omega^B(Q;x,y)w^A(X+Y).$$

• $\{w^A(X); X \in \Xi\}'' = \mathcal{L}(L_2(\mathbb{R}^d)).$

4 A N

э

Definition (Magnetic Weyl quantization [MP04])

For all $f \in S(\Xi)$ and magnetic fields satisfying (PB), we define

$$\operatorname{op}^{A}(f) := \frac{1}{(2\pi)^{d}} \int_{\Xi} \mathrm{d}X \, (\mathcal{F}_{\sigma}f)(X) \, w^{A}(X).$$

Here $\mathcal{F}_{\sigma}f$ is the symplectic Fourier transform of f defined by

$$(\mathcal{F}_{\sigma}f)(X) := rac{1}{(2\pi)^d} \int_{\Xi} \mathrm{d} X' \mathrm{e}^{\mathrm{i}\sigma(X,X')} f(X').$$

Magnetic Weyl quantization inherits gauge-covariance from the magnetic Weyl system.

$$\operatorname{op}^{\mathcal{A}+\mathrm{d}\chi}(f) = \mathrm{e}^{+\mathrm{i}\lambda\chi(\mathcal{Q})} \operatorname{op}^{\mathcal{A}}(f) \mathrm{e}^{-\mathrm{i}\lambda\chi(\mathcal{Q})}$$

Given $f, g \in \mathcal{S}(\Xi)$, we define

$$(f \star^{B} g)(X) := \frac{1}{(2\pi)^{2d}} \int_{\Xi} \mathrm{d}Y \int_{\Xi} \mathrm{d}Z \,\mathrm{e}^{+\mathrm{i}\sigma(X,Y+Z)} \,e^{+\mathrm{i}\frac{\varepsilon}{2}\sigma(Y,Z)}.$$
$$\mathrm{e}^{-\mathrm{i}\frac{\lambda}{\varepsilon}\Gamma^{B}(\langle x-\frac{\varepsilon}{2}(y+z),x+\frac{\varepsilon}{2}(y-z),x+\frac{\varepsilon}{2}(y+z)\rangle)} \,(\mathcal{F}_{\sigma}f)(Y) \,(\mathcal{F}_{\sigma}g)(Z).$$

Then we have $\operatorname{op}^{A}(f) \operatorname{op}^{A}(g) = \operatorname{op}^{A}(f \star^{B} g)$.

4 A N

э

The class of Hörmander symbols of order $m \in \mathbb{R}$ and type (ρ, δ) with $0 \le \rho \le \delta \le 1$ is the Fréchet space defined by

$$S^m_{
ho,\delta}(\Xi) := \left\{ f \in \mathcal{C}^\infty(\Xi) \mid \sup_{X \in \Xi} \langle \xi
angle^{-m - |a|\delta + |lpha|
ho} \left| \partial^a_X \partial^lpha_\xi f(X)
ight| < \infty \ orall a, lpha \in \mathbb{N}^d_0
ight\}$$

Theorem ([IMP07])

Let $m_1, m_2 \in \mathbb{R}$. For magnetic fields B satisfying (B) and $0 \le \delta \le \rho \le 1$, the magnetic Weyl product \star^B gives rise to a continuous bilinear map,

$$\star^B:S^{m_1}_{\rho,\delta}(\Xi)\times S^{m_2}_{\rho,\delta}(\Xi)\longrightarrow S^{m_1+m_2}_{\rho,\delta}(\Xi).$$

Theorem ([IMP07])

Suppose that B satisfies (B) and $f \in S^0_{\rho,\delta}(\Xi)$, $0 \le \delta < \rho \le 1$. Then $\operatorname{op}^A(f)$ gives rise to a bounded linear operator from $L_2(\mathbb{R}^d)$ to itself.

Furthermore, we can asymptotically expand the product $f \star^B g$ in ε and λ :

Theorem ([Le10])

Let $m_1, m_2 \in \mathbb{R}$ and assume B satisfies (B), $f \in S^{m_1}_{\rho,0}(\Xi)$ and $g \in S^{m_2}_{\rho,0}(\Xi)$. Then there is $N \in \mathbb{N}_0$ such that

$$f \star^B g = \sum_{n=0}^N \sum_{k=0}^n \varepsilon^n \lambda^k (f \star^B g)_{(n,k)} + \tilde{R}_N,$$

where $(f \star^B g)_{(n,k)} \in S^{m_1+m_2-(n+k)\rho}_{\rho,0}(\Xi)$, $\tilde{R}_N \in S^{m_1+m_2-(N+1)\rho}_{\rho,0}(\Xi)$ and the semi-norms of \tilde{R}_N is sufficiently small.

• Let H be a Hamiltonian affiliated to a von Neumann algebra \mathcal{N} endowed with a f.n.s. trace τ . In quantum mechanics, density operators evolve according to the Liouville equation,

$$rac{\mathrm{d}}{\mathrm{d}t}
ho(t) = L_Hig(
ho(t)ig) := -\mathrm{i}[H,
ho(t)], \qquad
ho(t_0) \in \mathscr{L}_1(\mathcal{N}).$$

• *L_H* maps linear operators to linear operators; physicists refer to those as super operators.

- This kind of algebraic approach was useful in many cases, e.g.,
 - systems from statistical mechanics in the thermodynamic limit [BR17].
 - linear response theory [DL17].
- Algebraic approach
 - Makes the mathematical descriptions for various systems rigorous.
 - But it involves technical assumptions on operators which seem difficult to verify for concrete models.

- Pseudodifferential theory
 - The way of assigning functions (called symbols) to operators.
 - Translates properties of symbols to associated pseudodifferential operators.
- We can put ρ(t) into the framework of pseudodifferential theory (the magnetic Weyl calculus). But what about L_H or other super operators?

Goal

The goal of this talk is to introduce the newly constructed pseudodifferential calculus for super operators, which is a natural receptacle of L_H and other relevant super operators.

- $\Xi^2 := \Xi \times \Xi$ (the doubled phase space).
- Elements of Ξ² will be denoted by
 X = (X_L, X_R), Y = (Y_L, Y_R), Z = (Z_L, Z_R). Here we follow the same convention as before for variables in Ξ, e.g., X_L = (x_L, ξ_L) and Y_R = (y_R, η_R) with x_L, y_R ∈ ℝ^d and ξ_L, η_R ∈ ℝ^{d*}.
- \bullet We endow Ξ^2 with the symplectic form Σ defined by

$$\Sigma(\mathbf{X},\mathbf{Y}) := \sigma(X_L,Y_L) + \sigma(X_R,Y_R).$$

The symplectic Fourier transform *F*_Σ*F* of a function *F* on Ξ² is defined by

$$(\mathcal{F}_{\Sigma})(\mathbf{X}) := rac{1}{(2\pi)^{2d}} \int_{\Xi^2} \mathrm{d}\mathbf{X}' \,\mathrm{e}^{+\mathrm{i}\Sigma(\mathbf{X},\mathbf{X}')} \,F(\mathbf{X}').$$

Magnetic pseudodifferential super operators

Given a function $g \in \mathcal{S}(\Xi)$, set $\hat{g}^A := \operatorname{op}^A(g)$.

Definition (Magnetic Super Weyl System)

For $\boldsymbol{X}\in \Xi^2,$ we define

$$W^A(\mathbf{X}) \hat{g}^A \equiv W^A(X_L, X_R) \hat{g}^A := w^A(X_L) \hat{g}^A w^A(X_R).$$

Definition (Magnetic Pseudodifferential Super Operator)

The magnetic pseudodifferential super operator $\operatorname{Op}^{A}(F)$ associated with a function $F \in \mathcal{S}(\Xi^{2})$ is defined by

$$\operatorname{Op}^{A}(F) \hat{g}^{A} := rac{1}{(2\pi)^{2d}} \int_{\Xi^{2}} \mathrm{d}\mathbf{X} \left(\mathcal{F}_{\Sigma}F\right)(\mathbf{X}) W^{A}(\mathbf{X}) \hat{g}^{A}$$

If F is a function of the form $F(\mathbf{X}) = f_L(X_L)f_R(X_R)$, $f_L, f_R \in \mathcal{S}(\Xi)$, then we get

$$Op^{A}(F)\hat{g}^{A} = \frac{1}{(2\pi)^{2d}} \int_{\Xi} dX_{L} \int_{\Xi} dX_{R} \left(\mathcal{F}_{\sigma}f_{L}\right)(X_{L}) \left(\mathcal{F}_{\sigma}f_{R}\right)(X_{R}) \cdot w^{A}(X_{L})\hat{g}^{A} w^{A}(X_{R}) \\= op^{A}(f_{L})\hat{g}^{A} op^{A}(f_{R}).$$

• Example: $L_h(X_L, X_R) := -ih(X_L) + ih(X_R)$ is the symbol of the Liouville super operator $\hat{g}^A \mapsto -i[\hat{h}^A, \hat{g}^A] = -i\hat{h}^A\hat{g}^A + i\hat{g}^A\hat{h}^A$.

The magnetic semi-super Weyl product

Given $F \in S(\Xi^2)$ and $g \in S(\Xi)$, can $\operatorname{Op}^A(F)\hat{g}^A = \operatorname{Op}^A(F)\operatorname{op}^A(g)$ be seen as a magnetic Weyl pseudodifferential operator? If so, then what is its symbol? Answer:

$$\begin{split} \mathcal{F} \bullet^{\mathcal{B}} g(X) &:= \frac{1}{(2\pi)^{3d}} \int_{\Xi^2} \mathrm{d}\mathbf{Y} \int_{\Xi} \mathrm{d}Z \, \mathrm{e}^{+\mathrm{i}\sigma(X,Y_L+Y_R+Z)} \, \mathrm{e}^{+\mathrm{i}\frac{\varepsilon}{2}\sigma(Y_L+Z,Y_R+Z)}. \\ & \mathrm{e}^{-\mathrm{i}\lambda\Omega^{\mathcal{B}}(x,y_L,y_R,z)} \, (\mathcal{F}_{\Sigma}\mathcal{F})(\mathbf{Y}) \, (\mathcal{F}_{\sigma}g)(Z). \end{split}$$

Proposition (L.-Lein)

Assume B satisfies (PB). Then the following holds.

(1)
$$F \bullet^B g \in \mathcal{S}(\Xi)$$
 and $\operatorname{Op}^A(F) \operatorname{op}^A(g) = \operatorname{op}^A(F \bullet^B g)$.

(2) For the special case $F(\mathbf{X}) = f_L(X_L)f_R(X_R)$, $f_L, f_R \in S(\Xi)$, the semi-super product reduces to

$$F \bullet^B g = f_L \star^B g \star^B f_R.$$

Given $F, G \in \mathcal{S}(\Xi^2)$, can $\operatorname{Op}^A(F) \operatorname{Op}^A(G)$ be seen as a magnetic Weyl pseudodifferential super operator? If so, then what is its symbol? Answer:

$$egin{aligned} \mathcal{F} & \sharp^{\mathcal{B}} \mathcal{G}(\mathbf{X}) := rac{1}{(2\pi)^{4d}} \int_{\Xi^2} \mathrm{d} \mathbf{Y} \int_{\Xi^2} \mathrm{d} \mathbf{Z} \, \mathrm{e}^{+\mathrm{i} \Sigma(\mathbf{X},\mathbf{Y}+\mathbf{Z})} \, \mathrm{e}^{+\mathrm{i} rac{\varepsilon}{2} \Sigma(r(\mathbf{Y}),\mathbf{Z})}. \ & \mathrm{e}^{-\mathrm{i} \lambda \gamma^{\mathcal{B}}(x_L,y_L,z_L)} \, \mathrm{e}^{-\mathrm{i} \lambda \gamma^{\mathcal{B}}(x_R,z_R,y_R)} \, (\mathcal{F}_{\Sigma}\mathcal{F})(\mathbf{Y}) \, (\mathcal{F}_{\Sigma}\mathcal{G})(\mathbf{Z}). \end{aligned}$$

Here we have set $r(\mathbf{Y}) \equiv r(Y_L, Y_R) := (-Y_L, Y_R)$.

Proposition (L.-Lein)

Assume B satisfies (PB). Then we have $F\sharp^B G \in \mathcal{S}(\Xi^2)$ and $\operatorname{Op}^A(F) \operatorname{Op}^A(G) = \operatorname{Op}^A(F\sharp^B G)$.

Definition (Hörmander super symbol classes $S_{\rho,\delta}^{m_L,m_R}(\Xi^2)$)

Let $m_L, m_R \in \mathbb{R}$, $0 \le \delta \le \rho \le 1$ and $\delta < 1$. $S^{m_L,m_R}_{\rho,\delta}(\Xi^2)$ is the Fréchet space consists of functions $F \in \mathcal{C}^{\infty}(\Xi^2)$ such that, for all $a_L, a_R, \alpha_L, \alpha_R \in \mathbb{N}^d_0$, there exists $C_{a_L a_R \alpha_L \alpha_R} > 0$ such that, for all $\mathbf{X} = (X_L, X_R) \in \Xi^2$, we have

$$\left|\partial_{x_L}^{a_L}\partial_{\xi_L}^{\alpha_L}\partial_{x_R}^{a_R}\partial_{\xi_R}^{\alpha_R}F(\mathbf{X})\right| \leq C_{a_La_R\alpha_L\alpha_R} \langle \xi_L \rangle^{m_L - |\alpha_L|\rho + |a_L|\delta} \langle \xi_R \rangle^{m_R - |\alpha_R|\rho + |a_R|\delta}$$

Definition (Hörmander super symbol classes $S^m_{\rho,\delta}(\Xi^2)$)

Let $m \in \mathbb{R}$, $0 \le \delta \le \rho \le 1$ and $\delta < 1$. $S^m_{\rho,\delta}(\Xi^2)$ is the Fréchet space consists of functions $F \in \mathcal{C}^{\infty}(\Xi^2)$ such that, for all $a_L, a_R, \alpha_L, \alpha_R \in \mathbb{N}^d_0$, there exists $C_{a_L a_R \alpha_L \alpha_R} > 0$ such that, for all $\mathbf{X} = (X_L, X_R) \in \Xi^2$, we have

 $\left|\partial_{x_L}^{a_L}\partial_{\xi_L}^{\alpha_L}\partial_{x_R}^{a_R}\partial_{\xi_R}^{\alpha_R}F(\mathbf{X})\right| \leq C_{a_La_R\alpha_L\alpha_R} \langle (\xi_L,\xi_R) \rangle^{m-(|\alpha_L|+|\alpha_R|)\rho+(|a_L|+|a_R|)\delta}.$

Using oscillatory integral techniques, we can prove the following result. Here we assume B satisfies (B), $0 \le \rho \le 1$ and $0 < \varepsilon, \lambda \le 1$.

Proposition (L.-Lein)

The map $(F,g) \mapsto F \bullet^B g$ gives rise to continuous bilinear maps,

$$\bullet^{B}: S^{m}_{\rho,0}(\Xi^{2}) \times S^{m'}_{\rho,0}(\Xi) \longrightarrow S^{m+m'}_{\rho,0}(\Xi)$$
$$\bullet^{B}: S^{m_{L},m_{R}}_{\rho,0}(\Xi^{2}) \times S^{m}_{\rho,0}(\Xi) \longrightarrow S^{m+m_{L}+m_{R}}_{\rho,0}(\Xi).$$

Again, by applying oscillatory integral techniques, we get the following results. We assume B satisfies (B), $0 \le \rho \le 1$ and $0 < \varepsilon, \lambda \le 1$.

Proposition (L.-Lein)

The map $(F, G) \mapsto F \sharp^B G$ gives rise to continuous bilinear maps,

$$\begin{split} & \sharp^{B}: S^{m}_{\rho,0}(\Xi^{2}) \times S^{m'}_{\rho,0}(\Xi^{2}) \longrightarrow S^{m+m'}_{\rho,0}(\Xi^{2}) \\ & \sharp^{B}: S^{m_{L},m_{R}}_{\rho,0}(\Xi^{2}) \times S^{m'_{L},m'_{R}}_{\rho,0}(\Xi^{2}) \longrightarrow S^{m_{L}+m'_{L},m_{R}+m'_{R}}_{\rho,0}(\Xi^{2}). \end{split}$$

Asymptotic expansion

Both \bullet^B and \sharp^B can be asymptotically expanded in ε and λ :

Theorem (L.-Lein)

Assume B satisfies (B). Then the following holds.

(1) Let $F \in S^m_{\rho,0}(\Xi^2)$ and $g \in S^{m'}_{\rho,0}(\Xi)$. Then there is $N \in \mathbb{N}_0$ such that

$$F \bullet^B g = \sum_{n=0}^N \sum_{k=0}^n \varepsilon^n \lambda^k (F \bullet^B g)_{(n,k)} + \tilde{R}_N, \qquad (*)$$

where $(F \bullet^B g)_{(n,k)} \in S^{m+m'-\rho(n+k)}_{\rho,0}(\Xi)$, $\tilde{R}_N \in S^{m+m'-\rho(N+1)}_{\rho,0}(\Xi)$ and the semi-norms of \tilde{R}_N is sufficiently small.

(2) If $F \in S_{\rho,0}^{m_L,m_R}(\Xi^2)$ and $g \in S_{\rho,0}^m(\Xi)$, then we also have an asymptotic expansion of $F \bullet^B g$ as in (*). In this case, $(F \bullet^B g)_{(n,k)} \in S_{\rho,0}^{m+m_L+m_R-\rho(n+k)}(\Xi)$, $\tilde{R}_N \in S_{\rho,0}^{m+m_L+m_R-\rho(N+1)}(\Xi)$ and the semi-norms of \tilde{R}_N is sufficiently small.

Theorem (L.-Lein)

Assume B satisfies (B) and let $F \in S^m_{\rho,0}(\Xi^2)$ and $G \in S^{m'}_{\rho,0}(\Xi^2)$. Then there is $N \in \mathbb{N}_0$ such that

$$F\sharp^{B}G = \sum_{n=0}^{N} \sum_{k=0}^{n} \varepsilon^{n} \lambda^{k} (F\sharp^{B}G)_{(n,k)} + \tilde{R}_{N},$$

where $(F \sharp^B G)_{(n,k)} \in S^{m+m'-\rho(n+k)}_{\rho,0}(\Xi^2)$, $\tilde{R}_N \in S^{m+m'-\rho(N+1)}_{\rho,0}(\Xi^2)$ and the semi-norm of \tilde{R}_N is sufficiently small.

Theorem (L.-Lein)

Suppose B satisfies (B) and let $F \in S^0_{\rho,0}(\Xi^2)$, $0 \le \rho \le 1$. Then $\operatorname{Op}^A(F)$ gives rise to a bounded linear operator from \mathscr{L}_2 to itself.

Our proof is based on the Parseval frame method which can be found in [CHP24].

- $\theta :=$ a real skew-symmetric $n \times n$ matrix.
- For each $t \in \mathbb{R}^d$, we define the unitary operator $\lambda_{\theta}(t)$ on $L_2(\mathbb{R}^d)$ by letting

$$(\lambda_{\theta}(t)f)(x) = e^{it \cdot x} f(x - \frac{1}{2}\theta t).$$

We have

$$\lambda_{ heta}(t)\lambda_{ heta}(s) = \mathrm{e}^{rac{\mathrm{i}}{2}t\cdot heta s}\lambda_{ heta}(t+s) \qquad orall t, s\in \mathbb{R}^d.$$

Definition (NC Euclidean spaces)

 $L_{\infty}(\mathbb{R}^d_{\theta}) := \{\lambda_{\theta}(t); t \in \mathbb{R}^d\}''.$

The structure theorem

Suppose that $k := rk\theta/2$ and $l = \dim \ker \theta$. In particular, we have n = 2k + l. By using the spectral theorem we can find an orthogonal matrix Q satisfying

Theorem (see, e.g., [GIV06, Ri93])

There is an isomorphism between von Neumann algebras,

$$L_{\infty}(\mathbb{R}^d_{\theta}) \simeq \mathscr{L}(L_2(\mathbb{R}^k)) \bar{\otimes} L_{\infty}(\mathbb{R}^l).$$

- In particular, if θ has full rank, then $L_{\infty}(\mathbb{R}^d_{\theta}) \simeq \mathscr{L}(L_2(\mathbb{R}^{d/2})).$
- On the other hand, if $\theta = 0$, then $L_{\infty}(\mathbb{R}^d_{\theta}) \simeq L_{\infty}(\mathbb{R}^d)$.

- The boundedness of $\operatorname{Op}^{A}(F)$ on \mathscr{L}_{p} for general p?
- Generalization to the case of more general von Neumann algebras?
- Generalization to the case of noncommutative Euclidean spaces (i.e., hybrid quantum-classical setting)?

Thank you for your attention!

References

- [BR97] Bratteli, O.; Robonsin, D.W.: Operator algebras and quantum statistical mechanics. II. Equilibrium states. Models in quantum statistical mechanics. 2nd edition. Texts and Monographs in Physics. Springer-Verlag, Berlin. 1997.
- [CHP24] Cornean, H.D.; Helffer, B.; Purice, R.: Matrix representation of Magnetic pseudo-differential operators via tight Gabor frames. To appear in J. Fourier Anal. Appl..
- [DL17] De Nittis, G.; Lein, M.: Linear response theory. An analytic-algebraic approach. Spinger Briefs in Mathematical Physics. Springer, 2017.
- [GIV06] Gayral, V.; lochum, B.; Várilly, J.: Dixmier traces on noncompact isospectral deformations. J. Funct. Anal. 237 (2006), 507–539.

< □ > < 同 > < 回 > < 回 > < 回 >

References

- [IMP07] Iftimie, V.; Măntoiu, M.; Purice, R.: Magnetic pseudodifferential operators. Publ. Res. Inst. Math. Sci. 44 (2007), 585–623.
- [LL22] Lee, G.; Lein, M.: A calculus for magnetic pseudodifferential super operators. J. Math. Phys. 63, 103506, (2022).
- **[**LL24] Lee, G.; Lein, M.: A proof of \mathfrak{L}^2 -boundedness for magnetic pseudodifferential super operators via matrix representations with respect to Parseval frames. In preparation.
- [Le10] Lein, M.: Two-parameter asymptotics in magnetic Weyl calculus. J. Math. Phys. 51, 123519 (2010).
- [MP04] Măntoiu, M.; Purice, R.: *The magnetic Weyl calculus*. J. Math. Phys. **45** (2004), no. 4, 1394–1417.
- [Ri93] Rieffel, M.: Deformation quantization for actions of R^d. Mem.
 Amer. Math. Soc. 106 (1993), no. 506, 93 pp...