A calculus for magnetic pseudodifferential super operators

Gihyun Lee

Ghent University

Gihyun.Lee@ugent.be

Algebraic, Analytic, Geometric Structures Emerging from Quantum Field Theory

@Sichuan University, Chengdu, China

March 12, 2024

4 0 8

This talk is based on the joint works with M. Lein [LL22, LL24].

- [Von Neumann algebras](#page-2-0)
- [The \(magnetic\) Weyl calculus](#page-6-0)
- **•** [Motivation](#page-16-0)
- [The \(magnetic\) super Weyl calculus](#page-19-0)
- **•** [Future Projects](#page-31-0)

4 0 8

Let H be a separable Hilbert space and $S \subseteq \mathcal{L}(\mathcal{H})$. The commutant of S is

$$
\mathcal{S}':=\{T\in \mathscr{L}(\mathscr{H});\,ST=TS\text{ for all }S\in \mathcal{S}\}.
$$

We denote the bicommutant $(\mathcal{S}')'$ by \mathcal{S}'' .

Definition

A von Neumann algebra is a unital *-subalgebra N of $\mathscr{L}(\mathscr{H})$ such that $\mathcal{N}'' = \mathcal{N}$.

The two most basic examples:

$$
\bullet \ \mathcal{N}=\mathscr{L}(\mathscr{H}).
$$

 \bullet $\mathcal{N} = L_{\infty}(X)$, where (X, \mathfrak{M}, μ) is a σ -finite measure space.

$$
\mathcal{N}_+ := \mathcal{N} \cap \mathscr{L}(\mathscr{H})_+.
$$

Definition

A trace on $\mathcal N$ is a map $\tau : \mathcal N_+ \to [0, +\infty]$ satisfying

$$
\tau(c_1S + c_2T) = c_1\tau(S) + c_2\tau(T) \qquad \forall S, T \in \mathcal{N}_+ \ \forall c_1, c_2 \in \mathbb{R}_+,
$$

$$
\tau(USU^*) = \tau(S) \qquad \forall S \in \mathcal{N}_+ \ \forall unitary \ elements \ U \in \mathcal{N}.
$$

э

 4 ロ } 4 4 9 } 4 \equiv } 4

 299

Definition

- τ is called faithful if $S \in \mathcal{N}_+$ and $\tau(S) = 0$ implies $S = 0$.
- τ is called normal if for each increasing bounded net $(S_{\alpha}) \subset \mathcal{N}_+$ such that $S := \sup_{\alpha} S_{\alpha} \in \mathcal{N}_{+}$, we have $\sup_{\alpha} \tau(S_{\alpha}) = \tau(S)$.
- τ is called semifinite if for each projection $P \in \mathcal{N}$, there exists an increasing net of projections $(P_\alpha) \subset \mathcal{N}$ such that $\tau(P_\alpha) < \infty$ $\forall \alpha$ and $P = \inf \{ Q \in \mathcal{N} : Q \text{ is a projection such that } P_{\alpha} \leq Q \ \forall \alpha \}.$

つへへ

Let τ be a faithful, normal, semifinite (f.n.s.) trace on $\mathcal N$. We denote the set of τ -measurable operators affiliated with $\mathcal N$ by $\mathfrak{M}(\mathcal N, \tau)$. For each $1 \leq p < \infty$ we define

$$
\mathscr{L}_{p}(\mathcal{N})=\mathscr{L}_{p}(\mathcal{N},\tau):=\left\{\left.\mathcal{T}\in \mathfrak{M}(\mathcal{N},\tau);\ \tau\big(|\mathcal{T}|^{p}\big)^{\frac{1}{p}}<\infty\right.\right\}.
$$

The two most basic examples:

- If $N = \mathcal{L}(\mathcal{H})$, then the standard operator trace Tr is an f.n.s. trace on $\mathscr{L}(\mathscr{H})$. We have $\mathscr{L}_{p}(\mathcal{N}) = \mathscr{L}_{p}$, where \mathscr{L}_{p} is the ideal of Schatten p-class operators.
- If $\mathcal{N}=L_{\infty}(X)$, then $\int d\mu$ is an f.n.s. trace on $L_{\infty}(X).$ We have $\mathscr{L}_p(\mathcal{N}) = L_p(X).$

つへへ

Phase space notations

- $\Xi = \, \mathcal{T}^* \mathbb{R}^d = \mathbb{R}^d \times \mathbb{R}^{d^*}$ (the phase space)
- **•** Elements of Ξ will be denoted by $X = (x, \xi)$, $Y = (y, \eta)$, $Z = (z, \zeta)$ with space components $x,y,z\in\mathbb{R}^d$ and momentum components $\xi, \eta, \zeta \in \mathbb{R}^d$.
- $\bullet \equiv$ is endowed with the symplectic form $\sigma(X, Y) := \xi \cdot y x \cdot \eta$.

つひい

The canonical commutation relations (CCR),

$$
-{\rm i}[Q_j,Q_k]=0,\qquad -{\rm i}[P_j,P_k]=0,\qquad -{\rm i}[Q_j,P_k]=\varepsilon\delta_{jk}.
$$

can be equivalently reformulated in terms of the family of unitary operators $\{w(X)\}_{X \in \Xi}$, called the Weyl system.

$$
w(X) := e^{-i\sigma(X,(Q,P))} = e^{-i(\xi \cdot Q - x \cdot P)}.
$$

We have

\n- $$
w(X)w(Y) = e^{+i\frac{\varepsilon}{2}\sigma(X,Y)}w(X+Y).
$$
\n- $\{w(X); X \in \Xi\}'' = \mathcal{L}(L_2(\mathbb{R}^d)).$
\n

- Consider a charged particle moving in \mathbb{R}^d subjected to the magnetic field B. Pick a vector potential A so that $B = dA$.
- Assume one of the following two assumptions on the magnetic field B and associated vector potential A.
	- (PB) All components of B belong to $\mathcal{C}^{\infty}_{\mathsf{u},\mathsf{pol}}(\mathbb R^d)$ and all components of A belong to $\mathcal{C}^{\infty}_{\mathsf{pol}}(\mathbb{R}^d)$.
		- (B) All components of B belong to $C^{\infty}_{\rm b}(\mathbb{R}^d)$ and all components of A belong to $\mathcal{C}^{\infty}_{\mathsf{pol}}(\mathbb{R}^d)$.
- We introduce two small parameters [Le10], which are crucial for asymptotic expansions arise in the study of semiclassical limits.:
	- The coupling of the charge to the magnetic field λ .
	- A semiclassical parameter ε .

つひい

• In the magnetic setting, the building block observables are the position operators $Q = (Q_1, \ldots, Q_d)$ and the kinetic momentum operators $P^{\small{\textbf{\textit{A}}}}=(P^{\small{\textbf{\textit{A}}}}_{1}, \ldots, P^{\small{\textbf{\textit{A}}}}_{d})$ defined by

$$
Q_j f(x) := \varepsilon x_j f(x),
$$
 $P_j^A f(x) := -i \frac{\partial f}{\partial x_j}(x) - \lambda A_j(\varepsilon x) f(x).$

 Q and P^A satisfy the commutation relations:

$$
-{\rm i}[Q_j,Q_k]=0,\qquad -{\rm i}[P_j^A,P_k^A]=\varepsilon\lambda B_{jk}(Q),\qquad -{\rm i}[Q_j,P_k^A]=\varepsilon\delta_{jk}.
$$

These relations can be encoded into the magnetic Weyl system $\{w^{\mathcal{A}}(X)\}_{X\in\Xi}$ defined by

$$
w^{A}(X) := e^{-i\sigma(X,(Q,P^{A}))} = e^{-i(\xi \cdot Q - x \cdot P^{A})}.
$$

We have

\n- \n
$$
w^A(X)w^A(Y) = e^{+i\frac{\varepsilon}{2}\sigma(X,Y)}w^B(Q;x,y)w^A(X+Y).
$$
\n
\n- \n
$$
\{w^A(X); X \in \Xi\}'' = \mathcal{L}(L_2(\mathbb{R}^d)).
$$
\n
\n

4 **D F**

 299

Definition (Magnetic Weyl quantization [MP04])

For all $f \in \mathcal{S}(\Xi)$ and magnetic fields satisfying (PB), we define

$$
\mathrm{op}^A(f) := \frac{1}{(2\pi)^d} \int_{\Xi} \mathrm{d} X \, (\mathcal{F}_{\sigma} f)(X) \, w^A(X).
$$

Here $\mathcal{F}_{\sigma}f$ is the symplectic Fourier transform of f defined by

$$
(\mathcal{F}_{\sigma}f)(X) := \frac{1}{(2\pi)^d} \int_{\Xi} dX' e^{i\sigma(X,X')} f(X').
$$

Magnetic Weyl quantization inherits gauge-covariance from the magnetic Weyl system.

$$
\mathrm{op}^{A+\mathrm{d}\chi}(f) = \mathrm{e}^{+\mathrm{i}\lambda\chi(Q)} \, \mathrm{op}^A(f) \, \mathrm{e}^{-\mathrm{i}\lambda\chi(Q)}.
$$

Given $f, g \in \mathcal{S}(\Xi)$, we define

$$
(f \star^B g)(X) := \frac{1}{(2\pi)^{2d}} \int_{\Xi} dY \int_{\Xi} dZ \, e^{+i\sigma(X,Y+Z)} \, e^{+i\frac{\varepsilon}{2}\sigma(Y,Z)}.
$$

$$
e^{-i\frac{\lambda}{\varepsilon} \Gamma^B((x-\frac{\varepsilon}{2}(y+z),x+\frac{\varepsilon}{2}(y-z),x+\frac{\varepsilon}{2}(y+z)))} \left(\mathcal{F}_{\sigma} f\right)(Y) \left(\mathcal{F}_{\sigma} g\right)(Z).
$$

Then we have $\operatorname{op}^A(f) \operatorname{op}^A(g) = \operatorname{op}^A(f \star^B g).$

4 **D F**

э

 QQ

The class of Hörmander symbols of order $m \in \mathbb{R}$ and type (ρ, δ) with $0 \leq \rho \leq \delta \leq 1$ is the Fréchet space defined by

$$
S^m_{\rho,\delta}(\Xi):=\left\{f\in\mathcal{C}^\infty(\Xi)\mid \sup_{X\in\Xi}\langle\xi\rangle^{-m-|a|\delta+|\alpha|\rho}\left|\partial_x^a\partial_\xi^\alpha f(X)\right|<\infty\;\forall a,\alpha\in\mathbb{N}_0^d\right\}.
$$

Theorem ([IMP07])

Let $m_1, m_2 \in \mathbb{R}$. For magnetic fields B satisfying (B) and $0 \le \delta \le \rho \le 1$, the magnetic Weyl product \star^B gives rise to a continuous bilinear map,

$$
\star^B: S^{m_1}_{\rho,\delta}(\Xi)\times S^{m_2}_{\rho,\delta}(\Xi)\longrightarrow S^{m_1+m_2}_{\rho,\delta}(\Xi).
$$

つへへ

Theorem ([IMP07])

Suppose that B satisfies (B) and $f\in S^0_{\rho,\delta}(\Xi)$, $0\leq\delta<\rho\leq 1$. Then $\operatorname{op}^A(f)$ gives rise to a bounded linear operator from $\mathsf{L}_2(\mathbb{R}^d)$ to itself.

∢ ロ ▶ 《 母 》 《 ヨ 》 《 ヨ

Furthermore, we can asymptotically expand the product $f \star^B g$ in ε and λ :

Theorem ([Le10])

Let $m_1, m_2 \in \mathbb{R}$ and assume B satisfies (B) , $f \in S^{m_1}_{\rho,0}(\Xi)$ and $g \in S^{m_2}_{\rho,0}(\Xi)$. Then there is $N \in \mathbb{N}_0$ such that

$$
f*^B g = \sum_{n=0}^N \sum_{k=0}^n \varepsilon^n \lambda^k (f*^B g)_{(n,k)} + \tilde{R}_N,
$$

where $(f \star^B g)_{(n,k)} \in \mathcal{S}_{\rho,0}^{m_1+m_2-(n+k)\rho}$ $\tilde{\rho}_{\rho,0}^{m_1+m_2-(n+k)\rho}(\Xi)$, $\tilde{R}_N\in S_{\rho,0}^{m_1+m_2-(N+1)\rho}$ $\mathcal{L}_{\rho,0}^{(m_1+m_2-(N+1)\rho}(\Xi)$ and the semi-norms of $\tilde R_N$ is sufficiently small.

 \bullet Let H be a Hamiltonian affiliated to a von Neumann algebra $\cal N$ endowed with a f.n.s. trace τ . In quantum mechanics, density operators evolve according to the Liouville equation,

$$
\frac{\mathrm{d}}{\mathrm{d}t}\rho(t)=L_H\big(\rho(t)\big):=-\mathrm{i}[H,\rho(t)],\qquad \rho(t_0)\in\mathscr{L}_1(\mathcal{N}).
$$

 \bullet L_H maps linear operators to linear operators; physicists refer to those as super operators.

- This kind of algebraic approach was useful in many cases, e.g.,
	- systems from statistical mechanics in the thermodynamic limit [BR17].
	- linear response theory [DL17].
- Algebraic approach
	- Makes the mathematical descriptions for various systems rigorous.
	- But it involves technical assumptions on operators which seem difficult to verify for concrete models.

- **•** Pseudodifferential theory
	- The way of assigning functions (called symbols) to operators.
	- Translates properties of symbols to associated pseudodifferential operators.
- We can put $\rho(t)$ into the framework of pseudodifferential theory (the magnetic Weyl calculus). But what about L_H or other super operators?

Goal

The goal of this talk is to introduce the newly constructed pseudodifferential calculus for super operators, which is a natural receptacle of L_H and other relevant super operators.

- $\Xi^2:=\Xi\times\Xi$ (the doubled phase space).
- Elements of Ξ^2 will be denoted by $\mathbf{X} = (X_L, X_R), \mathbf{Y} = (Y_L, Y_R), \mathbf{Z} = (Z_L, Z_R).$ Here we follow the same convention as before for variables in Ξ , e.g., $X_L = (x_L, \xi_L)$ and $Y_R = (y_R, \eta_R)$ with $x_L, y_R \in \mathbb{R}^d$ and $\xi_L, \eta_R \in \mathbb{R}^{d^*}.$
- We endow Ξ^2 with the symplectic form Σ defined by

$$
\Sigma(\mathbf{X},\mathbf{Y}):=\sigma(X_L,Y_L)+\sigma(X_R,Y_R).
$$

The symplectic Fourier transform $\mathcal{F}_{\mathbf{\Sigma}} F$ of a function F on Ξ^2 is defined by

$$
(\mathcal{F}_{\Sigma})(\mathbf{X}) := \frac{1}{(2\pi)^{2d}} \int_{\Xi^2} d\mathbf{X}' e^{+i\Sigma(\mathbf{X}, \mathbf{X}')} F(\mathbf{X}').
$$

Magnetic pseudodifferential super operators

Given a function $g\in \mathcal{S}(\Xi)$, set $\hat{g}^{A}:=\mathrm{op}^{A}(g).$

Definition (Magnetic Super Weyl System)

For $\mathbf{X} \in \Xi^2$, we define

$$
W^A(\mathbf{X})\hat{g}^A \equiv W^A(X_L, X_R)\hat{g}^A := w^A(X_L)\hat{g}^A w^A(X_R).
$$

Definition (Magnetic Pseudodifferential Super Operator)

The magnetic pseudodifferential super operator $\operatorname{Op}^A(F)$ associated with a function $F\in \mathcal{S}(\Xi^2)$ is defined by

$$
\operatorname{Op}^A(F) \hat{g}^A := \frac{1}{(2\pi)^{2d}} \int_{\Xi^2} d\mathbf{X} \, (\mathcal{F}_{\Sigma} F)(\mathbf{X}) \, W^A(\mathbf{X}) \, \hat{g}^A.
$$

 QQQ

If F is a function of the form $F(\mathbf{X}) = f_L(X_L) f_R(X_R)$, $f_L, f_R \in S(\Xi)$, then we get

$$
Op^{A}(F) \hat{g}^{A} = \frac{1}{(2\pi)^{2d}} \int_{\Xi} dX_{L} \int_{\Xi} dX_{R} (\mathcal{F}_{\sigma} f_{L})(X_{L}) (\mathcal{F}_{\sigma} f_{R})(X_{R}) \cdot \omega^{A}(X_{L}) \hat{g}^{A} \omega^{A}(X_{R})
$$

$$
= op^{A}(f_{L}) \hat{g}^{A} op^{A}(f_{R}).
$$

• Example: $L_h(X_L, X_R) := -ih(X_L) + ih(X_R)$ is the symbol of the Liouville super operator $\hat{g}^A \mapsto -{\rm i}[\hat{h}^A,\hat{g}^A]= -{\rm i}\hat{h}^A\hat{g}^A+{\rm i}\hat{g}^A\hat{h}^A.$

The magnetic semi-super Weyl product

Given $F\in \mathcal{S}(\Xi^2)$ and $g\in \mathcal{S}(\Xi)$, can $\operatorname{Op}^A(F)\hat{g}^A = \operatorname{Op}^A(F)\operatorname{op}^A(g)$ be seen as a magnetic Weyl pseudodifferential operator? If so, then what is its symbol? Answer:

$$
F\bullet^B g(X) := \frac{1}{(2\pi)^{3d}} \int_{\Xi^2} d\mathbf{Y} \int_{\Xi} dZ \,\mathrm{e}^{+i\sigma(X,Y_L+Y_R+Z)} \,\mathrm{e}^{+i\frac{\varepsilon}{2}\sigma(Y_L+Z,Y_R+Z)}.
$$

$$
\mathrm{e}^{-i\lambda \Omega^B(x,y_L,y_R,z)} \left(\mathcal{F}_{\Sigma}F\right)(\mathbf{Y}) \left(\mathcal{F}_{\sigma}g\right)(Z).
$$

Proposition (L.-Lein)

Assume B satisfies (PB) . Then the following holds.

(1)
$$
F \bullet^B g \in \mathcal{S}(\Xi)
$$
 and $\text{Op}^A(F) \text{ op}^A(g) = \text{op}^A(F \bullet^B g)$.

(2) For the special case $F(\mathbf{X}) = f_L(X_L) f_R(X_R)$, $f_L, f_R \in \mathcal{S}(\Xi)$, the semi-super product reduces to

$$
F\bullet^B g=f_L\star^B g\star^B f_R.
$$

Given $F,G\in \mathcal S(\Xi^2)$, can $\operatorname{Op}^A(F)\operatorname{Op}^A(G)$ be seen as a magnetic Weyl pseudodifferential super operator? If so, then what is its symbol? Answer:

$$
\mathcal{F}\sharp^{\mathcal{B}}G(\mathbf{X}):=\frac{1}{(2\pi)^{4d}}\int_{\Xi^2}\mathrm{d}\mathbf{Y}\int_{\Xi^2}\mathrm{d}\mathbf{Z}\,\mathrm{e}^{+i\Sigma(\mathbf{X},\mathbf{Y}+\mathbf{Z})}\,\mathrm{e}^{+i\frac{\varepsilon}{2}\Sigma(r(\mathbf{Y}),\mathbf{Z})}.
$$
\n
$$
\mathrm{e}^{-i\lambda\gamma^{\mathcal{B}}(x_L,y_L,z_L)}\,\mathrm{e}^{-i\lambda\gamma^{\mathcal{B}}(x_R,z_R,y_R)}\left(\mathcal{F}_{\Sigma}F\right)(\mathbf{Y})\left(\mathcal{F}_{\Sigma}G\right)(\mathbf{Z}).
$$

Here we have set $r(Y) \equiv r(Y_L, Y_R) := (-Y_L, Y_R)$.

Proposition (L.-Lein)

Assume B satisfies (PB). Then we have $F\sharp^{B}G\in \mathcal{S}(\Xi^{2})$ and $\mathrm{Op}^{\mathcal{A}}(F)\mathrm{Op}^{\mathcal{A}}(G)=\mathrm{Op}^{\mathcal{A}}(F\sharp^B G).$

Definition (Hörmander super symbol classes $S^{m_L,m_R}_{\rho,\delta}(\Xi^2))$

Let $m_L, m_R \in \mathbb{R}$, $0 \leq \delta \leq \rho \leq 1$ and $\delta < 1$. $S_{\rho, \delta}^{m_L, m_R} (\Xi^2)$ is the Fréchet space consists of functions $\mathit{F} \in \mathcal{C}^\infty(\Xi^2)$ such that, for all $a_L, a_R, \alpha_L, \alpha_R \in \mathbb{N}_\mathcal{Q}^d$, there exists $\mathcal{C}_{a_L a_R \alpha_L \alpha_R} > 0$ such that, for all $\mathsf{X} = (X_{\mathsf{L}}, X_{\mathsf{R}}) \in \Xi^2$, we have

$$
\left|\partial_{x_L}^{a_L}\partial_{\xi_L}^{a_L}\partial_{x_R}^{a_R}\partial_{\xi_R}^{a_R}F(\mathbf{X})\right|\leq C_{a_La_R\alpha_L\alpha_R}\left\langle \xi_L\right\rangle^{m_L-|\alpha_L|\rho+|a_L|\delta}\left\langle \xi_R\right\rangle^{m_R-|\alpha_R|\rho+|a_R|\delta}.
$$

つひい

Definition (Hörmander super symbol classes $\mathcal{S}^m_{\rho,\delta}(\Xi^2))$

Let $m\in\mathbb{R}$, $0\leq\delta\leq\rho\leq1$ and $\delta< 1$. $S^m_{\rho,\delta}(\Xi^2)$ is the Fréchet space consists of functions $\mathcal{F}\in\mathcal{C}^\infty(\Xi^2)$ such that, for all $a_L,a_R,\alpha_L,\alpha_R\in\mathbb{N}_0^d$, there exists $\mathcal{C}_{a_L a_R \alpha_L \alpha_R} > 0$ such that, for all $\mathbf{X} = (X_L, X_R) \in \Xi^2$, we have

 $\begin{array}{c} \hline \end{array}$ $\partial^{a_L}_{x_L} \partial^{\alpha_L}_{\xi_L}$ $\delta_{\zeta_L}^{\alpha_L} \partial_{\mathsf{x}_R}^{\mathsf{a}_R} \partial_{\xi_R}^{\alpha_R}$ $\left| \frac{\alpha_R}{\xi_R} F(\mathbf{X}) \right| \leq C_{a_L a_R \alpha_L \alpha_R} \left\langle \left(\xi_L, \xi_R \right) \right\rangle^{m - \left(|\alpha_L| + |\alpha_R| \right) \rho + \left(|a_L| + |a_R| \right) \delta}.$

つへへ

Using oscillatory integral techniques, we can prove the following result. Here we assume B satisfies (B), $0 \le \rho \le 1$ and $0 < \varepsilon, \lambda \le 1$.

Proposition (L.-Lein)

The map $(F, g) \mapsto F \bullet^B g$ gives rise to continuous bilinear maps,

$$
\bullet^B: S^{m}_{\rho,0}(\Xi^2) \times S^{m'}_{\rho,0}(\Xi) \longrightarrow S^{m+m'}_{\rho,0}(\Xi)
$$

$$
\bullet^B: S^{m_L,m_R}_{\rho,0}(\Xi^2) \times S^{m}_{\rho,0}(\Xi) \longrightarrow S^{m+m_L+m_R}_{\rho,0}(\Xi).
$$

Again, by applying oscillatory integral techniques, we get the following results. We assume B satisfies (B), $0 \le \rho \le 1$ and $0 \le \varepsilon, \lambda \le 1$.

Proposition (L.-Lein)

The map $(F, G) \mapsto F \sharp^B G$ gives rise to continuous bilinear maps, $\sharp^B: S^m_{\rho,0}(\Xi^2) \times S^{m'}_{\rho,0}(\Xi^2) \longrightarrow S^{m+m'}_{\rho,0}(\Xi^2)$ $\sharp^B: \mathcal{S}^{m_L,m_R}_{\rho,0}(\Xi^2)\times \mathcal{S}^{m'_L,m'_R}_{\rho,0}(\Xi^2)\longrightarrow \mathcal{S}^{m_L+m'_L,m_R+m'_R}_{\rho,0}(\Xi^2).$

 QQQ

Asymptotic expansion

Both \bullet^B and \sharp^B can be asymptotically expanded in ε and λ :

Theorem (L.-Lein)

Assume B satisfies (B) . Then the following holds.

 (1) Let $F\in S^m_{\rho,0}(\Xi^2)$ and $g\in S^{m'}_{\rho,0}(\Xi).$ Then there is $N\in\mathbb N_0$ such that

$$
F\bullet^B g=\sum_{n=0}^N\sum_{k=0}^n \varepsilon^n\lambda^k (F\bullet^B g)_{(n,k)}+\widetilde{R}_N,\qquad (*)
$$

where $(\digamma\bullet^B g)_{(n,k)}\in S^{m+m'-\rho(n+k)}_{\rho,0}$ $\tilde{\rho}_{\rho,0}^{m+m'-\rho(n+k)}(\Xi)$, $\tilde{R}_N\in\mathcal{S}_{\rho,0}^{m+m'-\rho(N+1)}$ $\varphi_{\rho,0}^{(n+m-\rho(n+1)}(\Xi)$ and the semi-norms of $\tilde R_N$ is sufficiently small.

 (2) If $F\in S^{m_L,m_R}_{\rho,0}(\Xi^2)$ and $g\in S^m_{\rho,0}(\Xi)$, then we also have an asymptotic expansion of $F \bullet^B g$ as in $(*)$. In this case, $(\digamma\bullet^B g)_{(n,k)}\in S^{m+m_l+m_R-\rho(n+k)}_{\rho,0}(\Xi)$, $\tilde{R}_N\in S^{m+m_l+m_R-\rho(N+1)}_{\rho,0}(\Xi)$ and the semi-norms of $\tilde R_N$ is sufficiently sm[all](#page-27-0).

Theorem (L.-Lein)

Assume B satisfies (B) and let $F\in S^m_{\rho,0}(\Xi^2)$ and $G\in S^{m'}_{\rho,0}(\Xi^2)$. Then there is $N \in \mathbb{N}$ such that

$$
\mathcal{F}\sharp^B\mathcal{G}=\sum_{n=0}^N\sum_{k=0}^n\varepsilon^n\lambda^k(\mathcal{F}\sharp^B\mathcal{G})_{(n,k)}+\widetilde{R}_N,
$$

where $(\mathsf{F}\sharp^B\mathsf{G})_{(n,k)}\in\mathsf{S}^{m+m'-\rho(n+k)}_{\rho,0}$ $\tilde{\epsilon}_{\rho,0}^{m+m'-\rho(n+k)}(\Xi^2)$, $\tilde{R}_N\in\mathcal{S}_{\rho,0}^{m+m'-\rho(N+1)}$ $\mathcal{L}_{\rho,0}^{m+m'-\rho(\mathit{N}+1)}(\Xi^2)$ and the semi-norm of $\tilde R_N$ is sufficiently small.

つへへ

Theorem (L.-Lein)

Suppose B satisfies (B) and let $F\in S^0_{\rho,0}(\Xi^2)$, $0\leq \rho\leq 1$. Then ${\rm Op}^A(F)$ gives rise to a bounded linear operator from \mathcal{L}_2 to itself.

Our proof is based on the Parseval frame method which can be found in [CHP24].

- $\theta = a$ real skew-symmetric $n \times n$ matrix.
- For each $t\in\mathbb{R}^d$, we define the unitary operator $\lambda_\theta(t)$ on $L_2(\mathbb{R}^d)$ by letting

$$
(\lambda_{\theta}(t)f)(x) = e^{it\cdot x} f\big(x - \frac{1}{2}\theta t\big).
$$

We have

$$
\lambda_{\theta}(t)\lambda_{\theta}(s) = e^{\frac{i}{2}t\cdot\theta s}\lambda_{\theta}(t+s) \qquad \forall t,s \in \mathbb{R}^d.
$$

Definition (NC Euclidean spaces)

 $\mathcal{L}_{\infty}(\mathbb{R}_{\theta}^{d}) := \{\lambda_{\theta}(t); t \in \mathbb{R}^{d}\}''$.

The structure theorem

Suppose that $k := \frac{rk\theta}{2}$ and $l = \dim \ker \theta$. In particular, we have $n = 2k + l$. By using the spectral theorem we can find an orthogonal matrix Q satisfying

Theorem (see, e.g., [GIV06, Ri93])

There is an isomorphism between von Neumann algebras,

$$
L_\infty(\mathbb{R}^d_\theta)\simeq \mathscr{L}(L_2(\mathbb{R}^k))\bar\otimes L_\infty(\mathbb{R}^l).
$$

- In particular, if θ has full rank, then $L_\infty(\mathbb{R}^d_\theta)\simeq \mathscr{L}(L_2(\mathbb{R}^{d/2})).$
- On the other hand, if $\theta = 0$, then $L_{\infty}(\mathbb{R}^d_\theta) \simeq L_{\infty}(\mathbb{R}^d)$.

- The boundedness of $\mathrm{Op}^A(F)$ on \mathscr{L}_ρ for general $\rho?$
- Generalization to the case of more general von Neumann algebras?
- Generalization to the case of noncommutative Euclidean spaces (i.e., hybrid quantum-classical setting)?

Thank you for your attention!

4 **D F**

∍

 299

References

- [BR97] Bratteli, O.; Robonsin, D.W.: Operator algebras and quantum statistical mechanics. II. Equlibrium states. Models in quantum statistical mechanics. 2nd edition. Texts and Monographs in Physics. Springer-Verlag, Berlin. 1997.
- **[i**] [CHP24] Cornean, H.D.; Helffer, B.; Purice, R.: Matrix representation of Magnetic pseudo-differential operators via tight Gabor frames. To appear in J. Fourier Anal. Appl..
- **[B**] [DL17] De Nittis, G.; Lein, M.: Linear response theory. An analytic-algebraic approach. Spinger Briefs in Mathematical Physics. Springer, 2017.
- **Fi** [GIV06] Gayral, V.; lochum, B.; Várilly, J.: Dixmier traces on noncompact isospectral deformations. J. Funct. Anal. 237 (2006), 507–539.

イロト イ母 トイヨ トイヨ

References

- [IMP07] Iftimie, V.; Măntoiu, M.; Purice, R.: Magnetic pseudodifferential operators. Publ. Res. Inst. Math. Sci. 44 (2007), 585–623.
- \Box [LL22] Lee, G.; Lein, M.: A calculus for magnetic pseudodifferential super operators. J. Math. Phys. **63**, 103506, (2022).
- [LL24] Lee, G.; Lein, M.: A proof of \mathfrak{L}^2 -boundedness for magnetic pseudodifferential super operators via matrix representations with respect to Parseval frames. In preparation.
- **E** [Le10] Lein, M.: Two-parameter asymptotics in magnetic Weyl calculus. J. Math. Phys. 51, 123519 (2010).
- **I** [MP04] Măntoiu, M.; Purice, R.: The magnetic Weyl calculus. J. Math. Phys. 45 (2004), no. 4, 1394–1417.
- [Ri93] Rieffel, M.: Deformation quantization for actions of R^d . Mem. Amer. Math. Soc. 106 (1993), no. 506, 93 [pp](#page-36-0)[.](#page-37-0) QQ