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Noncommutative geometry (NCG)
One aim of NCG is to reformulate invariants in geometry and topology in
terms of invariants for algebras, apply them to “more singular spaces.”

I compact Hausdorff space X ↔ C (X )algebra of continuous functions;

I Hausdorff space X ↔ C0(X ) algebra of continuous functions that
vanish at infinity;

I Noncommutative generalization of C (X ) or C0(X ): C∗-algebra A
with(out) a unit, for example,

C,C0(R),Mn(C),K.

A C∗-algebra is a closed subalgebra of B(H) under the operator
norm.

I topological K -theory K 0(X )↔ K0(C (X )) operator K -theory;

I For a C∗-algebra A, its operator K -theory is an abelian group having
the form

K0(A) :=

{
[p]− [q]|p, q ∈ M∞(A) := ∪nMn(A)/a ∼

[
a 0
0 0

]}
.
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Bott periodicity

I K0(C) ∼= Z;

I K0(K) ∼= Z induced by matrix trace Tr ;

I Bott periodicity
K0(C) ∼= K0(C0(R2)).

Bott periodicity in other forms:

I homotopy theory: πk(U) ∼= πk+2(U) for U = ∪nU(n)/a ∼
[

a 0
0 1

]
;

I topological K -theory: K 0(X ) ∼= K 2(X ) for a topological space X ;

I Thom isomorpshim: K 0(X ) ∼= K 0(E ) for a complex vector bundle
E → X (crucial in the proof of Atiyah-Singer index theorem);

I operator K -theory: K0(A) ∼= K2(A) for C∗-algebra A.
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Heisenberg group algebra as a continuous field
I Let H3 be the Heisenberg group: R× R× R with multiplication

(x , y , t) · (x ′, y ′, t ′) := (x + x ′, y + y ′, t + t ′ +
1

2
(xy ′ − x ′y)).

I The group C∗-algebra C∗(H3) is the norm closure of
Cc(H3) ⊂ B(L2(H3)) given by convolutions.

I Under the Fourier transform F = {Fλ}λ∈R, where

Fλ(c) :=

{
πλ(c) λ ∈ R∗

ρ̂(c) λ = 0
for c ∈ C∗(H3),

C∗(H3) = C0(R2)× {0} t K(L2(R))× R∗

a continuous field of C∗-algebras. The continuity at 0 is in line with
Connes’ tangent groupoid:

(xn, yn, λn)→ (x , ξ)⇔ xn − yn → 0,
xn − yn
λn

→ ξ.

I The continuous field gives rise to the Bott periodicity

K0(C0(R2)) ∼= K0(K).
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Outline

This talk is about an algebraic index theorem, parallel to the
Atiyah-Singer index theorem.

I Nest-Tsygan 95’ (index theory on compact smooth manifolds)

I Elliott-Natsume-Nest 96’ (index theory on Rn)

I Equivariant ENN theorem (equivariant index theory on Rn)

This is the ‘equivariant index’ perspective of the equivariant Bott
periodicity. Main tools are

I continuous fields of C∗-algebras and

I cyclic cohomology from NCG.

Reference:

I Baiying Ren, Hang Wang, Zijing Wang: Equivariant index theorem
on Rn in the context of continuous fields of C∗-algebras,
arXiv:2401.07474.
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1. ENN Theorem
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Shubin’s class of pseudodifferential operators

Let u ∈ S(Rn) be a rapidly decreasing function. Then

u(x) = (2π)−n
∫
Rn

e i〈x,ξ〉(Fu)(ξ)dξ,

where F is the Fourier transform.
Let a ∈ C∞(T ∗Rn). A pseudodifferential operator (abbr. ΨDO) Pa is

(Pau)(x) = (2π)−n
∫
Rn

e i〈x,ξ〉a(x , ξ)(Fu)(ξ)dξ,

where u ∈ S(Rn) and a will be called the (total) symbol of Pa.
To let Pa make sense, a needs to satisfy certain conditions.

Definition
a ∈ C∞(T ∗Rn) is a symbol of order m ∈ R if ∀ multi-index α, ∃Cα s.t.

|∂αz (a)| ≤ Cα(1 + |z |2)
m−|α|

2 , z ∈ T ∗Rn.

Let Γm(T ∗Rn) be the space of symbols of order m.
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Fredholm index
If a ∈ Γm(T ∗Rn), then Pa : S(Rn)→ S(Rn) given by

(Pau)(x) = (2π)−n
∫
Rn

e i〈x,ξ〉a(x , ξ)(Fu)(ξ)dξ, u ∈ S(Rn),

is a continuous operator. Pa is also said to be of order m.
If V = W = Ck , a ∈ Mk(Γm(T ∗Rn)), Pa : S(Rn; V )→ S(Rn; W ).

Definition
a ∈ Mk(Γm(T ∗Rn)) is said to be elliptic if ∃C ,R > 0 s.t.

a(x , ξ)∗a(x , ξ) ≥ C (|x |2 + |ξ|2)mIk for |x |2 + |ξ|2 ≥ R.

Pa is also said to be elliptic.

Remark
If Pa : S(Rn; V )→ S(Rn; W ) is an elliptic ΨDO, then Pa is Fredholm
and its formal adjoint P∗a is also Fredholm. Denote by the Fredholm index

ind(Pa) = dim(KerPa|S(Rn;V ))− dim(KerP∗a |S(Rn;W )).
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Example

Remark
Furthermore, a ΨDO Pa extends to a possibly unbounded operator

Pa : L2(Rn; V )→ L2(Rn; W )

with dense domain {f ∈ L2(Rn; V )|Paf ∈ L2(Rn; W )}, which is also
Fredholm when Pa is elliptic. In this case,

ind(Pa) = dim(KerPa|L2(Rn;V ))− dim(KerP∗a |L2(Rn;W )).

Indeed, if a ∈ Γ0(T ∗Rn), then Pa extends to a bounded operator from
L2(Rn; V ); while if a ∈ Γm(T ∗Rn), m < 0, then Pa extends to a compact
operator from L2(Rn; V ).

Example
Define a ∈ C∞(T ∗Rn) by a(x , ξ) = x + iξ. Then Pa = x + d

dx is an
elliptic ΨDO on L2(Rn) of order 1. Furthermore, Pa is Fredholm and
ind(Pa) = 1.
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ENN theorem

Let Pa : S(Rn; V )→ S(Rn; W ) be an elliptic ΨDO with symbol a of
positive order. Denote by

ea =

(
(1 + a∗a)−1 (1 + a∗a)−1a∗

a(1 + a∗a)−1 a(1 + a∗a)−1a∗

)
the graph projection induced by the closed multiplication operator
a : L2(T ∗Rn; V )→ L2(T ∗Rn; W ).

Theorem (Elliott-Natsume-Nest, 96’)

ind(Pa) =
1

(2πi)nn!

∫
T∗Rn

tr(êa(dêa)2n),

where êa = ea −
(

0 0
0 1

)
.

analytic index = topological index
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2. Proof of ENN Theorem
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The analytic index
View Pa : L2(Rn; V )→ L2(Rn; W ) as an unbounded operator. Pa is
closable. Denote by T the closure of Pa.
Denote by e1 the graph projection of T . Then

e1−
(
0 0
0 1

)
=

(
(1 + T ∗T )−1 (1 + T ∗T )−1T ∗

T (1 + T ∗T )−1 (1 + TT ∗)−1

)
∈ K(L2(Rn; V ⊕W )),

where K(L2(Rn)) stands for compact operators.

Proposition (Elliott-Natsume-Nest, 96’)

[e1]−
[(

0 0
0 1

)]
= [KerPa]− [KerP∗a ] ∈ K0

(
K(L2(Rn; V ⊕W ))

)
.

Fact: The canonical trace induces an isomorphism

Tr : K0

(
K(L2(Rn; V ⊕W ))

)
→ Z.

Step 1: Represent ind(Pa) by the K -theory class:

ind(Pa) = Tr

(
[e1]−

[(
0 0
0 1

)])
.
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Sufficiently large subalgebra K∞

Construct the Kohn-Nirenberg quantization as follows.
For } ∈ (0, 1], let P} be the ΨDO with symbol a}(x , ξ) := a(x , }ξ).
Denote by e} the graph projection of P}. Then

ind(Pa) = Tr

(
[e}]−

[(
0 0
0 1

)])
, } ∈ (0, 1].

Fact: e} −
(

0 0
0 1

)
is not a trace-class operator for } ∈ (0, 1].

Idea: Denote by K∞(L2(Rn)) the subalgebra of integral operators with
Schwartz kernels in S(T ∗Rn). K∞(L2(Rn)) is dense and stable under the
holomorphic functional calculus.

Tr : K0(K(L2(Rn))) ∼= K0(K∞(L2(Rn)))→ Z.

Step 2: Search for e∞} −
(

0 0
0 1

)
∈ K∞(L2(Rn; V ⊕W ))!
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Continuous fields of C ∗-algebras
The group C∗-algebra of the (2n + 1)-dimensional Heisenberg group
C∗(H2n+1) can be identified as the continuous field of C∗-algebras
(A})}∈R, where

A0 = C0(T ∗Rn),

A} = K(L2(Rn)), } 6= 0.

Here we restrict the interval to [0, 1].
The continuous field structure is given by the family of sections

{} ∈ [0, 1] 7→ ρ}(f̂ ) ∈ A}| f ∈ S(R2n+1)}.

Here ρ}(f̂ ) ∈ K∞(L2(Rn)) ⊂ K(L2(Rn)) for } ∈ (0, 1] is given by

ρ}(f̂ )φ(x) =
1

(2π)n

∫
Rn

f̂ (x , y , })φ(x + }y)dy , φ ∈ L2(Rn),

where f̂ denotes the Fourier transform with respect to the second
variable of f ∈ S(Rn × Rn × R).
Define ρ0(f̂ ) ∈ S(T ∗Rn) ⊂ C0(T ∗Rn) as the restriction f |T∗Rn×0.
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Continuous section
I Recall that e} ∈ K(L2(Rn))∼ is the graph projection of P}

associated with symbol a}(x , ξ) := a(x , }ξ), } ∈ (0, 1].

I Let e0 := ea. Then e0 ∈ C0(T ∗Rn)∼ because a has positive order.

Theorem (Elliott-Natsume-Nest, 96’)
The vector field e = (e})}∈[0,1] of (A}

∼)}∈[0,1] is continuous.

Remark
There exists a continuous section e∞ = (e∞} )} of projections s.t.

‖e − e∞‖ = sup
}∈[0,1]

‖e} − e∞} ‖} < ε,

∀ε > 0, and ∃f ∈ S(R2n+1) s.t. e∞} −
(

0 0
0 1

)
= ρ}(f̂ ), } ∈ [0, 1].

Fact: Tr
(
ρ}(f̂ )

)
= 1

}n

∫
Rn f̂ (x , 0, })dx doesn’t yield the index formula as

} converges to 0.

Step 3: Search for cyclic cocycle ω to replace Tr!
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Cyclic cohomology: an overview

Let A be a unital algebra over C.

Definition
A cyclic n-cochain on A is an (n + 1)-linear functional φ s.t.

φ(an, a0, · · · , an−1) = (−1)nφ(a0, · · · , an), ∀a0, · · · , an ∈ A.

Denote by C n
λ(A) the space of cyclic n-cochains on A. The differential

b : C n
λ(A)→ C n+1

λ (A) is defined by:

(bφ)(a0, · · · , an, an+1) :=
n∑

i=0

(−1)iφ(a0, · · · , ajaj+1 · · · , an, an+1)

+ (−1)n+1φ(an+1a0, a1, · · · , an).

One checks that b2 = 0. Thus we obtain the cyclic complex of A:

C 0
λ(A)

b→ C 1
λ(A)

b→ C 2
λ(A)

b→ · · ·

Denote by Hn
λ(A), n = 0, 1, . . . , the cohomology of the cyclic complex,

called the cyclic cohomology of A.
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Pairing with K -theory

Denote by Z n
λ(A) := Kerb|C n

λ(A)
the space of cyclic n-cocycles on A.

Define the pairing 〈 , 〉 : K0(A)× H2n
λ (A)→ C by

〈[e], [φ]〉 = (2πi)−n(n!)−1φ#tr(e, · · · , e),

where e ∈ M(A) is an idempotent, φ ∈ Z 2n
λ (A).

There exists the periodic operator S : Hn
λ(A)→ Hn+2

λ (A) s.t.

〈[e], [φ]〉 = 〈[e],S [φ]〉.

Example: Tr is a cyclic 0-cocycle on L1(L2(Rn)).
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Cyclic cohomolgy in ENN theorem

I Define the (2n+1)-linear functional ω on K∞(L2(Rn)) by

ω(T0, · · · ,T2n) =
(−1)n

n!

∑
σ∈S2n

sgn(σ)Tr
(
T0δσ(1)(T1) · · · δσ(2n)(T2n)

)
,

where δ2j−1(T ) = [∂xj ,T ], δ2j(T ) = [xj ,T ], j ≤ n.

I ω is a cyclic 2n-cocycle.
∀ idempotent T ∈ K∞(L2(Rn)), 〈[T ], [(2πi)nn!ω]〉 = Tr(T ).

I Define the (2n+1)-linear functional ε on S(T ∗Rn) as follows,

ε(f0, · · · , f2n) =
1

(2πi)nn!

∫
T∗Rn

f0df1 · · · df2n.

I ε is a cyclic 2n-cocycle.
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Deformation

Finally, we complete the proof.

ind(Pa) = 〈[KerPa]− [KerP∗a ], [(2πi)nn!ω]〉

= 〈[e1]−
[(

0 0
0 1

)]
, [(2πi)nn!ω]〉

= 〈[e∞1 ]−
[(

0 0
0 1

)]
, [(2πi)nn!ω]〉

= 〈[e∞} ]−
[(

0 0
0 1

)]
, [(2πi)nn!ω]〉 for all } > 0

N
= 〈[e∞0 ]−

[(
0 0
0 1

)]
, [(2πi)nn!ε]〉

= 〈[e0]−
[(

0 0
0 1

)]
, [(2πi)nn!ε]〉

=
1

(2πi)nn!

∫
T∗Rn

tr(êa(dêa)2n). topological index
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3. Equivariant ENN Theorem
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Equivariant index

Let

I compact group G = SO(n) acting on Rn by isometry

I Pa : S(Rn; V )→ S(Rn; W ): elliptic ΨDO of positive order

I Pa is G -invariant, i.e., V ,W are G -spaces and ∀g ∈ G ,

g |L2(Rn;W )Pa = Pag |L2(Rn;V ).

Denote by indG (Pa) the equivariant index of Pa given by,

indG (Pa) := [KerPa]− [KerP∗a ] ∈ R(G),

or equivalently,

indG (Pa) : G → C
g 7→ ind(g)(Pa) := Tr(g |KerPa)− Tr(g |KerP∗a ).
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Equivariant index theorem on Rn

Theorem (Ren-W-Wang)
If the fixed-point set (Rn)g has positive dimension, then

ind(g)(Pa) =
1

(2πi)ng ng !det(g − 1)

∫
T∗(Rn)g

tr

[(
gV 0
0 gW

)
êa(dêa)

2ng

]
.

I ng := dim(Rn)g

I det(g − 1): the determinant of g − 1 on ((Rn)g )⊥

I gV : the matrix of g ∈ Aut(V ); so is gW

When g is the group identity, it reduces to ENN theorem.

Theorem (Ren-W-Wang)
If (Rn)g = {0}, then

ind(g)(Pa) =
1

det(g − 1)
tr

[(
gV 0
0 gW

)
êa(0, 0)

]
.
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Application to the Bott-Dirac operator

I CliffC(R2n): the universal unital complex algebra containing R2n

subject to the relations xx = |x |2, ∀x ∈ R2n.

I Fix an orthonormal basis {e1, · · · , e2n} of R2n, then ei1 · · · eik for
i1 < · · · < ik form a linear basis of CliffC(R2n).

I CliffC(R2n) is a Hermitian inner space by deeming these monomials
to be orthonormal. It is Z2-graded decomposed as

CliffC(R2n) = (CliffC(R2n))0 ⊕ (CliffC(R2n))1.

I Clifford multiplication operators ĉ(ei ), c(ei ) on CliffC(R2n):

ĉ(ei ) : w 7→ (−1)deg(w)wei , c(ei ) : w 7→ eiw .

I Bott-Dirac operator on L2(R2n; CliffC(R2n)) is defined by

B = D + C =
2n∑
i=1

ĉ(ei )
∂

∂xi
+ c(ei )xi .

Note that B is an odd, essentially self-adjoint operator.
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Equivariant index of the Bott-Dirac operator

Consider SO(2n) acts on CliffC(R2n) by diagonal.

I Firstly, B is an SO(2n)-invariant elliptic ΨDO of positive order.
Denote by the symbol of B(

0 a∗

a 0

)
=

2n∑
j=1

(ĉ(ej)iξj + c(ej)xj).

Then a is elliptic and has order 1 because(
a∗a 0
0 aa∗

)
= |z |2I .

I Next, when n = 1, the equivariant index of B is 1 at each
g ∈ SO(2). For n > 1, it remains true by induction.
• {1, e1e2, e1, e2}: basis of (CliffC(R2))0 ⊕ (CliffC(R2))1

• a =

(
x1 + iξ1 −x2 + iξ2
x2 + iξ2 x1 − iξ1

)
, êa = 1

1+|x|2+|z|2

(
I2 a∗

a −I2

)
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B : S(R2; (CliffC(R2))0)→ S(R2; (CliffC(R2))1)

• êa = 1
1+|x|2+|z|2

(
I2 a∗

a −I2

)
• For g =

(
cosθ −sinθ
sinθ cosθ

)
∈ SO(2), θ ∈ [0, 2π]:

g (CliffC(R2))0 =

(
1 0
0 1

)
, g (CliffC(R2))1 =

(
cosθ −sinθ
sinθ cosθ

)
When g = 1 ∈ SO(2), the whole R2 is fixed by g ,

ind(1)(B) =
1

(2πi)22!

∫
T∗R2

tr(êa(dêa)4) = 1.

When g 6= 1 ∈ SO(2), cosθ 6= 1 and
(
R2
)g

= {0},

ind(g)(B) =
1

det(g − 1)
tr

[(
g (CliffC(R2))0 0

0 g (CliffC(R2))1

)
êa(0, 0)

]

=
2− 2cosθ

2− 2cosθ
= 1.
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Proof of the equivariant ENN theorem
Step 1: Represent ind(g)(Pa) by the equivariant K -theory class.

[e1]−
[(

0 0
0 1

)]
= [KerPa]− [KerP∗a ] ∈ KG

0

(
K(L2(Rn;V ⊕W ))

)
.

{Tr(ĝ ·)}g∈G : KG
0

(
K(L2(Rn;V ⊕W ))

)
→ R(G),

where ĝ =

(
g |L2(Rn;V ) 0

0 g |L2(Rn;W )

)
. Then

ind(g)(Pa) =Tr (ĝ ([KerPa]− [KerP∗a ])) = Tr

(
ĝ

(
[e1]−

[(
0 0
0 1

)]))
.

Step 2: We can choose e∞ = (e∞} )} to be G -invariant s.t.

[e}]−
[(

0 0
0 1

)]
= [e∞} ]−

[(
0 0
0 1

)]
∈ K0

(
AG

}

)
.

Step 3: Search for {ωg}g∈G to replace {Tr(ĝ ·)}g∈G s.t.

I ind(g)(Pa) = 〈[ê1], [ωg ]〉 equivariant analytic index,

I lim}→0〈[ê}], [ωg ]〉 = 〈[êa], [εg ]〉 fixed point formula.
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Proof of equivariant ENN theorem
Define the cyclic 2ng -cocycle ωg on

(
K∞(L2(Rn; V ⊕W ))

)g
:

ωg (T0, · · · ,T2ng ) =
(−1)ng
ng !

∑
σ∈S2ng

sgn(σ)Tr
(
ĝT0δσ(1)(T1) · · · δσ(2ng )(T2ng )

)
,

(
K∞(L2(Rn;V ⊕W ))

)g
= {T ∈ K∞(L2(Rn;V ⊕W ))| ĝT = Tĝ},

I We shall consider (Rn)g generated by x1, · · · , xng .
I For any idempotent T , 〈[T ], [(2πi)ng (ng )!ωg ]〉 = Tr(ĝT ) because ĝ

commutes with T , ∂xj , xj , ∀j ≤ ng .

=⇒ ind(g)(P) = 〈[e1]−
[(

0 0
0 1

)]
, [(2πi)ng (ng )!ωg ]〉

= 〈[e∞} ]−
[(

0 0
0 1

)]
, [(2πi)ng (ng )!ωg ]〉 for all } > 0

N
=

1

(2πi)ng ng !det(g − 1)

∫
T∗(Rn)g

tr

[(
gV 0
0 gW

)
êa(dêa)

2ng

]
,

or
N
=

1

det(g − 1)
tr

[(
gV 0
0 gW

)
êa(0, 0)

]
. topological index
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Thank You!
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