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Noncommutative geometry (NCG)

One aim of NCG is to reformulate invariants in geometry and topology in
terms of invariants for algebras, apply them to “more singular spaces.”

» compact Hausdorff space X +» C(X)algebra of continuous functions;

» Hausdorff space X <> Co(X) algebra of continuous functions that
vanish at infinity;

» Noncommutative generalization of C(X) or Co(X): C*-algebra A
with(out) a unit, for example,

C, G(R), M,(C), K.

A C*-algebra is a closed subalgebra of B(H) under the operator
norm.

» topological K-theory K°(X) <+ Ko(C(X)) operator K-theory;

» For a C*-algebra A, its operator K-theory is an abelian group having
the form

o) = { o)~ allp. € M ()= uatn(a)/a~ [5 61



Bott periodicity

> Ko((C) = Z;
» Ko(K) = Z induced by matrix trace Tr;
» Bott periodicity
Ko(C) = Ko(Co(R?)).
Bott periodicity in other forms:

» homotopy theory: my(U) = mii2(U) for U =U,U(n)/a ~ [g ﬂ ;

» topological K-theory: K%(X) = K?(X) for a topological space X;
» Thom isomorpshim: K°(X) = K°(E) for a complex vector bundle
E — X (crucial in the proof of Atiyah-Singer index theorem);

» operator K-theory: Ko(A) = K»(A) for C*-algebra A.



Heisenberg group algebra as a continuous field
» Let H3 be the Heisenberg group: R x R x R with multiplication

1
(y,t)- (Y )y =(x+ X,y +y,t+t + §(xy’ —x'y)).

» The group C*-algebra C*(H3) is the norm closure of
Cc(Hs) C B(L?(Hs)) given by convolutions.
» Under the Fourier transform F = {F)} cr, where

Fi(c) := {%C) iilf* for c € C*(Hs),

C*(Hs) = Go(R?) x {0} LK(L(R)) x R*

a continuous field of C*-algebras. The continuity at 0 is in line with
Connes' tangent groupoid:

Xn — Yn
An

» The continuous field gives rise to the Bott periodicity

Ko(Co(R?)) = Ko(K).

(Xns Yns An) = (%,8) € Xxp — yn — 0, — €.



Outline

This talk is about an algebraic index theorem, parallel to the
Atiyah-Singer index theorem.
» Nest-Tsygan 95’ (index theory on compact smooth manifolds)
» Elliott-Natsume-Nest 96" (index theory on R")

» Equivariant ENN theorem (equivariant index theory on R")

This is the ‘equivariant index’ perspective of the equivariant Bott
periodicity. Main tools are

» continuous fields of C*-algebras and
» cyclic cohomology from NCG.

Reference:

» Baiying Ren, Hang Wang, Zijing Wang: Equivariant index theorem
on R” in the context of continuous fields of C*-algebras,
arXiv:2401.07474.



1. ENN Theorem



Shubin’s class of pseudodifferential operators

Let v € S(R") be a rapidly decreasing function. Then

ulx) = (2m) " [ O Fu)(€)de

where F is the Fourier transform.
Let a € C*°(T*R"). A pseudodifferential operator (abbr. WDO) P, is

(Pau)(x) = (27) " / /9 a(x, €)(Fu) (£ dé.

n

where u € S(R") and a will be called the (total) symbol of P,.
To let P, make sense, a needs to satisfy certain conditions.

Definition
a € C™®(T*R") is a symbol of order m € R if V multi-index «, 3C, s.t.

192(a)] < Ca(l + |22)"2, z € T*R".

Let F™(T*R") be the space of symbols of order m.



Fredholm index
If a € I™(T*R"), then P, : S(R") — S(R") given by

(Pau)(x) = (27) " / &9 a(x, €)(Fu) (€)dé, u € S(R"),

n

is a continuous operator. P, is also said to be of order m.
If V=W =Ck aec M(T™(T*R")), P,: S(R"; V) — S(R"; W).

Definition

a e Mi(Ir™(T*R")) is said to be elliptic if 3C, R > 0 s.t.
a(x,€)"a(x, &) = C(Ix|* + [¢*)" e for |x|* +[¢]* = R.

P, is also said to be elliptic.

Remark
If P,:S(R™ V) — S(R”; W) is an elliptic WDO, then P, is Fredholm

and its formal adjoint P is also Fredholm. Denote by the Fredholm index

ind(P,) = dim(KerP,| s v)) — dim(KerP} | smn,w))-



Example

Remark
Furthermore, a WDO P, extends to a possibly unbounded operator

P,: L*(R"; V) — L*(R"; W)

with dense domain {f € L(R"; V)|P,f € L2(R"; W)}, which is also
Fredholm when P, is elliptic. In this case,

ind(P,) = dim(KerP,|2gnv)) — dim(Ker P} | 2. w))-

Indeed, if a € FO(T*]R"), then P, extends to a bounded operator from
L2(R™; V); while if a € T™(T*R"), m < 0, then P, extends to a compact
operator from L2(R"; V).

Example

Define a € C*°(T*R") by a(x,&) = x + i¢. Then P, = x+ £ is an

elliptic WDO on L?(R") of order 1. Furthermore, P, is Fredholm and
ind(P,) = 1.



ENN theorem

Let P, : S(R"; V) — S(R"; W) be an elliptic WDO with symbol a of
positive order. Denote by

o — (l+a*a)! (1+a*a)la

27 \a(l+a*a)"! a(l+a*a)lar
the graph projection induced by the closed multiplication operator
a:L2(T*R™ V) — L2(T*R™;, W).
Theorem (Elliott-Natsume-Nest, 96°)

1

d(P,) = e /T*Rn tr(&,(dé,)>"),

h ~__. (00
where é; = e, 0 1)

analytic index = topological index



2. Proof of ENN Theorem



The analytic index

View P, : L2(R"; V) — L2(R"; W) as an unbounded operator. P, is
closable. Denote by T the closure of P,.
Denote by e; the graph projection of T. Then

0 0\ _((+T ) (A+TT)T N
e (0 1) o <T(1+ T*T)™* (1+ 77! ) € IC(LZ(R Vo w)),

where KC(L?(R")) stands for compact operators.
Proposition (Elliott-Natsume-Nest, 96°)
[e1] — [(8 m — [KerPy] — [KerP:] € Ko (K(L2(R™; V & W))) .
Fact: The canonical trace induces an isomorphism
Tr: Ko (K(L2(R™; V & W))) — Z.

Step 1: Represent ind(P,) by the K-theory class:

ey -[(§ )



Sufficiently large subalgebra ™

Construct the Kohn-Nirenberg quantization as follows.
For 1 € (0,1], let Py, be the WDO with symbol az(x, &) = a(x, hf).
Denote by ey the graph projection of Pj;. Then

ind(P,) = Tr ([eﬁ] _ Kg ?)D i e (0,1].

Fact: e; — (8 2) is not a trace-class operator for 7 € (0, 1].

Idea: Denote by K°°(L2(R")) the subalgebra of integral operators with
Schwartz kernels in S(T*R"). K>°(L?(R")) is dense and stable under the
holomorphic functional calculus.

Tr: Ko(KC(L2(R™))) 22 Ko(K>®(L2(R™))) — Z.

0 0

Step 2: Search for e — (0 1

) € L2 (L2(R™ V @ W))!
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Continuous fields of C*-algebras

The group C*-algebra of the (2n + 1)-dimensional Heisenberg group
C*(Hant1) can be identified as the continuous field of C*-algebras
(Aﬁ)heR, where

Ay = Go(T*R"),
Ap = K(L3(R™)), h#0.

Here we restrict the interval to [0, 1].
The continuous field structure is given by the family of sections

{h€0,1] —~ pu(f) € Ax| f € S(R®"+1)}.
Here pr(f) € K= (L2(R")) c K(LA(R™)) for 7 € (0,1] is given by

pu(F10) = g [ Foay Mot + iy, o € L(R?),

where  denotes the Fourier transform with respect to the second
variable of f € S(R” x R" x R).
Define po(f) € S(T*R") C Co( T*R") as the restriction f

T*R"x0-



Continuous section

» Recall that e; € K(L?(R™))™ is the graph projection of Py
associated with symbol a5 (x, &) := a(x, k&), h € (0,1].
> Let ey :=€e,. Then ey € Go( T*R")™ because a has positive order.

Theorem (Elliott-Natsume-Nest, 96°)
The vector field e = (en)nefo,1] of (An™ )refo,1) IS continuous.

Remark
There exists a continuous section e = (ep°); of projections s.t.

le — e[l = sup [les —er |l <e
helo,1]

Ve >0, and 3f € S(R*"*1) s.t. e — (8 (1)) = pu(f),h € [0,1].

Fact: Tr( ) = = fRn x,0,h)dx doesn't yield the index formula as
h converges to 0.

Step 3: Search for cyclic cocycle w to replace Tr!

15/28



Cyclic cohomology: an overview

Let A be a unital algebra over C.

Definition
A cyclic n-cochain on A is an (n+ 1)-linear functional ¢ s.t.

¢(an7 a07 Tty an—l) - (_l)n¢(307 Tty an), va07 e 7an E A
Denote by C{(A) the space of cyclic n-cochains on A. The differential
b: CP(A) — CTT(A) is defined by:

n

(bd})(aO? coc oy an, an+1) = Z(—l)i¢(307 ©cr,djdjy1 -t dn,y an+1)

i=0
 (=1)"  B(an1d0, a1, - -, an)-
One checks that b?> = 0. Thus we obtain the cyclic complex of A:
CAA) 5 CA(A) & CR(A) S -

Denote by HY(A), n=0,1,..., the cohomology of the cyclic complex,
called the cyclic cohomology of A.

16

28



Pairing with K-theory

Denote by ZJ(A) := Kerb|cy(a) the space of cyclic n-cocycles on A.
Define the pairing ( , ) : Ko(A) x H32"(A) — C by

([e], [0]) = (2mi)~"(n) " p#tr(e, - e),

where e € M(A) is an idempotent, ¢ € Z3"(A).
There exists the periodic operator S : Hf(A) — HYT2(A) s.t.

([e], [9]) = ([e], S[¢])-

Example: Tr is a cyclic 0-cocycle on L1(L2(R")).

17 /28



Cyclic cohomolgy in ENN theorem

» Define the (2n+1)-linear functional w on K£>°(L?(R")) by
—1)"
w(To, -+, Ton) = ( n!) Z sgn(o)Tr (Todo1)(T1) - - 6o2m(T2n)),
g€SH,

where d2;_1(T) = [Ox, T], 02(T) = [x;, T], j < n.

w is a cyclic 2n-cocycle.

V idempotent T € K>°(L?(R™)), ([T],[(27i)"nlw]) = Tr(T).
Define the (2n+1)-linear functional € on S(T*R") as follows,

v

v

1

oo f)= —— bdf - dfy.
(fo, + , fn) @)l /T*Rn odfi -+~ dby

v

€ is a cyclic 2n-cocycle.



Deformation

Finally, we complete the proof.

ind(P,) = ([KerP,] — [KerP}], [(27)"nlw])

—(al- |(5 )] lemirna

()
—(ei1- [ (5 )] Hemiyaia for et n >0

(1= | (5 9)] teriyna)

(el - |(5 3)] 1)

1
= (27”)””|/T . tr(é,(dé,)?"). topological index

,[(270)" nlw])




3. Equivariant ENN Theorem



Equivariant index

Let

» compact group G = SO(n) acting on R" by isometry

» P,: S(R™; V) = S(R"; W): elliptic WDO of positive order

» P, is G-invariant, i.e., V, W are G-spaces and Vg € G,

gl w)Pa = Pagliemnvy-
Denote by indg(P,) the equivariant index of P, given by,
indg(P,) := [KerP,] — [KerP;] € R(G),
or equivalently,
indg(P.): G —C
g = indg)(Ps) := Tr(g|kerp,) — Tr(glkerp; )-



Equivariant index theorem on R”

Theorem (Ren-W-Wang)

If the fixed-point set (R")® has positive dimension, then

ind ) (P,) = L wl(€ 0O 6,(dé,)%"
G (27ri)"€ng!det(g — 1) T*(RM)E 0 gW ° 2 ’

> ng = dim(R")¥
» det(g — 1): the determinant of g — 1 on ((R")&)+
» gV the matrix of g € Aut(V); so is gV
When g is the group identity, it reduces to ENN theorem.

Theorem (Ren-W-Wang)
If (R") = {0}, then

ind (g (P,) = ﬁtr Kgov g%,,) e”a(0,0)} .



Application to the Bott-Dirac operator

|

Cliffc(R2"): the universal unital complex algebra containing R2"
subject to the relations xx = |x|?, ¥x € R?".

Fix an orthonormal basis {ej, - ,ey,} of R?", then ¢; - - - ¢, for
i <--- < ix form a linear basis of Cliffc(R?").

Cliffc(R2") is a Hermitian inner space by deeming these monomials
to be orthonormal. It is Z,-graded decomposed as

Cliffc(R*") = (Cliffc(R*"))o & (Cliffc(R*"));.
Clifford multiplication operators &(e;), c(e;) on Cliffc(R?"):

g(er) : wis (=1)% W we;, c(e) : w — gw.
Bott-Dirac operator on L2(R2"; Cliffc(R2")) is defined by

2n
B=D+C= Z é(e;)% + c(ei)x;.

i=1 !

Note that B is an odd, essentially self-adjoint operator.



Equivariant index of the Bott-Dirac operator

Consider SO(2n) acts on Cliff¢(R") by diagonal.

» Firstly, B is an SO(2n)-invariant elliptic WDO of positive order.
Denote by the symbol of B

<2 %) = i(e(ej)iéj + c(e)x))-

Then a is elliptic and has order 1 because

ata 0\ | p
( 0 aa*> = |-

» Next, when n =1, the equivariant index of B is 1 at each
g € SO(2). For n > 1, it remains true by induction.
o {1, €16, €1, e}: basis of (Cliffc(R?))o @ (Cliffc(R?));
x1+ i€ —xo+i& N 1 L a*

= . . , €3 = ——p o2
Xo + I€2 X1 — 151 a 14‘|X|2+|Z‘2 a —I2



B : S(R?; (Cliffc(R?))o) — S(R?; (Cliffc(R?));)

.é— 1 /2 a*
ST P+ \a —h

cos —sinf
o Forg = (sin& cosf) ) € 50(2). 0 € [0, 2n]:
g(CliHC(]RQ))O _ 10 g((jliffC(RZ))l _ cosf) —sinf
0 1)’ sinf  cosf

When g = 1 € SO(2), the whole R? is fixed by g,

1
S tr(&(dé)") = 1.
(2r1)221 /T*RQ H(&(dé))

When g # 1 € SO(2), cosf # 1 and (R2)® = {0},

1nd(1)(B) =

) 1 g(Cliﬁ'c(RQ))o 0 .
ind(g)(B) = mtr 0 g(CliEfC(]Rz))l é(0,0)

_2—2cosf
T 2—2cosf



Proof of the equivariant ENN theorem
Step 1: Represent ind(,)(P.) by the equivariant K-theory class.

[e1] — [(8 (1))} = [KerP.] — [KerP;] € Ky (K(L*(R™; V & W))).

{Tr(@")}sec : K& (KR V & W))) - R(G),

where g = 8lux(env) 0 Then
0 glewnw))’

. A * A 0 0
ind(g)(P.) =Tr (g ([KerP.] — [KerP]])) = Tr (g ([e1] = {(O 1)} )> .
Step 2: We can choose e = (ep°); to be G-invariant s.t.

-8 ][0 Y] en o)

Step 3: Search for {wg}zec to replace {Tr(g:)}gec s:t.
> ind(5)(Pa) = ([é1], [we]) equivariant analytic index,
> limpso([€r], [wg]) = ([€.], [€g]) fixed point formula.



Proof of equivariant ENN theorem
Define the cyclic 2ng-cocycle wg on (K®(L2(R™; V & W)))*:
_1)”g

wg(To, -+, Tany) = ( ool > sgn(o)Tr (8 To0o1)(T1) - - Soiang)( T2n,))
!

oESzng

(K= (2R7 Ve W) ={T e K=(L(R V& W) 8T = Tg},

» We shall consider (R")& generated by xi,- -, Xp,.

» For any idempotent T, ([T],[(27i)" (ng)lwg]) = Tr(gT) because g
commutes with T, 0., x;, ¥j < ng.
. 0 0 A\
— ind(P) = el - | (5 9) | [@miy ()

— (] - [(8 m [(271)" (ng)wg]) for all i > 0

* a0 S (5 ) 0]
ES _ t 2(dé;) 7% |
@ri)yengldet(g — 1) Jree L\ O g") &9

v

or = Tt =1) l)tr {( 0 gW) ea(0,0)] . topological index




Thank You!



