Equivariant Index Theorem on \mathbb{R}^n in the Context of Continuous Fields of C^* -algebras

Hang Wang

East China Normal University

Algebraic, analytic, geometric structures emerging from quantum field theory Sichuan University March 12, 2024

Noncommutative geometry (NCG)

One aim of NCG is to reformulate invariants in geometry and topology in terms of invariants for algebras, apply them to "more singular spaces."

- \triangleright compact Hausdorff space $X \leftrightarrow C(X)$ algebra of continuous functions;
- ► Hausdorff space $X \leftrightarrow C_0(X)$ algebra of continuous functions that vanish at infinity;
- ▶ Noncommutative generalization of $C(X)$ or $C_0(X)$: C^* -algebra A with(out) a unit, for example,

$$
\mathbb{C}, C_0(\mathbb{R}), M_n(\mathbb{C}), \mathcal{K}.
$$

A C^* -algebra is a closed subalgebra of $\mathcal{B}(H)$ under the operator norm.

- \blacktriangleright topological $K\text{-theory }$ $K^0(X) \leftrightarrow K_0(\mathcal{C}(X))$ operator $K\text{-theory};$
- For a C^* -algebra A, its operator K-theory is an abelian group having the form

$$
\mathcal{K}_0(A):=\left\{[p]-[q]|p,q\in M_\infty(A):=\cup_n M_n(A)/a\sim\begin{bmatrix}a&0\\0&0\end{bmatrix}\right\}.
$$

Bott periodicity

- \blacktriangleright K₀(C) ≅ Z;
- ► $K_0(\mathcal{K}) \cong \mathbb{Z}$ induced by matrix trace Tr ;
- \blacktriangleright Bott periodicitv

$$
\mathcal{K}_0(\mathbb{C})\cong \mathcal{K}_0(\mathcal{C}_0(\mathbb{R}^2)).
$$

Bott periodicity in other forms:

- ► homotopy theory: $\pi_k(U) \cong \pi_{k+2}(U)$ for $U = \cup_n U(n)/a \sim \begin{bmatrix} a & 0 \ 0 & 1 \end{bmatrix}$;
- ► topological K-theory: $K^0(X) \cong K^2(X)$ for a topological space X;
- ► Thom isomorpshim: $K^0(X) \cong K^0(E)$ for a complex vector bundle $E \rightarrow X$ (crucial in the proof of Atiyah-Singer index theorem);
- ► operator K-theory: $K_0(A) \cong K_2(A)$ for C^* -algebra A.

Heisenberg group algebra as a continuous field

Exect H₃ be the Heisenberg group: $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$ with multiplication

$$
(x,y,t)\cdot(x',y',t'):=(x+x',y+y',t+t'+\frac{1}{2}(xy'-x'y)).
$$

- ► The group C*-algebra $C^*(H_3)$ is the norm closure of $C_c(H_3) \subset B(L^2(H_3))$ given by convolutions.
- \triangleright Under the Fourier transform $F = \{F_{\lambda}\}_{{\lambda \in \mathbb{R}}}$, where

$$
\mathcal{F}_{\lambda}(c) := \begin{cases} \pi_{\lambda}(c) & \lambda \in \mathbb{R}^* \\ \widehat{\rho(c)} & \lambda = 0 \end{cases} \text{ for } c \in C^*(H_3),
$$

$$
C^*(H_3) = C_0(\mathbb{R}^2) \times \{0\} \sqcup \mathcal{K}(L^2(\mathbb{R})) \times \mathbb{R}^*
$$

a continuous field of C^* -algebras. The continuity at 0 is in line with Connes' tangent groupoid:

$$
(x_n, y_n, \lambda_n) \to (x, \xi) \Leftrightarrow x_n - y_n \to 0, \frac{x_n - y_n}{\lambda_n} \to \xi.
$$

 \triangleright The continuous field gives rise to the Bott periodicity

$$
K_0(C_0(\mathbb{R}^2)) \cong K_0(\mathcal{K}).
$$

Outline

This talk is about an algebraic index theorem, parallel to the Atiyah-Singer index theorem.

- \triangleright Nest-Tsygan 95' (index theory on compact smooth manifolds)
- Elliott-Natsume-Nest 96' (index theory on \mathbb{R}^n)
- Equivariant ENN theorem (equivariant index theory on \mathbb{R}^n)

This is the 'equivariant index' perspective of the equivariant Bott periodicity. Main tools are

- \blacktriangleright continuous fields of C^* -algebras and
- \triangleright cyclic cohomology from NCG.

Reference:

▶ Baiying Ren, Hang Wang, Zijing Wang: Equivariant index theorem on \mathbb{R}^n in the context of continuous fields of C^* -algebras, arXiv:2401.07474.

1. ENN Theorem

Shubin's class of pseudodifferential operators

Let $u \in \mathcal{S}(\mathbb{R}^n)$ be a rapidly decreasing function. Then

$$
u(x)=(2\pi)^{-n}\int_{\mathbb{R}^n}e^{i\langle x,\xi\rangle}(Fu)(\xi)d\xi,
$$

where F is the Fourier transform.

Let $a \in C^\infty(\mathcal{T}^*\mathbb{R}^n)$. A pseudodifferential operator (abbr. ΨDO) P_a is

$$
(P_a u)(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\langle x,\xi\rangle} a(x,\xi) (Fu)(\xi) d\xi,
$$

where $u \in \mathcal{S}(\mathbb{R}^n)$ and a will be called the (total) symbol of P_a . To let P_a make sense, a needs to satisfy certain conditions.

Definition

 $a\in C^\infty(\mathcal{T}^*\mathbb{R}^n)$ is a symbol of order $m\in\mathbb{R}$ if \forall multi-index α , $\exists\mathcal{C}_\alpha$ s.t.

$$
|\partial_z^{\alpha}(\mathsf{a})| \leq C_{\alpha}(1+|z|^2)^{\frac{m-|\alpha|}{2}}, \ z \in \mathcal{T}^*\mathbb{R}^n.
$$

Let $\Gamma^m(T^*\mathbb{R}^n)$ be the space of symbols of order m.

Fredholm index

If $a \in \Gamma^m(\mathcal{T}^*\mathbb{R}^n)$, then $P_a: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ given by

$$
(P_a u)(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\langle x,\xi\rangle} a(x,\xi) (Fu)(\xi) d\xi, u \in \mathcal{S}(\mathbb{R}^n),
$$

is a continuous operator. P_a is also said to be of order m. If $V = W = \mathbb{C}^k$, $a \in M_k(\Gamma^m(T^*\mathbb{R}^n))$, $P_a : \mathcal{S}(\mathbb{R}^n; V) \rightarrow \mathcal{S}(\mathbb{R}^n; W)$. Definition $a \in M_k(\Gamma^m(T^*\mathbb{R}^n))$ is said to be elliptic if $\exists C, R > 0$ s.t.

$$
a(x,\xi)^* a(x,\xi) \ge C(|x|^2 + |\xi|^2)^m I_k \text{ for } |x|^2 + |\xi|^2 \ge R.
$$

 P_a is also said to be elliptic.

Remark

If $P_a: \mathcal{S}(\mathbb{R}^n; V) \to \mathcal{S}(\mathbb{R}^n; W)$ is an elliptic WDO , then P_a is Fredholm and its formal adjoint P^*_a is also Fredholm. Denote by the Fredholm index

$$
\operatorname{ind} (P_a)=\dim (\operatorname{Ker} P_a|_{\mathcal{S} (\mathbb{R}^n; V)})-\dim (\operatorname{Ker} P_a^*|_{\mathcal{S} (\mathbb{R}^n; W)}).
$$

Example

Remark

Furthermore, a ΨDO P_a extends to a possibly unbounded operator

$$
P_a: L^2(\mathbb{R}^n; V) \to L^2(\mathbb{R}^n; W)
$$

with dense domain $\{f \in L^2(\mathbb{R}^n;V)|P_a f \in L^2(\mathbb{R}^n;W)\}$, which is also Fredholm when P_a is elliptic. In this case,

$$
\operatorname{ind}(P_a)=\dim(\mathrm{Ker} P_a|_{L^2(\mathbb{R}^n;V)})-\dim(\mathrm{Ker} P_a^*|_{L^2(\mathbb{R}^n;W)}).
$$

Indeed, if $a \in \Gamma^0(\mathcal{T}^*\mathbb{R}^n)$, then P_a extends to a bounded operator from $L^2(\mathbb{R}^n; V)$; while if $a \in \Gamma^m(T^*\mathbb{R}^n)$, $m < 0$, then P_a extends to a compact operator from $L^2(\mathbb{R}^n; V)$.

Example

Define $a \in C^{\infty}(\mathcal{T}^*\mathbb{R}^n)$ by $a(x,\xi) = x + i\xi$. Then $P_a = x + \frac{d}{dx}$ is an elliptic $\mathsf{\Psi DO}$ on $L^2(\mathbb{R}^n)$ of order 1. Furthermore, P_{a} is Fredholm and $ind(P_a) = 1.$

ENN theorem

Let $P_a: \mathcal{S}(\mathbb{R}^n; V) \to \mathcal{S}(\mathbb{R}^n; W)$ be an elliptic $\operatorname{\Psi DO}$ with symbol a of positive order. Denote by

$$
e_a = \begin{pmatrix} (1+a^*a)^{-1} & (1+a^*a)^{-1}a^* \\ a(1+a^*a)^{-1} & a(1+a^*a)^{-1}a^* \end{pmatrix}
$$

the graph projection induced by the closed multiplication operator $a: L^2(\mathcal{T}^*\mathbb{R}^n;V) \to L^2(\mathcal{T}^*\mathbb{R}^n;W).$

Theorem (Elliott-Natsume-Nest, 96')

$$
\operatorname{ind}(P_a) = \frac{1}{(2\pi i)^n n!} \int_{T^* \mathbb{R}^n} \operatorname{tr}(\hat{e}_a (d\hat{e}_a)^{2n}),
$$

where $\hat{e}_a = e_a - \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

analytic index $=$ topological index

2. Proof of ENN Theorem

The analytic index

View $P_{\sf a}$: $L^2({\mathbb R}^n;V) \to L^2({\mathbb R}^n;W)$ as an unbounded operator. $P_{\sf a}$ is closable. Denote by T the closure of P_a . Denote by e_1 the graph projection of T. Then

$$
e_1-\begin{pmatrix}0&0\\0&1\end{pmatrix}=\begin{pmatrix}(1+T^*\mathcal{T})^{-1}&(1+T^*\mathcal{T})^{-1}\mathcal{T}^*\\ \mathcal{T}(1+T^*\mathcal{T})^{-1}&(1+TT^*)^{-1}\end{pmatrix}\in\mathcal{K}(L^2(\mathbb{R}^n;V\oplus W)),
$$

where $\mathcal{K}(L^2(\mathbb{R}^n))$ stands for compact operators.

Proposition (Elliott-Natsume-Next, 96')\n
$$
[e_1] - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = [\text{Ker} P_a] - [\text{Ker} P_a^*] \in K_0 \left(\mathcal{K}(L^2(\mathbb{R}^n; V \oplus W)) \right).
$$
\nFact: The canonical trace induces an isomorphism

$$
\mathrm{Tr}:\mathcal{K}_0\left(\mathcal{K}(L^2(\mathbb{R}^n;V\oplus W))\right)\to\mathbb{Z}.
$$

Step 1: Represent $\text{ind}(P_a)$ by the K-theory class:

$$
\mathrm{ind}(P_a) = \mathrm{Tr}\left(\begin{bmatrix} e_1 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right).
$$

Sufficiently large subalgebra \mathcal{K}^{∞}

Construct the Kohn-Nirenberg quantization as follows. For $\hbar \in (0, 1]$, let P_{\hbar} be the ΨDO with symbol $a_{\hbar}(x, \xi) := a(x, \hbar \xi)$. Denote by e_{\hbar} the graph projection of P_{\hbar} . Then

$$
\operatorname{ind}(P_a)=\operatorname{Tr}\left([e_{\hbar}]-\begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}\right),\,\, \hbar\in(0,1].
$$

Fact: $e_{\hslash} - \begin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix}$ is not a trace-class operator for $\hslash \in (0,1]$. Idea: Denote by $\hat{\mathcal{K}}^{\infty}(L^2(\mathbb{R}^n))$ the subalgebra of integral operators with Schwartz kernels in $\mathcal{S}(T^*\mathbb{R}^n)$. $\mathcal{K}^\infty(L^2(\mathbb{R}^n))$ is dense and stable under the holomorphic functional calculus.

$$
\begin{array}{c} \text{Tr} : \mathcal{K}_0(\mathcal{K}(L^2(\mathbb{R}^n))) \cong \mathcal{K}_0(\mathcal{K}^\infty(L^2(\mathbb{R}^n))) \to \mathbb{Z}.\\ \text{Step 2: Search for } e_h^\infty - \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in \mathcal{K}^\infty(L^2(\mathbb{R}^n; V \oplus W))! \end{array}
$$

Continuous fields of C^* -algebras

The group C^* -algebra of the $(2n + 1)$ -dimensional Heisenberg group $C^*(H_{2n+1})$ can be identified as the continuous field of C^* -algebras $(A_{\hslash})_{\hslash\in\mathbb{R}}$, where

$$
A_0 = C_0(T^*\mathbb{R}^n),
$$

$$
A_{\hslash} = \mathcal{K}(L^2(\mathbb{R}^n)), \ \hslash \neq 0.
$$

Here we restrict the interval to [0, 1].

The continuous field structure is given by the family of sections

$$
\{\hslash\in[0,1]\mapsto\rho_{\hslash}(\hat{f})\in A_{\hslash}|~f\in\mathcal{S}(\mathbb{R}^{2n+1})\}.
$$

Here $\rho_{\hbar}(\hat{f})\in\mathcal{K}^{\infty}(L^2(\mathbb{R}^n))\subset\mathcal{K}(L^2(\mathbb{R}^n))$ for $\hbar\in(0,1]$ is given by

$$
\rho_{\hslash}(\hat{f})\phi(x)=\frac{1}{(2\pi)^{n}}\int_{\mathbb{R}^{n}}\hat{f}(x,y,\hslash)\phi(x+\hslash y)dy, \ \phi\in L^{2}(\mathbb{R}^{n}),
$$

where \hat{f} denotes the Fourier transform with respect to the second variable of $f \in \mathcal{S}(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R})$. Define $\rho_0(\hat{f})\in\mathcal{S}(\mathcal{T}^*\mathbb{R}^n)\subset\mathcal{C}_0(\mathcal{T}^*\mathbb{R}^n)$ as the restriction $f|_{\mathcal{T}^*\mathbb{R}^n\times 0}.$

Continuous section

- ► Recall that $e_{\hslash}\in \mathcal{K}(L^2(\mathbb{R}^n))^{\sim}$ is the graph projection of P_{\hslash} associated with symbol $a_{\hbar}(x, \xi) := a(x, \hbar \xi)$, $\hbar \in (0, 1]$.
- ► Let $e_0 := e_a$. Then $e_0 \in C_0(T^*\mathbb{R}^n)^\sim$ because a has positive order.

Theorem (Elliott-Natsume-Nest, 96') The vector field $e = (e_{\hbar})_{\hbar \in [0,1]}$ of $(A_{\hbar}^{\sim})_{\hbar \in [0,1]}$ is continuous.

Remark

There exists a continuous section $e^{\infty} = (e^{\infty}_\hbar)_\hbar$ of projections s.t.

$$
\|e-e^\infty\|=\sup_{\hbar\in[0,1]}\|e_\hbar-e^\infty_\hbar\|_\hbar<\epsilon,
$$

$$
\forall \epsilon > 0, \text{ and } \exists f \in \mathcal{S}(\mathbb{R}^{2n+1}) \text{ s.t. } e_h^{\infty} - \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \rho_{\hbar}(\hat{f}), \hbar \in [0, 1].
$$

Let $\mathbb{R} \setminus \{x, \hat{\epsilon}\} \to 1$, $\hat{\epsilon} \in \hat{\epsilon}(\epsilon, 0, \hat{\epsilon})$ be the desired value for all

Fact: $\text{Tr}\left(\rho_{\hbar}(\hat{f})\right)=\frac{1}{\hbar^{n}}\int_{\mathbb{R}^{n}}\hat{f}(x,0,\hbar)d x$ doesn't yield the index formula as \hbar converges to 0.

Step 3: Search for cyclic cocycle ω to replace Tr!

Cyclic cohomology: an overview

Let A be a unital algebra over C.

Definition A cyclic *n*-cochain on A is an $(n + 1)$ -linear functional ϕ s.t.

$$
\phi(a_n, a_0, \cdots, a_{n-1}) = (-1)^n \phi(a_0, \cdots, a_n), \ \forall a_0, \cdots, a_n \in A.
$$

Denote by $C_{\lambda}^{n}(A)$ the space of cyclic *n*-cochains on A. The differential $b: C_{\lambda}^n(A) \rightarrow C_{\lambda}^{n+1}(A)$ is defined by:

$$
(b\phi)(a_0,\cdots,a_n,a_{n+1}):=\sum_{i=0}^n(-1)^i\phi(a_0,\cdots,a_j a_{j+1}\cdots,a_n,a_{n+1})\\ +(-1)^{n+1}\phi(a_{n+1}a_0,a_1,\cdots,a_n).
$$

One checks that $b^2 = 0$. Thus we obtain the cyclic complex of A:

$$
C^0_\lambda(A)\stackrel{b}{\rightarrow} C^1_\lambda(A)\stackrel{b}{\rightarrow} C^2_\lambda(A)\stackrel{b}{\rightarrow}\cdots
$$

Denote by $H_{\lambda}^{n}(A)$, $n = 0, 1, ...,$ the cohomology of the cyclic complex, called the cyclic cohomology of A.

Pairing with K-theory

Denote by $Z_{\lambda}^n(A) := \text{Ker} b|_{C_{\lambda}^n(A)}$ the space of cyclic *n*-cocycles on A. Define the pairing $\langle , \rangle : K_0(A) \times H_\lambda^{2n}(A) \to \mathbb{C}$ by

$$
\langle [e], [\phi] \rangle = (2\pi i)^{-n} (n!)^{-1} \phi \# \text{tr}(e, \cdots, e),
$$

where $e \in M(A)$ is an idempotent, $\phi \in Z^{2n}_\lambda(A)$. There exists the periodic operator $S: H_{\lambda}^n(A) \rightarrow H_{\lambda}^{n+2}(A)$ s.t.

$$
\langle [e],[\phi]\rangle=\langle [e],S[\phi]\rangle.
$$

Example: Tr is a cyclic 0-cocycle on $\mathcal{L}_1(L^2(\mathbb{R}^n))$.

Cyclic cohomolgy in ENN theorem

► Define the (2n+1)-linear functional $ω$ on $\mathcal{K}^{\infty}(L^2(\mathbb{R}^n))$ by

$$
\omega(\mathcal{T}_0,\cdots,\mathcal{T}_{2n})=\frac{(-1)^n}{n!}\sum_{\sigma\in S_{2n}}\mathrm{sgn}(\sigma)\mathrm{Tr}\left(\mathcal{T}_0\delta_{\sigma(1)}(\mathcal{T}_1)\cdots\delta_{\sigma(2n)}(\mathcal{T}_{2n})\right),
$$

where $\delta_{2j-1}(\mathcal{T})=[\partial_{x_j},\mathcal{T}],\ \delta_{2j}(\mathcal{T})=[x_j,\mathcal{T}],\ j\leq n.$

- \blacktriangleright ω is a cyclic 2*n*-cocycle. \forall idempotent $\mathcal{T} \in \mathcal{K}^{\infty}(L^2(\mathbb{R}^n)), \langle [T], [(2\pi i)^n n! \omega] \rangle = \text{Tr}(\mathcal{T}).$
- ► Define the (2n+1)-linear functional ϵ on $\mathcal{S}(T^*\mathbb{R}^n)$ as follows,

$$
\epsilon(f_0,\cdots,f_{2n})=\frac{1}{(2\pi i)^n n!}\int_{T^*\mathbb{R}^n}f_0 df_1\cdots df_{2n}.
$$

 \blacktriangleright ϵ is a cyclic 2*n*-cocycle.

Deformation

Finally, we complete the proof.

$$
\text{ind}(P_a) = \langle [\text{Ker} P_a] - [\text{Ker} P_a^*], [(2\pi i)^n n! \omega] \rangle
$$
\n
$$
= \langle [e_1] - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, [(2\pi i)^n n! \omega] \rangle
$$
\n
$$
= \langle [e_1^{\infty}] - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, [(2\pi i)^n n! \omega] \rangle
$$
\n
$$
= \langle [e_h^{\infty}] - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, [(2\pi i)^n n! \omega] \rangle \text{ for all } \hbar > 0
$$
\n
$$
\triangleq \langle [e_0^{\infty}] - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, [(2\pi i)^n n! \epsilon] \rangle
$$
\n
$$
= \langle [e_0] - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, [(2\pi i)^n n! \epsilon] \rangle
$$
\n
$$
= \frac{1}{(2\pi i)^n n!} \int_{T^* \mathbb{R}^n} tr(\hat{e}_a (d\hat{e}_a)^{2n}). \text{ topological index}
$$

3. Equivariant ENN Theorem

Equivariant index

Let

- \blacktriangleright compact group $G = SO(n)$ acting on \mathbb{R}^n by isometry
- \blacktriangleright $P_a: \mathcal{S}(\mathbb{R}^n;V) \to \mathcal{S}(\mathbb{R}^n;W)$: elliptic $\mathsf{\Psi DO}$ of positive order
- \triangleright P_a is G-invariant, i.e., V, W are G-spaces and $\forall g \in G$,

$$
g|_{L^2(\mathbb{R}^n;W)}P_a = P_a g|_{L^2(\mathbb{R}^n;V)}.
$$

Denote by $\text{ind}_G(P_a)$ the equivariant index of P_a given by,

$$
\mathrm{ind}_G(P_a):=[\mathrm{Ker} P_a]-[\mathrm{Ker} P_a^*]\in R(G),
$$

or equivalently,

$$
\mathrm{ind}_{\mathcal{G}}(P_a): G \to \mathbb{C}
$$

$$
g \mapsto \mathrm{ind}_{(g)}(P_a) := \mathrm{Tr}(g|_{\mathrm{Ker} P_a}) - \mathrm{Tr}(g|_{\mathrm{Ker} P_a^*}).
$$

Equivariant index theorem on \mathbb{R}^n

Theorem (Ren-W-Wang) If the fixed-point set $(\mathbb{R}^n)^g$ has positive dimension, then

$$
\operatorname{ind}_{(\mathcal{S})}(P_a)=\frac{1}{(2\pi i)^{n_{\mathcal{S}}}\,n_{\mathcal{S}}! \mathrm{det}(\mathcal{g}-1)}\int_{\mathcal{T}^*(\mathbb{R}^n)^{\mathcal{S}}}\operatorname{tr}\left[\begin{pmatrix} \mathcal{S}^V&0\\0&\mathcal{S}^W\end{pmatrix}\hat{e}_a(d\hat{e}_a)^{2n_{\mathcal{S}}}\right].
$$

\n- \n
$$
n_g := \dim(\mathbb{R}^n)^g
$$
\n
\n- \n $\det(g - 1)$: the determinant of $g - 1$ on $((\mathbb{R}^n)^g)^{\perp}$ \n
\n- \n g^V : the matrix of $g \in Aut(V)$; so is g^W \n
\n- \n When g is the group identity, it reduces to ENN theorem.\n
\n

Theorem (Ren-W-Wang) If $(\mathbb{R}^n)^g = \{0\}$, then

$$
\mathrm{ind}_{(\mathcal{S})}(P_a) = \frac{1}{\det(\mathcal{g}-1)} \mathrm{tr}\left[\begin{pmatrix} \mathcal{S}^V & 0 \\ 0 & \mathcal{S}^W \end{pmatrix} \hat{\epsilon}_a(0,0)\right].
$$

Application to the Bott-Dirac operator

- \blacktriangleright Cliff_C(\mathbb{R}^{2n}): the universal unital complex algebra containing \mathbb{R}^{2n} subject to the relations $xx = |x|^2$, $\forall x \in \mathbb{R}^{2n}$.
- Fix an orthonormal basis $\{e_1, \dots, e_{2n}\}$ of \mathbb{R}^{2n} , then $e_{i_1} \cdots e_{i_k}$ for $i_1 < \cdots < i_k$ form a linear basis of $\mathrm{Cliff}_{\mathbb{C}}(\mathbb{R}^{2n})$.
- \blacktriangleright $\mathrm{Cliff}_{\mathbb{C}}(\mathbb{R}^{2n})$ is a Hermitian inner space by deeming these monomials to be orthonormal. It is \mathbb{Z}_2 -graded decomposed as

 $\mathrm{Cliff}_{\mathbb{C}}(\mathbb{R}^{2n}) = (\mathrm{Cliff}_{\mathbb{C}}(\mathbb{R}^{2n}))_0 \oplus (\mathrm{Cliff}_{\mathbb{C}}(\mathbb{R}^{2n}))_1.$

► Clifford multiplication operators $\hat{c}(e_i)$, $c(e_i)$ on $\text{Cliff}_{\mathbb{C}}(\mathbb{R}^{2n})$:

$$
\hat{c}(e_i): w \mapsto (-1)^{\deg(w)}we_i, \ c(e_i): w \mapsto e_iw.
$$

Bott-Dirac operator on $L^2(\mathbb{R}^{2n};\mathrm{Cliff}_{\mathbb{C}}(\mathbb{R}^{2n}))$ is defined by

$$
B=D+C=\sum_{i=1}^{2n}\hat{c}(e_i)\frac{\partial}{\partial x_i}+c(e_i)x_i.
$$

Note that B is an odd, essentially self-adjoint operator.

Equivariant index of the Bott-Dirac operator

Consider $SO(2n)$ acts on $\text{Cliff}_{\mathbb{C}}(\mathbb{R}^{2n})$ by diagonal.

Firstly, B is an $SO(2n)$ -invariant elliptic ΨDO of positive order. Denote by the symbol of B

$$
\begin{pmatrix} 0 & a^* \\ a & 0 \end{pmatrix} = \sum_{j=1}^{2n} (\hat{c}(e_j)i\xi_j + c(e_j)x_j).
$$

Then a is elliptic and has order 1 because

$$
\begin{pmatrix} a^*a & 0 \\ 0 & aa^* \end{pmatrix} = |z|^2 I.
$$

 \blacktriangleright Next, when $n = 1$, the equivariant index of B is 1 at each $g \in SO(2)$. For $n > 1$, it remains true by induction. • $\{1, e_1e_2, e_1, e_2\}$: basis of $(\mathrm{Cliff}_{\mathbb{C}}(\mathbb{R}^2))_0 \oplus (\mathrm{Cliff}_{\mathbb{C}}(\mathbb{R}^2))_1$ • $a = \begin{pmatrix} x_1 + i\xi_1 & -x_2 + i\xi_2 \\ x_1 + i\xi_2 & x_2 + i\xi_2 \end{pmatrix}$ $x_2 + i\xi_2$ $x_1 - i\xi_1$ $\int_0^1 e^2 \hat{e}_a = \frac{1}{1+|x|^2+|z|^2} \begin{pmatrix} I_2 & a^* \ a & -I_1 \end{pmatrix}$ a $-l_2$ \setminus

$$
B: {\mathcal S}({\mathbb R}^2;({\rm Cliff}_{\mathbb C}({\mathbb R}^2))_0)\to {\mathcal S}({\mathbb R}^2;({\rm Cliff}_{\mathbb C}({\mathbb R}^2))_1)
$$

•
$$
\hat{e}_a = \frac{1}{1+|x|^2+|z|^2} \begin{pmatrix} I_2 & a^* \\ a & -I_2 \end{pmatrix}
$$

\n• For $g = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \in SO(2), \theta \in [0, 2\pi]$:
\n
$$
g^{(\text{Cliff}_{\mathbb{C}}(\mathbb{R}^2))_0} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, g^{(\text{Cliff}_{\mathbb{C}}(\mathbb{R}^2))_1} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}
$$

When $g=1\in SO(2)$, the whole \mathbb{R}^2 is fixed by g ,

$$
\mathrm{ind}_{(1)}(B) = \frac{1}{(2\pi i)^2 2!} \int_{\mathcal{T}^*\mathbb{R}^2} \mathrm{tr}(\hat{e_a}(d\hat{e_a})^4) = 1.
$$

When $g \neq 1 \in SO(2)$, $\cos\theta \neq 1$ and $\left(\mathbb{R}^2\right)^g = \{0\},$

$$
\mathrm{ind}_{(\mathcal{S})}(B) = \frac{1}{\det(\mathcal{g}-1)} \mathrm{tr} \left[\begin{pmatrix} \mathcal{S}^{(\mathrm{Cliff}_{\mathbb{C}}(\mathbb{R}^2))_0} & 0 \\ 0 & \mathcal{S}^{(\mathrm{Cliff}_{\mathbb{C}}(\mathbb{R}^2))_1} \end{pmatrix} \hat{e}_a(0,0) \right] = \frac{2 - 2\mathrm{cos}\theta}{2 - 2\mathrm{cos}\theta} = 1.
$$

Proof of the equivariant ENN theorem

Step 1: Represent
$$
ind_{(g)}(P_a)
$$
 by the equivariant K-theory class.
\n $[e_1] - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = [\text{Ker} P_a] - [\text{Ker} P_a^*] \in K_0^G \left(\mathcal{K}(L^2(\mathbb{R}^n; V \oplus W)) \right).$
\n $\{ \text{Tr}(\hat{g} \cdot) \}_{g \in G} : K_0^G \left(\mathcal{K}(L^2(\mathbb{R}^n; V \oplus W)) \right) \to R(G),$

where
$$
\hat{g} = \begin{pmatrix} g|_{L^2(\mathbb{R}^n; V)} & 0 \\ 0 & g|_{L^2(\mathbb{R}^n; W)} \end{pmatrix}
$$
. Then

$$
\mathrm{ind}_{(\mathcal{E})}(P_a) = \mathrm{Tr}(\hat{\mathcal{g}}\left([\mathrm{Ker} P_a] - [\mathrm{Ker} P_a^*]\right)) = \mathrm{Tr}\left(\hat{\mathcal{g}}\left([\mathsf{e}_1] - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right]\right).
$$

Step 2: We can choose $e^{\infty} = (e^{\infty}_\hbar)_\hbar$ to be G -invariant s.t.

$$
[e_{\hbar}]-\left[\begin{pmatrix}0&0\\0&1\end{pmatrix}\right]=[e_{\hbar}^{\infty}]-\left[\begin{pmatrix}0&0\\0&1\end{pmatrix}\right]\in\mathcal{K}_{0}\left(A_{\hbar}^G\right).
$$

Step 3: Search for $\{\omega_g\}_{g\in G}$ to replace $\{\text{Tr}(\hat{g}\cdot)\}_{g\in G}$ s.t.

- \blacktriangleright ind_(g)(P_a) = $\langle [\hat{e}_1], [\omega_g] \rangle$ equivariant analytic index,
- If $\lim_{\hbar\to 0}\langle [\hat{e}_{\hbar}], [\omega_{\varepsilon}] \rangle = \langle [\hat{e}_a], [\epsilon_{\varepsilon}] \rangle$ fixed point formula.

Proof of equivariant ENN theorem

Define the cyclic 2 n_g -cocycle ω_g on $\left(\mathcal{K}^\infty(L^2(\mathbb{R}^n;V\oplus W))\right)^g$:

$$
\omega_{g}(\mathcal{T}_{0},\cdots,\mathcal{T}_{2n_{g}})=\frac{(-1)^{n_{g}}}{n_{g}!}\sum_{\sigma\in S_{2n_{g}}}\text{sgn}(\sigma)\text{Tr}\left(\hat{g}\,\mathcal{T}_{0}\delta_{\sigma(1)}(\mathcal{T}_{1})\cdots\delta_{\sigma(2n_{g})}(\mathcal{T}_{2n_{g}})\right),
$$

$$
\left(\mathcal{K}^{\infty}(\mathcal{L}^{2}(\mathbb{R}^{n};V\oplus W))\right)^{g}=\{\mathcal{T}\in\mathcal{K}^{\infty}(\mathcal{L}^{2}(\mathbb{R}^{n};V\oplus W))|\hat{g}\mathcal{T}=\mathcal{T}\hat{g}\},\
$$

- \blacktriangleright We shall consider $(\mathbb{R}^n)^g$ generated by x_1, \dots, x_{n_g} .
- \blacktriangleright For any idempotent T , $\langle [T], [(2\pi i)^{n_{\rm g}} (n_{\rm g})! \omega_{\rm g}] \rangle = {\rm Tr}(\hat{\mathbf{g}} \, T)$ because $\hat{\mathbf{g}}$ commutes with $\mathcal{T}, \partial_{\mathsf{x}_j}, \mathsf{x}_j, \, \forall j \leq \mathsf{n}_{\mathsf{g}}$.

$$
\implies \operatorname{ind}_{(g)}(P) = \langle [e_1] - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, [(2\pi i)^{n_g} (n_g)! \omega_g] \rangle
$$

\n
$$
= \langle [e_1^{\infty}] - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, [(2\pi i)^{n_g} (n_g)! \omega_g] \rangle \text{ for all } \hbar > 0
$$

\n
$$
\stackrel{\blacktriangle}{=} \frac{1}{(2\pi i)^{n_g} n_g! \det(g-1)} \int_{T^*(\mathbb{R}^n)^g} \operatorname{tr} \begin{bmatrix} g^V & 0 \\ 0 & g^W \end{bmatrix} \hat{e}_a (d\hat{e}_a)^{2n_g} \right],
$$

\nor
$$
\stackrel{\blacktriangle}{=} \frac{1}{\det(g-1)} \operatorname{tr} \begin{bmatrix} g^V & 0 \\ 0 & g^W \end{bmatrix} \hat{e}_a (0,0) \right]. \text{ topological index}
$$

Thank You!