Renormalisation of singular SPDEs on Riemannian manifolds

Harprit Singh

March 22, 2024

Renormalisation of singular SPDEs on Riemar

A class of singular SPDEs

Let *M* Riemannian manifold, $E \rightarrow M$ a vector bundle with a connection and metric.Consider sub-critical equations of the form

$$(\partial_t + \mathfrak{L})u = F(u, \nabla u, ..., \nabla^k u) + \xi ,$$

where

- u (generalised) section of a vector bundle E
 ightarrow M
- \mathfrak{L} is an elliptic operator of order > k on E,
- ξ is an irregular bundle valued (stochastic) noise.

Solution theories:

- Para-controlled Calculus [GIP15],(geometric setting [BB16]).
- Regularity Structures [Hai14],(geometric setting [DDD18], [HS23]).
- Renormalisation group flow [Kup14, Duc21].
- Multi-indices [OSSW21].

Some important examples

Φ^4_d -equation

Let $E \rightarrow M$ vector bundle with metric and connection.

$$(\partial_t + \triangle^E)u = -|u|^2 \cdot u + \xi$$
,

for ξ an E valued space time white noise.

Stochastic Yang-Mills heat flow

Let $P \to M$ principle *G*-bundle, $|\cdot|_{\mathfrak{g}}$ an Ad-invariant scalar product on \mathfrak{g} . Consider principal connections $\omega = \omega^{ref} + A$

$$\partial_t A = -(d^\omega)^* F_\omega - d^\omega (d^\omega)^* (A) + \xi \; ,$$

for $\xi \in \Omega^1(M, \operatorname{Ad}(\mathfrak{g}))$ -valued space time white noise.

3/19

2 Construction of $\{\mathfrak{Dif}_{\mathcal{T}}\}_{\mathcal{T}\in\mathfrak{T}_{-}}$ on Manifolds

Section 1

Meta Theorem of subcritical SPDEs [BCCH20]

Setup

Meta equation

Consider a subcritical equation

$$\partial_t u + \mathcal{L} u = F(u, \nabla u, ..., \nabla^n u) + \xi$$

where

- \mathcal{L} is an elliptic operator on \mathbb{T}^d of order > n
- $\partial_t + \mathcal{L}$ is space-time translation invariant
- $\xi \in \mathcal{D}'(\mathbb{R} \times \mathbb{T}^d)$ space time white noise.

Problem:

- Consider $(\partial_t + \mathcal{L})v = \xi$
- Schauder estimates may not provide enough regularity for the non-linearity F(v, ∇v, ..., ∇ⁿv) to be well defined!

(1)

6/19

Naive hope

Let ρ_{ϵ} smooth mollifiers such that and $\xi_{\epsilon} := \rho_{\epsilon} \star \xi \to \xi$ as $\epsilon \to 0$.Consider solutions u_{ϵ} of

$$\partial_t u_{\epsilon} + \mathcal{L} u_{\epsilon} = F(u_{\epsilon}, \nabla u_{\epsilon}, ..., \nabla^n u_{\epsilon}) + \xi_{\epsilon}.$$
(2)

Generically, u_{ϵ} does not converge as $\epsilon \rightarrow 0$, one needs *renormalisation*.

The theory of regularity structures provides the following type of result:

Metatheorem

Let G, \mathcal{L} , ξ as well as ρ_{ϵ} and ξ_{ϵ} be as above. Then, there exists a finite index set \mathfrak{T}_{-} and non-linearities $\Upsilon^{G}[\tau]$ depending only on G, \mathcal{L} , ξ and as well as constants $c_{\epsilon}^{\tau} \in \mathbb{R}$ depending additionally on ρ_{ϵ} such for u_{ϵ} satisfying

$$\partial_t + \mathcal{L} u_{\epsilon} = F(u_{\epsilon}, \nabla u_{\epsilon}, ..., \nabla^n u_{\epsilon}) + \sum_{\tau \in \mathfrak{T}_{-}} c_{\epsilon}^{\tau} \Upsilon^F[\tau](u_{\epsilon}, \nabla u_{\epsilon}, ..., \nabla^n u_{\epsilon}) + \xi_{\epsilon} ,$$

there exists $u \in \mathcal{D}'((0, T) \times \mathbb{R}^d)$ independent of the choice of $\{\rho_{\epsilon}\}_{\epsilon \in (0,1)}$ such that $u_{\epsilon} \to u$ in probability as $\epsilon \to 0$.

Note that this metatheorem purposefully kept several aspects vague, see [BCCH20, Theorem 2.22].

Roadmap of the proof

Some vocabulary

- A *structure space* is a vector space/bundle *T*. Elements similar to abstract Taylor polynomials.
- A model Z gives analytic "meaning" to elements of T, similarly to the map P(X) → p(x) abstract polynomial to polynomial function.
- Let \mathcal{M} the space of models.
- Given a model Z ∈ M and γ > 0 we denote by D^γ the space of modelled distributions (maps (t, x) → f(x) ∈ T).
- There exists a reconstruction operator

$$\mathcal{R}:\mathcal{D}^{\gamma}
ightarrow \mathcal{D}'$$

This factors the classical solution map S_C . The maps S_A and \mathcal{R} are continuous, but Ψ is not. In general, as $\xi_{\epsilon} \to \xi$ the models $\Psi(\xi_{\epsilon}) = Z(\xi_{\epsilon})$ do *not* converge.

There is a renormalisation group \mathfrak{G}_{-} acting on \mathcal{M} and "space of right hand sides" Eq such that the following diagram commutes

Choosing $M_{\epsilon} \in \mathfrak{G}_{-}$ such that $\xi_{\epsilon} \mapsto M_{\epsilon}\Psi(\xi_{\epsilon})$ is continuous, concludes the sketch.

Section 2

Construction of $\{\mathfrak{Dif}_T\}_{T \in \mathfrak{T}_-}$ on Manifolds

Symmetric sets and Vector bundle assignments

Let \mathfrak{S} a set of types. Let $\operatorname{Iso}(T^1, T^2)$ the set of all type preserving bijections $T^1 \to T^2$.

Definition: Symmetric sets [CCHS22]

A symmetric set β consists of an index set A_{β} and a triple

$$\mathfrak{z} = \left(\{ T^{\mathfrak{a}}_{\mathfrak{z}} \}_{\mathfrak{a} \in \mathcal{A}_{\mathfrak{z}}}, \ \{ \mathfrak{t}^{\mathfrak{a}}_{\mathfrak{z}} \}_{\mathfrak{a} \in \mathcal{A}_{\mathfrak{z}}}, \ \{ \Gamma^{\mathfrak{a}, \mathfrak{b}}_{\mathfrak{z}} \}_{\mathfrak{a}, \mathfrak{b} \in \mathcal{A}_{\mathfrak{z}}} \right) \,,$$

where $(T_{\delta}^{a}, t_{\delta}^{a})$ are finite typed sets and $\Gamma_{\delta}^{a,b} \subset \text{Iso}(T_{\delta}^{b}, T_{\delta}^{a})$ a non-empty set satisfying for $a, b, c \in A_{\delta}$

$$\begin{split} \gamma \in \mathsf{\Gamma}^{\boldsymbol{a},\boldsymbol{b}}_{\boldsymbol{\flat}} & \Rightarrow \quad \gamma^{-1} \in \mathsf{\Gamma}^{\boldsymbol{b},\boldsymbol{a}}_{\boldsymbol{\flat}} ,\\ \gamma \in \mathsf{\Gamma}^{\boldsymbol{a},\boldsymbol{b}}_{\boldsymbol{\flat}} , \quad \bar{\gamma} \in \mathsf{\Gamma}^{\boldsymbol{b},\boldsymbol{c}}_{\boldsymbol{\flat}} & \Rightarrow \quad \gamma \circ \bar{\gamma} \in \mathsf{\Gamma}^{\boldsymbol{a},\boldsymbol{c}}_{\boldsymbol{\flat}} . \end{split}$$

(Connected groupoid in the category of typed sets.)

Harprit Singh

Construction of $\{\mathfrak{Dif}_{\mathcal{T}}\}_{\mathcal{T}\in\mathfrak{T}_{-}}$ on Manifolds

Let $W = (W^{\mathfrak{t}})_{\mathfrak{t} \in \mathfrak{S}}$ be vector bundle assignment.

• For T a typed set, let

$$W^{\otimes T} := \bigotimes_{x \in T} W^{\mathfrak{t}(x)} .$$

2 Any $\psi \in \operatorname{Iso}(T, \overline{T})$ gives a map $W^{\otimes T} \to W^{\otimes \overline{T}}$ characterised by

$$W_{\rho}^{\otimes T} \ni w_{\rho} = \bigotimes_{x \in T} w_{\rho}^{x} \mapsto \psi \cdot w_{\rho} = \bigotimes_{y \in \overline{T}} w_{\rho}^{\psi^{-1}(y)}$$

Oefine

$$egin{aligned} \mathcal{W}^{\otimes \mathfrak{z}} &= \Big\{ w \in \prod_{a \in \mathcal{A}_{\mathfrak{z}}} \mathcal{W}^{\otimes \mathcal{T}^{a}_{\mathfrak{z}}} \,:\, w^{(a)} &= \gamma_{a,b} \cdot w^{(b)} \ & orall a, b \in \mathcal{A}_{\mathfrak{z}} \,,\, orall \gamma_{a,b} \in \Gamma^{a,b}_{\mathfrak{z}} \Big\} \,. \end{aligned}$$

Trees for regularity structures

Consider ${\mathcal T}$ with edge types ${\mathcal E}={\mathcal E}_+\cup {\mathcal E}_0\cup {\mathcal E}_-$.

- \mathcal{E}_+ will encode kernels
- \mathcal{E}_0 place holder for jets
- \mathcal{E}_{-} will encode noises.
- A subcritical rule R defines \mathfrak{T} . For a fixed tree T we define

•
$$E_T^- := \{ e \in E_T \mid e(e) \in \mathcal{E}_- \},$$

• $\mathfrak{T}_T^- := \{ T_E \subset T \mid E \subset E_T^- \},$

Let

$$\mathfrak{T}_{-} := \bigcup_{\mathcal{T} \in \mathfrak{T}} \mathfrak{T}_{\mathcal{T}}^{-} / \sim .$$

One renormalises equations by associating to each $T \in \mathfrak{T}_{-}$ a differential operator $\mathfrak{d}_{T} \in \mathfrak{Dif}_{T}$.

Multi-linear differential operators associated to negative trees

Let S be a finite set. Let $\{W^s\}_{s\in S}$ and W be vector bundles over M. A map

$$\mathcal{A}:\prod_{s\in S}\mathcal{C}^{\infty}(W^s)\to \mathcal{C}^{\infty}(W)$$

is called *multi-linear differential operator* of order k, if it factors through the k-jet bundle via a multi-linear bundle morphism, i.e. there exists $T_{\mathcal{A}} \in L(\bigotimes_{s \in S} J^k W^s, W)$, such that the following diagram commutes

$$\prod_{s \in S} \mathcal{C}^{\infty}(W^{s}) \xrightarrow{\mathcal{A}} \mathcal{C}^{\infty}(W)$$

$$j^{k} \times \dots \times j^{k} \downarrow \xrightarrow{T_{\mathcal{A}}} \mathcal{C}^{\infty}(W)$$

$$\mathcal{C}^{\infty}(\prod_{s \in S} J^{k} W^{s}) \qquad .$$

Let γ be a permutation of the set S such that $W^s = W^{\gamma(s)}$ for each $s \in S$. The operator \mathcal{A} is called γ -invariant if for all $f_s \in \mathcal{C}(W^s)$ one has

$$\mathcal{A}(\prod_{s\in S} f_s) = \mathcal{A}(\prod_{s\in S} f_{\gamma(s)})$$

(i.e. $T_{\mathcal{A}}$ is γ -symmetric.) For $\sigma \in \mathfrak{L}$, $\alpha \in \mathbb{R}$ and a symmetric set $\mathfrak{s} = (S, i, \Gamma)$ where the type set is given by \mathfrak{L} and the index set $A_{\mathfrak{s}}$ consists only of one element. We define

$$\mathfrak{Dif}_{\alpha}(\mathfrak{z},\sigma)$$
 (3)

as the set of all multilinear differential operators which are

- of order $\max\{n \in \mathbb{N} \cup \{-\infty\} : n \leq -\alpha\}$
- $\prod_{s\in S} \mathcal{C}^{\infty}(V^{i(s)})$ to $\mathcal{C}^{\infty}(V^{\sigma})$
- γ invariant for all $\gamma \in \Gamma$.

Definition of $\mathfrak{Dif}_{\mathcal{T}}$

For a tree $T \in \mathfrak{T}_-$, we set

$$\mathfrak{Dif}_{\mathcal{T}} := \mathfrak{Dif}_{|\mathcal{T}|}(\mathfrak{d}_{\mathcal{T}}, \mathsf{ind}(\rho_{\mathcal{T}}))$$

where $\mathfrak{z}_T = (S_T, i_T, \Gamma_T)$ is given by

- $S_T = N_T \setminus (\{
 ho_T\} \cup L_T)$,
- $i_T = \operatorname{dif}_T$,
- Γ_T consists of all tree symmetries restricted to S_T .

(4)

Thank you for your attention!

Construction of $\{\mathfrak{Dif}_{\mathcal{T}}\}_{\mathcal{T}\in\mathfrak{T}_{-}}$ on Manifolds

- Yvain Bruned, Ajay Chandra, Ilya Chevyrev, Martin Hairer Renormalising SPDEs in regularity structures. Journal of the European Mathematical Society 23.3 (2020): 869-947.
- Chandra, A., Chevyrev, I., Hairer, M., Shen.H Langevin dynamic for the 2D Yang–Mills measure. Publ.math.IHES 136, 1–147 (2022). https://doi.org/10.1007/s10240-022-00132-0
- Dahlqvist, A., Diehl, J., Driver, B.K.
 The parabolic Anderson model on Riemann surfaces.
 Probab. Theory Relat. Fields 174, 369–444 (2019).
 https://doi.org/10.1007/s00440-018-0857-6
- Martin Hairer, Harprit Singh. Regularity structures on manifolds and vector bundles https://arxiv.org/pdf/2308.05049.pdf.

Martin Hairer.

A theory of regularity structures.

Harprit Singh

Construction of $\{\mathfrak{Dif}_{\mathcal{T}}\}_{\mathcal{T}\in\mathfrak{T}_{-}}$ on Manifolds

M. Invent. math. (2014) 198: 269. https://doi.org/10.1007/s00222-014-0505-4