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Problem of Constructive Quantisation

▶ (Bosonic) Constructive QFT =⇒ find measure on D ′(Rd ; E)

dµ(φ) = Z −1e−S(φ)Dφ

▶ Problems: ∄Dφ, S is nonlinear

▶ Solution(?): Get to dµ dynamically =⇒ Stochastic Quantisation
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Fokker-Planck Equation

▶ Let V : Rn ! R potential, probability measure: dµ(x) = Z −1e−V (x)dnx

▶ Fokker-Planck Equation for µ: Let dµt(x) = pt(x)dnx , F = −∇V

∂tpt = ∆pt − ∇ · (Fpt)

▶ If µ0 = µ, then ∂tpt = 0; if µ0 ̸= µ (under suitable assumptions)

µt
t!∞
−−−! µ

▶ FP-Equation “makes sense” only in finite dimension. Dual formulation
makes sense “always”.
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Stochastic Differential Equation

▶ Let ν be the Gaussian measure on D ′(R), s.t.∫
D′(R)

ξ(t)ξ(s)dν(ξ) = δ(t − s)

▶ Solve Stochastic Differential Equation (SDE)

∂tXt = F (Xt) +
√

2ξt

▶ If Xt solves SDE, then the measure

µt(A) := (Xt)∗ν(A) := ν
(
X −1

t (A)
)

solves FP equation.
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SDE Crash Course

▶ What is a solution of SDE?

▶ Fix ξ ∈ D ′(R), solve
∂tXt = F (Xt) +

√
2ξt

for ν-almost every ξ independently.

▶ Solution to SDE is the measurable map

ξ 7−! X(ξ)

▶ This is a Pathwise/Pointwise Solution
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SDE Crash Course

▶ What is a solution of an SDE?

▶ Alternative point of view: ξ ∈ D ′(R; M
(
D ′(R)

))
ξ : f 7−!

(
φ 7! φ(f )

)
.

▶ SDE is a regular ODE with values in the commutative algebra of
measurable functions.
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Langevin Stochastic Quantisation

▶ Classical Field Theory:

S(φ) =
∫
R2

1
2 |∇φ|2 + m2

2 φ2 + 1
4φ

4

▶ Stochastic PDE:

∂tφ = − δS
δφ

+ ξ = (∆ − m2)φ− φ3 + ξ

▶ Space-Time White Noise: ξ ∈ D ′(R3; M(D ′(R3))
)

∫
ξ(t, x)ξ(s, y)dν(ξ) = δ(t − s)δ(x − y)

▶ Solutions of SPDE constructed pointwise for a.e. ξ
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Renormalisation

▶ Singular nonlinear PDEs solved by running Picard iteration (like ODE)

T [φ] =
(
∂t − ∆ − m2)−1 (−φ3 + ξ

)
and we hope it has a fixed-point!
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Renormalisation

▶ Singular nonlinear PDEs solved by running Picard iteration, using
fixed-point argument.

▶ Picard iteration: Start := (∂t − ∆ − m2)−1ξ ∈ C0−(R3)

▶ At 2nd step singular products appear:
(

(x)
)2 and

(
(x)
)3

▶ Define using L2-limit in the probability space of

(x) :=
(

(x)
)2 − E

[(
(x)
)2
]
, (x) :=

(
(x)
)3 − 3E

[(
(x)
)2
]

(x)

when removing some regularisation.

▶ Remainder Equation: φ = u +

−(∂t − ∆ + m2)u = u3 + 3u2 + 3u +

well-defined!

9 / 28



Fermions

▶ What are Fermions? Matter particles! Why? Fermions anticommute!

ψ(x)ψ(y) = −ψ(y)ψ(x)

▶ =⇒ Pauli exclusion principle, V ∝ N

▶

ψ(x) ∈ D ′(Rd ;Cn) ⊂
∧

D ′(Rd ;Cn) =: G

Grassmann/Exterior Algebra of vector space D ′(Rd ;Cn).
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Fermions

▶

ψ(x)ψ(y) = −ψ(y)ψ(x)

ψ(x) ∈ D ′(Rd ;Cn) ⊂
∧

D ′(Rd ;Cn) =: G

▶ Bosonic observables described by commutative algebra of measurable
functions/random variables and their expectations w.r.t. measure µ

▶ Fermionic observables described by anticommutative algebra. What is the
measure?

A linear functional ω : G −! C .

▶ Topology?
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Canonical Anticommutation Relation (CAR) Algebra

▶ Let H := L2(R3;C4). CAR algebra A(H) of H: C∗-algebra given by
(anti)linear generators a(f ), a(g)†, f , g ∈ H, satisfying

[a(f ), a(g)†]+ := a(f )a(g)† + a(g)†a(f ) = ⟨f , g⟩L2

▶ a(g)† Creation Operator/Skorohod Integral
a(f ) Annihilation Operator/Malliavin Derivative

▶ A(H) subalgebra of bounded operators on

Fa(H) :=
∞⊕

n=0

H∧n
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Vacuum State – CAR Algebra

▶ Let H := L2(R3;C4). CAR algebra A(H) of H: C∗-algebra given by
(anti)linear generators a(f ), a(g)†, f , g ∈ H, satisfying

[a(f ), a(g)†]+ := a(f )a(g)† + a(g)†a(f ) = ⟨f , g⟩L2

▶ For Ω = 1 ∈ C = H∧0 ⊂ Fa(H), define state on A(H)

ω :
A(H) −! C

A 7−! ⟨Ω,AΩ⟩Fa(H)
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Fermionic White Noise

▶ Let U :=
( 0 12

−12 0
)
. Fermionic space-time white noise on R1+2 is given by

the operator-valued distribution

L2(R3;C4) ∋ f 7−! Ψ(f ) := a(f )† + a(Uf )

[Ψ(f ),Ψ(g)]+ = 0

▶ In components Ψ = (ψ,ψ), this satisfies i , j ∈ {1, 2}

ω(ψi(t, x)ψj(s, y)) = −ω(ψj(s, y)ψi(t, x)) = δijδ(t − s)δ(x − y)
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Fermionic White Noise

▶ Ψ is Gaussian w.r.t. ω, satisfies for fi , gi ∈ L2(R3;C2)

ω
(
ψ(f1)ψ̄(g1) · · ·ψ(fn)ψ̄(gn)

)
=
∑

σ∈Sn

sgn(σ)ω
(
ψ(f1)ψ̄(gσ(1))

)
· · ·ω

(
ψ(fn)ψ̄(gσ(n))

)
▶ By changing U, you can define any free Fermionic theory.
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Yukawa2-Model

▶ Model describing a pair of particle and antiparticle Fermions υ, ῡ
interacting via a Boson φ∫

R2

(1
2 |∇φ|2 + m2

2 φ2 +
〈
ῡ, (− /∇ + M)υ

〉
R2 + gφ ⟨ῡ, υ⟩R2

)
dx

▶ Here /∇ is the Dirac operator

/∇ :=

(
0 −∂1 + i∂2

−∂1 − i∂2 0

)
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Langevin Yukawa Equation

▶ For fixed Bosonic noise ξ ∈ D ′(R3) solve the set of equations as elements
of D ′(R3; A(H)).

∂tφ = (∆ − m2)φ− g ⟨ῡ, υ⟩R2 + ξ

∂tυ = ( /∇ − M)u − gφυ + ψ

∂t ῡ = (− /∇ − M)ῡ − gφῡ + ψ̄ .

▶ Correlation functions at t ! ∞, give correlation functions of interacting
theory.
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Singular Product

▶ For the Picard iteration in the Yukawa2 model, define

:=
(
∂t − /∇ + M

)−1
ψ , :=

(
∂t + /∇ + M

)−1
ψ̄

▶ In (2 + 1)D, the product
〈

(x), (x)
〉
R2 is ill-defined

▶ As before,

(x) := :
〈

(x), (x)
〉
R2 : :=

〈
(x), (x)

〉
R2 − ω

(〈
(x), (x)

〉
R2

)
is a well-defined unbounded(!) operator-valued distributions.
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The Problem

▶ Space of needed unbounded operators on Fa(H) is not Banach algebra.
There is no set of submultiplicative seminorms p, s.t.

p(ab) ⩽ p(a)p(b)

▶ Need submultiplicativity to solve non-linear equation using fixed-point
argument!

▶ How to solve equation without submultiplicativity?
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Points?

▶ Same problem in Bosonic case. Solution: Work Pointwise!

▶ Instead of topologising M(Σ; D ′(Rd)) ∼ D ′(Rd ; M(Σ)) work at each
point p ∈ Σ and solve problem in D ′(Rd)

▶ Clear what points are when target C∗-algebra is commutative (Gel’fand
Isomorphism)

▶ Algebraic Geometry: Points are (finite-dimensional) irreducible
representations of your algebra
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CAR Points?

▶ Does it work for Grassmann/CAR algebra?

▶ No!

▶ Infinite dimensional CAR algebra does not admit finite dimensional reps!

▶ If π : A(H) ! B(Cn) rep, a(f ) ∈ ker(π), f ̸= 0

∥f ∥2 = π([a(f )†, a(f )]+) =
[
π(a(f ))†, π(a(f ))

]
+

= 0

▶ Have to extend the CAR algebra!
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Extended CAR Algebra

▶ Construction based on ideas from [DV75].

▶ Define a free (algebraic) ∗-algebra Â(H) over Hilbert space H, i.e. freely
generated by {

α(f ), α(f )† ∣∣ f ∈ H
}

subject to (anti)-linearity and ∗-relations.

▶ Universal Property: ∀ ∗-algebra M ∀π̂ : H ! M linear ∃!π : Â(H) ! M
∗-algebra morphism extension
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Extended CAR Algebra

▶ Define
Gr(H) := {b

∣∣ b ⊂ H subspace, dim(b) < ∞} .

▶ Let Pb : H ! b projection. Define πb : Â(H) ! A(b) via

πb(α(f )†) = a(Pbf )† , πb(α(f )) = a(Pbf )

▶ A(b) is finite dimensional, no unbounded operators!

▶ Define
A(H) := Â(H)

/ ⋂
b∈Gr(H)

ker πb

with seminorms
∥A∥n := sup

b∈Gr(H)
dim(b)⩽n

∥πb(A)∥
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Extended CAR Algebra

▶ The final object is a locally C∗-algebra, the Extended CAR Algebra,

A (H) := A(H)
(∥•∥n)n

▶ It contains a C∗-algebra

A∞(H) :=
{

A ∈ A (H)
∣∣∣ sup

n∈N
∥A∥n < ∞

}
with surjective morphism ϝ : A∞(H) ! A(H).

▶ Under certain conditions one can extend ϝ to certain unbounded elements
of A (H) to be unbounded operators associated with a von Neumann
completion of A(H).
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Solving the Equation

▶ Renormalised products appearing in the Stochastic Quantisation equations
(of superrenormalisable theories) are always contained in A (H),
correspond to unbounded operators affiliated with (A(H), ω).

▶ Equation can be lifted from being näıvely A(H)-valued to A (H).

▶ Solving equation in A (H) equivalent to solving equation in
An(H) := A (H)/ ker ∥ • ∥n.

▶ For each n ∈ N obtain maximal local existence time Tn. These can be
pieced together to a stopped solution in A (H).
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Open Problems

▶ Find method to prove global in time existence, Pauli Principle?

▶ Find robust methods to show correspondence with unbounded operators
affiliated to original CAR algebra, Non-Commutative Lp-Spaces?

▶ Use with more models.
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Thank You!
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