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Species

Definition (Joyal):

A species is a functor p : Set× −→ VectK from the category of
finite sets to the category of vector spaces.

A species p associates to any finite set I a vector space p[I ].

Definition:

A morphism of species f : p −→ q is a natural transformation
between the functors p and q.

For each finite set I , a morphism of species f : p −→ q gives a map

f [I ] : p[I ] −→ q[I ].
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Examples of species

Basic examples:

Given a vector space V , 1V is the species defined by
1V [I ] = V if I = ∅, 1V [I ] = {0} otherwise.

L is the species which to a set I associates the v.s. spanned
by all linear orders one can endow I with:

L[{a, b}] = 〈(a < b), (b < a)〉K.

Example

The tree species t associates to any finite I the v. s. spanned by
all rooted trees structure on can endow I with.

t[{a, b}] = 〈 qqab , qqba 〉K, t[{a, b, c}] = 〈 q∨qq a
bc

, q∨qq b
ac

, q∨qq c
ba

, qqqabc + perm.〉K
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Why Species?

Why you should stop worrying and love species:

Species were introduced to answer questions of enumerative
combinatorics questions, as a categorification of generating
series.

Species are a machine to produce results: if two objects have
similar properties...
There is possibly a species lurking behind them!

So it might be worth it to formulate interesting (universal)
properties in the category of species.
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Products for species

Definition:

If p and q are two species, the Cauchy product of p and q, is
defined by

(p · q)[I ] :=
⊕

I=StT
p[S ]⊗ q[T ].

Definition (Aguilar, Mahajan):

A monoid is a species p together with an associative product
µ : p.p −→ p.

So for any finite sets I , S and T with I = S t T we have a map

µS ,T : p[S ]⊗ p[T ]→ p[I ]

associative in some sense.
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Coproducts for species

The Cauchy product of p and q is defined by

(p · q)[I ] :=
⊕

I=StT
p[S ]⊗ q[T ].

Definition (Aguilar, Mahajan):

A comonoid is a species with a coassociative coproduct

∆ : p −→ p.p.

So for any finite sets I , S and T with I = S t T we have a map

∆S ,T : p[I ]→ p[S ]⊗ p[T ]

coassociative in some sense.
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Symmetric algebra

Definition:

For a species p, its symmetric algebra S(p) is defined by

S(p)[I ] :=
⊕
π ` I

p(π)

with π = {B1,B2, . . . ,Bk} a partition of I and

p(π) = p[B1]� · · · � p[Bk ].

Example:

The symmetric algebra of the species of rooted trees is the species
of rooted forests.
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Symmetric algebra II

Example:

The symmetric algebra of the species of rooted trees is the species
of rooted forests.

Example: I = {a, b, c}. Then

π = {a, b, c}, {{a, b}, {c}}, {{a, c}, {b}}, {{b, c}, {a}}, {{a}, {b}, {c}}.

Therefore:

S(t)[I ] = t[I ]⊕ (t[a, b]� t[c])⊕ (perm.)⊕ (t[a]� t[b]� t[c])

' 〈 q∨qq a
bc

, qqqabc , qqab qc , qa qb qc ,+perm.〉K
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Monoid structure of the symmetric algebra

Theorem (Aguiar, Mahajan):

(S(p), µ) is a monoid for the µ build from the µS,T below.

I , S and T finite sets with I = S t T ;

πS = {B1, · · · ,Bk} ` S , πT = {C1, · · · ,Cl} ` T ,

Then πS ∪ πT ` I and define

µπS ,πTS ,T : p(πS)⊗ p(πT ) −→ p(πS ∪ πT )

(x1 � · · · � xk)⊗ (y1 � · · · � yl) 7−→ x1 � · · · xk � y1 � · · · � yl

µS ,T :=
∑

πS`S,πT`T
µπS ,πTS ,T .
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Comonoid structure of the symmetric algebra

Theorem (Aguiar, Mahajan):

(S(p),∆) is a comonoid for ∆ = (∆I )I described below

I , S and T finite sets with I = S t T ;

πS = {B1, · · · ,Bk} ` S , πT = {C1, · · · ,Cl} ` T ,

Then πS ∪ πT ` I and define

∆πS ,πT
S ,T : p(πS ∪ πT ) −→ p(πS)⊗ p(πT )

x1 � · · · � xk+l −→
⊙

i s.t. xi∈p[Bj ]

xi ⊗
⊙

α s.t. xα∈p[Bβ ]

xα.

∆S,T :=
∑

πS`S ,πT`T
∆πS ,πT

S ,T , ∆I :=
∑

StT=I

∆S,T .



Species in a Nutshell Operations on species Graftings and cograftings Balanced up and down operators from (co)graftings

Derivative for species

Definition:

Given a species p, its derivative p′ is defined by

p′[I ] := p[I ∪ {∗I}].

Given f : p −→ q, its derivative f ′ is defined by

f ′[I ] := f [I ∪ {∗I}] : p′[I ] −→ q′[I ].

(p.q)′ = p.q′ + p′.q.

Example:

The species t′ is the species of non-empty trees.
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Species with up and down operators

Definition (Guţǎ, Maasen):

A species with up operator is a species p with a morphism
of species u : p→ p′.

A species with down operators is a species p with a
morphism of species d : p′ → p.

Example:

B : t −→ t′ is the up operator defined by adding a root decorated
by ∗I below each trees in t[I ]:

(Bt)[{a, b, c}] = 〈 qqqq*abc , qq∨q q
*

a
b c

,+ perm.〉K ( t[{a, b, c} ∪ {∗}].

NB: the “inverse” map Bis not a down op.: its image is not in t.
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Species with up and down (co)derivations

up: u : p→ p′, down: d : p′ → p.

Definition:

An up (resp. down) operator u : p→ p′ (resp. d : p′ → p) is
coderivation (resp. derivation) if

p
u //

∆

��

p′

∆′ resp.:

��

p · p u·id+id·u
// (p · p)′

(p · p)′
d ·id+id·d

//

µ′

��

p · p

µ

��
p′

d
// p

commutes.
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Balanced up-down operators

For [n] := {1, · · · , n}, x ∈ p[n] and σ ∈ Sn, write σ.x := p[σ](x).

Definition (Aguiar, Mahajan):

A species with up and down operators (p, u, d) is balanced if,
∀n ∈ N

(1, 2).u2(x) = u2(x) ∀x ∈ p[n] (1)

d2((1, 2).x) = d2(x) ∀x ∈ p[n + 2] (2)

d ◦ u = λn Id for some λn ∈ K (3)

d((k + 1, 1).u(x)) = (k , 1).u(d(x)) ∀x ∈ p[n], 1 ≤ k < n. (4)

These are difficult to produce!
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Balanced up-down operators II

Why should we care?
There are functors K : Sp −→ grVectK that “realise” species.
Then

(p, u, d) balanced =⇒ (K(p),K(u),K(d)) a graded vector space

with creation-annihilation operators.

(1) ⇒ commutation of creation operator,
(2) ⇒ commutation of annihilation operator,
(3)+(4) ⇒ commutation of creation/annihilation operators.
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Graftings: for forests to species

For a set I

FI := 〈forests decorated by I 〉K, TI := 〈trees decorated by I 〉K.

For a ∈ I , Ba
+ : FI −→ TI \ ∅ defined by

Ba
+(t1 · · · tk) =

t1 · · · tkq@@��q q
A�a

Recall
FI ≈ S(t)[I ], TI \ ∅ ≈ t′[I ].

Definition:

A grafting map for a species p is a map B : S(p) −→ p′.
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Cograftings

A grafting map for a species p is a map B : S(p) −→ p′.

Definition:

A cografting map for a species p is a map B: p′ −→ S(p).

Example:

The inverse map B:= (B+)−1 is now a cografting!

B

( t1 · · · tkq@@��q q
A�a

)
:= t1 · · · tk
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Up operators from graftings and cograftings

B : S(p) −→ p′.

Definition:

Let (p,B) be a species with a grafting. Define

the set up operator uB : S(p) −→ S(p)′ by

uB : S(p)
B−→ p′ ↪→ S(p)′.

the algebraic up operator uB : S(p) −→ S(p)′ by

uB : S(p)
∆−→ S(p) · S(p)

B · Id−−−→ p′ · S(p) = S(p)′
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Down operators from graftings and cograftings

B: p′ −→ S(p).

Definition:

Let (p, B) be a species with a cografting. Define

the set down operator d B: S(p)′ −→ S(p) by

d B: S(p)′ � p′
B−→ S(p).

the algebraic down operator d B: S(p)′ −→ S(p) by

d B: S(p)′ = p′.S(p)
B· Id−−→ S(p).S(p)

µ−→ S(p).
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Universal property

uB : S(p)
B−→ p′ ↪→ S(p)′.

Theorem (C., Paycha, Vargas):

Let B : S(t)→ t′ the grafting of forests. For every commutative
monoid (q, ν) with up operator u : q→ q′, there exists a unique
map of monoids with up operators

φ : (S(t), µ, uB)→ (q, ν, u).

In particular, the following diagram commutes:

S(t)
φ
//

uB

��

q

u
��

S(t)′
φ′
// q′
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(Co)Derivations from (co)graftings

Proposition (C., Paycha, Vargas):

Let (p,B) be a species with a grafting and (q, B) a species with a
cografting. Then (S(p), µ, uB) is a comonoid with an up
coderivation and (S(q),∆, d B) is a monoid with a derivation:

p
uB

//

∆

��

p′

∆′ and

��

p · p uB·id+id·uB
// (p · p)′

(p · p)′
d B·id+id·d B //

µ′

��

p · p

µ

��
p′

d B

// p

Proof: elegant or brute force.
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Balanced up/down operators from co/graftings

Let (p,B, B) be a species with grafting and cografting. Then
(S(p), uB, d B) is balanced i.f.f.:

(1, 2).B2(x) = B2(x) ∀x ∈ p[n]

B2((1, 2).x) = B2(x) ∀x ∈ p[n + 2]

B◦ B = λn Id for some λn ∈ K
B((k + 1, 1).B(x)) = (k, 1).B( B(x)) ∀x ∈ p[n], 1 ≤ k < n

This suggests a strategy to build (hopefully) non-trivial pairs of
balanced up/down operators!
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An example

Example:

Let g be the species of connected, non-oriented graphs without
self-loops. S(g) is the species of non-connected, non-oriented
graphs without self-loops. Define

B : S(g) −→ g′, B: g′ −→ S(g).

B adds a new vertex linked to all former vertices,

Bremoves this vertex and all edges attached to it.

Then (S(g), uB, d B) is balanced with λn = 1.

First three relations (rather) trivial.

B((k + 1, 1).B(x)) = (k , 1).B( B(x)) requires some work.
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Openings and conclusion

Openings:

Connes-Kreimer comonoid for S(t) still to be investigated.

General results about balanced up/down operators from
graftings and cograftings?

Other structures on species from graftings and cograftings?

Conclusion:

Species are fun!
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Thank you for your attention.
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