Grafting and cografting for species

Pierre J. Clavier ongoing work with Yannic Vargas and Sylvie Paycha

IRIMAS, UHA

Algebraic, analytic and geometric structures emerging from quantum field theory Chengdu, China

Table of contents

Species in a Nutshell

Operations on species

- Products and coproducts for species
- Symmetric algebra
- Species with up and down operators

Graftings and cograftings

- From trees to species
- Up and down operators from graftings and cograftings
- Properties of up/down operators from co/graftings
- Balanced up and down operators from (co)graftings
- Openings and conclusion

2 Operations on species

- Products and coproducts for species
- Symmetric algebra
- Species with up and down operators

3 Graftings and cograftings

- From trees to species
- Up and down operators from graftings and cograftings
- Properties of up/down operators from co/graftings

Balanced up and down operators from (co)graftings

Openings and conclusion

Operations on species

Graftings and cograftings

Balanced up and down operators from (co)graftings $_{\rm OOOOOO}$

Species

Definition (Joyal):

A species is a functor $\mathbf{p} : \mathbf{Set}^{\times} \longrightarrow \mathbf{Vect}_{\mathbb{K}}$ from the category of finite sets to the category of vector spaces.

A species **p** associates to any finite set I a vector space **p**[I].

Definition:

A morphism of species $f : \mathbf{p} \longrightarrow \mathbf{q}$ is a natural transformation between the functors \mathbf{p} and \mathbf{q} .

For each finite set I, a morphism of species $f : \mathbf{p} \longrightarrow \mathbf{q}$ gives a map

 $f[I]: \mathbf{p}[I] \longrightarrow \mathbf{q}[I].$

Graftings and cografting 0000000

Balanced up and down operators from (co)graftings $_{\rm OOOOOO}$

Examples of species

Basic examples:

- Given a vector space V, $\mathbf{1}_V$ is the species defined by $\mathbf{1}_V[I] = V$ if $I = \emptyset$, $\mathbf{1}_V[I] = \{0\}$ otherwise.
- L is the species which to a set *I* associates the v.s. spanned by all linear orders one can endow *I* with:

$$\mathsf{L}[\{a,b\}] = \langle (a < b), (b < a) \rangle_{\mathbb{K}}.$$

Example

The tree species \mathbf{t} associates to any finite I the v. s. spanned by all rooted trees structure on can endow I with.

$$\mathbf{t}[\{a,b\}] = \langle \mathfrak{l}^{\flat}_{a} \ , \mathfrak{l}^{\flat}_{b} \ \rangle_{\mathbb{K}}, \qquad \mathbf{t}[\{a,b,c\}] = \langle \ \overset{^{c}}{\mathsf{V}}^{\flat}_{a} \ , \ \overset{^{a}}{\mathsf{V}}^{\flat}_{c} \ , \ \overset{^{b}}{\mathsf{L}}^{\flat}_{a} + \mathsf{perm.} \rangle_{\mathbb{K}}$$

Why you should stop worrying and love species:

- Species were introduced to answer questions of **enumerative combinatorics** questions, as a categorification of generating series.
- Species are a machine to produce results: if two objects have similar properties...

There is possibly a species lurking behind them!

• So it might be worth it to formulate interesting (universal) properties in the category of species.

Operations on species

- Products and coproducts for species
- Symmetric algebra
- Species with up and down operators

3 Graftings and cograftings

- From trees to species
- Up and down operators from graftings and cograftings
- Properties of up/down operators from co/graftings
- Balanced up and down operators from (co)graftings
- Openings and conclusion

Operations on species

Graftings and cograftings

Balanced up and down operators from (co)graftings $_{\rm OOOOOO}$

Products for species

Definition:

If p and q are two species, the $Cauchy\ product$ of p and q, is defined by

$$(\mathbf{p} \cdot \mathbf{q})[I] := \bigoplus_{I=S \sqcup T} \mathbf{p}[S] \otimes \mathbf{q}[T].$$

Definition (Aguilar, Mahajan):

A monoid is a species p together with an associative product

 $\mu: \mathbf{p}.\mathbf{p} \longrightarrow \mathbf{p}.$

So for any finite sets *I*, *S* and *T* with $I = S \sqcup T$ we have a map

$$\mu_{S,T}:\mathbf{p}[S]\otimes\mathbf{p}[T]\to\mathbf{p}[I]$$

associative in some sense.

Operations on species

Graftings and cograftings

Balanced up and down operators from (co)graftings $_{\rm OOOOOO}$

Coproducts for species

The Cauchy product of ${\boldsymbol{p}}$ and ${\boldsymbol{q}}$ is defined by

$$(\mathbf{p} \cdot \mathbf{q})[I] := \bigoplus_{I=S \sqcup T} \mathbf{p}[S] \otimes \mathbf{q}[T].$$

Definition (Aguilar, Mahajan):

A comonoid is a species with a coassociative coproduct

 $\Delta : \mathbf{p} \longrightarrow \mathbf{p}.\mathbf{p}.$

So for any finite sets *I*, *S* and *T* with $I = S \sqcup T$ we have a map $\Delta_{S,T} : \mathbf{p}[I] \to \mathbf{p}[S] \otimes \mathbf{p}[T]$

coassociative in some sense.

Operations on species

Graftings and cograftings

Balanced up and down operators from (co)graftings $_{\rm OOOOOO}$

Symmetric algebra

Definition:

For a species \mathbf{p} , its symmetric algebra $\mathcal{S}(\mathbf{p})$ is defined by

$$\mathcal{S}(\mathbf{p})[I] := \bigoplus_{\pi \vdash I} \mathbf{p}(\pi)$$

with $\pi = \{B_1, B_2, \dots, B_k\}$ a partition of I and

$$\mathbf{p}(\pi) = \mathbf{p}[B_1] \odot \cdots \odot \mathbf{p}[B_k].$$

Example:

The symmetric algebra of the species of rooted trees is the species of rooted forests.

Operations on species

Graftings and cograftings 0000000 Balanced up and down operators from (co)graftings $_{\rm OOOOOO}$

Symmetric algebra II

Example:

The symmetric algebra of the species of rooted trees is the species of rooted forests.

Example: $I = \{a, b, c\}$. Then

 $\pi = \{a, b, c\}, \{\{a, b\}, \{c\}\}, \{\{a, c\}, \{b\}\}, \{\{b, c\}, \{a\}\}, \{\{a\}, \{b\}, \{c\}\}.$

Therefore:

$$\begin{split} \mathcal{S}(\mathbf{t})[I] &= \mathbf{t}[I] \oplus (\mathbf{t}[a, b] \odot \mathbf{t}[c]) \oplus (\mathsf{perm.}) \oplus (\mathbf{t}[a] \odot \mathbf{t}[b] \odot \mathbf{t}[c]) \\ &\simeq \langle {}^{\mathsf{c}} \mathsf{V}_{\mathsf{a}}^{\mathsf{b}} , {}^{\mathsf{b}}_{\mathsf{a}} , {}^{\mathsf{b}}_{\mathsf{a}} , {}^{\mathsf{b}}_{\mathsf{a}} \bullet_{\mathsf{c}} , {}^{\mathsf{a}}_{\mathsf{a}} \bullet_{\mathsf{c}} , + \mathsf{perm.} \rangle_{\mathbb{K}} \end{split}$$

Graftings and cograftings 0000000 Balanced up and down operators from (co)graftings 000000

Monoid structure of the symmetric algebra

Theorem (Aguiar, Mahajan):

 $(S(\mathbf{p}), \mu)$ is a monoid for the μ build from the $\mu_{S,T}$ below.

- *I*, *S* and *T* finite sets with $I = S \sqcup T$;
- $\pi_S = \{B_1, \cdots, B_k\} \vdash S, \ \pi_T = \{C_1, \cdots, C_l\} \vdash T,$

Then $\pi_{S} \cup \pi_{T} \vdash I$ and define

$$\mu_{S,T}^{\pi_{S},\pi_{T}}:\mathbf{p}(\pi_{S})\otimes\mathbf{p}(\pi_{T})\longrightarrow\mathbf{p}(\pi_{S}\cup\pi_{T})$$
$$(x_{1}\odot\cdots\odot x_{k})\otimes(y_{1}\odot\cdots\odot y_{l})\longmapsto x_{1}\odot\cdots x_{k}\odot y_{1}\odot\cdots\odot y_{l}$$

$$\mu_{\mathcal{S},\mathcal{T}} := \sum_{\pi_{\mathcal{S}} \vdash \mathcal{S}, \pi_{\mathcal{T}} \vdash \mathcal{T}} \mu_{\mathcal{S},\mathcal{T}}^{\pi_{\mathcal{S}},\pi_{\mathcal{T}}}.$$

Operations on species

Graftings and cograftings Balanced up and down operators from (co)graftings

Comonoid structure of the symmetric algebra

Theorem (Aguiar, Mahajan):

 $(S(\mathbf{p}), \Delta)$ is a comonoid for $\Delta = (\Delta_I)_I$ described below

• I, S and T finite sets with $I = S \sqcup T$;

•
$$\pi_{S} = \{B_{1}, \cdots, B_{k}\} \vdash S, \ \pi_{T} = \{C_{1}, \cdots, C_{l}\} \vdash T,$$

Then $\pi_{S} \cup \pi_{T} \vdash I$ and define

$$\Delta_{S,T}^{\pi_S,\pi_T} : \mathbf{p}(\pi_S \cup \pi_T) \longrightarrow \mathbf{p}(\pi_S) \otimes \mathbf{p}(\pi_T)$$

$$x_1 \odot \cdots \odot x_{k+1} \longrightarrow \bigcup_{i \text{ s.t. } x_i \in \mathbf{p}[B_j]} x_i \otimes \bigcup_{\alpha \text{ s.t. } x_\alpha \in \mathbf{p}[B_\beta]} x_\alpha.$$

$$\Delta_{S,T} := \sum_{i \in T} \Delta_{i}^{\pi_S,\pi_T}, \quad \Delta_I := \sum_{i \in T} \Delta_{S,T}.$$

$$\Delta_{S,T} := \sum_{\pi_S \vdash S, \pi_T \vdash T} \Delta_{S,T}^{\pi_S,\pi_T}, \quad \Delta_I := \sum_{S \sqcup T = I} \Delta_{S,T}$$

Operations on species

Graftings and cograftings 0000000

Balanced up and down operators from (co)graftings $_{\rm OOOOOO}$

Derivative for species

Definition:

Given a species \mathbf{p} , its derivative \mathbf{p}' is defined by

 $\mathbf{p}'[I] := \mathbf{p}[I \cup \{*_I\}].$

Given $f : \mathbf{p} \longrightarrow \mathbf{q}$, its **derivative** f' is defined by

 $f'[I] := f[I \cup \{*_I\}] : \mathbf{p}'[I] \longrightarrow \mathbf{q}'[I].$

$$(\mathbf{p}.\mathbf{q})' = \mathbf{p}.\mathbf{q}' + \mathbf{p}'.\mathbf{q}.$$

Example:

The species \mathbf{t}' is the species of non-empty trees.

Graftings and cograftings 0000000 Balanced up and down operators from (co)graftings 000000

Species with up and down operators

Definition (Guță, Maasen):

- A species with up operator is a species p with a morphism of species u : p → p'.
- A species with down operators is a species p with a morphism of species d : p' → p.

Example:

 $B : \mathbf{t} \longrightarrow \mathbf{t}'$ is the up operator defined by adding a root decorated by $*_I$ below each trees in $\mathbf{t}[I]$:

$$(B\mathbf{t})[\{a,b,c\}] = \langle \mathbf{t}_{\mathbf{a}}^{\mathsf{f}_{\mathsf{b}}}, \mathbf{t}_{\mathbf{a}}^{\mathsf{p}_{\mathsf{c}}}, + \mathsf{perm.} \rangle_{\mathbb{K}} \subsetneq \mathbf{t}[\{a,b,c\} \cup \{*\}].$$

NB: the "inverse" map B is not a down op.: its image is not in t.

Operations on species

Graftings and cograftings 0000000

Balanced up and down operators from (co)graftings $_{\rm OOOOOO}$

Species with up and down (co)derivations

up:
$$u: \mathbf{p} \to \mathbf{p}'$$
, down: $d: \mathbf{p}' \to \mathbf{p}$.

Definition:

An up (resp. down) operator $u : \mathbf{p} \to \mathbf{p}'$ (resp. $d : \mathbf{p}' \to \mathbf{p}$) is coderivation (resp. derivation) if

Operations on species

Graftings and cograftings

Balanced up and down operators from (co)graftings $_{\rm OOOOOO}$

Balanced up-down operators

For
$$[n] := \{1, \cdots, n\}$$
, $x \in \mathbf{p}[n]$ and $\sigma \in S_n$, write $\sigma.x := \mathbf{p}[\sigma](x)$.

Definition (Aguiar, Mahajan):

A species with up and down operators (\mathbf{p}, u, d) is **balanced** if, $\forall n \in \mathbb{N}$

$$(1,2).u^2(x) = u^2(x) \quad \forall x \in \mathbf{p}[n]$$
(1)

$$d^{2}((1,2).x) = d^{2}(x) \quad \forall x \in \mathbf{p}[n+2]$$
 (2)

$$d \circ u = \lambda_n \operatorname{Id}$$
 for some $\lambda_n \in \mathbb{K}$ (3)

 $d((k+1,1).u(x)) = (k,1).u(d(x)) \quad \forall x \in \mathbf{p}[n], \ 1 \le k < n.$ (4)

These are difficult to produce!

Operations on species

Graftings and cograftings 0000000

Balanced up and down operators from (co)graftings $_{\rm OOOOOO}$

Balanced up-down operators II

Why should we care? There are functors $\mathcal{K}: Sp \longrightarrow grVect_{\mathbb{K}}$ that "realise" species. Then

 (\mathbf{p}, u, d) balanced $\implies (\mathcal{K}(\mathbf{p}), \mathcal{K}(u), \mathcal{K}(d))$ a graded vector space with creation-annihilation operators.

 $\begin{array}{l} (1) \Rightarrow \mbox{commutation of creation operator,} \\ (2) \Rightarrow \mbox{commutation of annihilation operator,} \\ (3)+(4) \Rightarrow \mbox{commutation of creation/annihilation operators.} \end{array}$

2 Operations on species

- Products and coproducts for species
- Symmetric algebra
- Species with up and down operators

Graftings and cograftings

- From trees to species
- Up and down operators from graftings and cograftings
- Properties of up/down operators from co/graftings

Balanced up and down operators from (co)graftings

Openings and conclusion

Operations on species

Graftings and cograftings

Balanced up and down operators from (co)graftings $_{\rm OOOOOO}$

Graftings: for forests to species

For a set *I*

 $\mathcal{F}_{\textit{I}} := \langle \text{forests decorated by } \textit{I} \rangle_{\mathbb{K}}, \quad \mathcal{T}_{\textit{I}} := \langle \text{trees decorated by } \textit{I} \rangle_{\mathbb{K}}.$

For $a \in I$, $B_+^a : \mathcal{F}_I \longrightarrow \mathcal{T}_I \setminus \emptyset$ defined by

$$B^a_+(t_1\cdots t_k) = \bigvee_a^{t_1\cdots t_k}$$

Recall

$$\mathcal{F}_I \approx \mathcal{S}(\mathbf{t})[I], \qquad \mathcal{T}_I \setminus \emptyset \approx \mathbf{t}'[I].$$

Definition:

A grafting map for a species \mathbf{p} is a map $B : \mathcal{S}(\mathbf{p}) \longrightarrow \mathbf{p}'$.

Operations on species 000000000000 Graftings and cograftings $\circ \circ \circ \circ \circ \circ \circ \circ$

Balanced up and down operators from (co)graftings $_{\rm OOOOOO}$

Cograftings

A grafting map for a species \mathbf{p} is a map $B: S(\mathbf{p}) \longrightarrow \mathbf{p}'$.

Definition:

A cografting map for a species \mathbf{p} is a map \mathbb{B} : $\mathbf{p}' \longrightarrow \mathcal{S}(\mathbf{p})$.

Example:

The inverse map $B := (B_+)^{-1}$ is now a cografting!

$$\exists \left(\begin{array}{c} t_1 \cdots t_k \\ & \\ \end{array} \right) := t_1 \cdots t_k$$

Operations on species

Balanced up and down operators from (co)graftings $_{\rm OOOOOO}$

Up operators from graftings and cograftings

$$\mathsf{B}:\mathcal{S}(\mathbf{p})\longrightarrow \mathbf{p}'.$$

Definition:

Let (\mathbf{p}, B) be a species with a grafting. Define

• the set up operator $u_B : \mathcal{S}(\mathbf{p}) \longrightarrow \mathcal{S}(\mathbf{p})'$ by

$$u_{\mathsf{B}}: \mathcal{S}(\mathbf{p}) \xrightarrow{\mathsf{B}} \mathbf{p}' \hookrightarrow \mathcal{S}(\mathbf{p})'.$$

• the algebraic up operator $u^{\mathsf{B}}:\mathcal{S}(\mathbf{p})\longrightarrow\mathcal{S}(\mathbf{p})'$ by

$$\mu^{\mathsf{B}}: \mathcal{S}(\mathsf{p}) \xrightarrow{\Delta} \mathcal{S}(\mathsf{p}) \cdot \mathcal{S}(\mathsf{p}) \xrightarrow{\mathsf{B} \cdot \mathsf{Id}} \mathsf{p}' \cdot \mathcal{S}(\mathsf{p}) = \mathcal{S}(\mathsf{p})'$$

Operations on species

Balanced up and down operators from (co)graftings $_{\rm OOOOOO}$

Down operators from graftings and cograftings

$$\exists : \mathbf{p}' \longrightarrow \mathcal{S}(\mathbf{p}).$$

Definition:

Let (\mathbf{p}, \mathbf{B}) be a species with a cografting. Define

• the set down operator $d_{\scriptscriptstyle \! B}: \mathcal{S}(\mathbf{p})' \longrightarrow \mathcal{S}(\mathbf{p})$ by

$$d_{\mathtt{B}}:\mathcal{S}(\mathbf{p})'\twoheadrightarrow\mathbf{p}'\xrightarrow{\mathtt{B}}\mathcal{S}(\mathbf{p})$$

• the algebraic down operator $d^{\mathtt{B}}: \mathcal{S}(\mathbf{p})' \longrightarrow \mathcal{S}(\mathbf{p})$ by

 $d^{\mathtt{g}}: \mathcal{S}(\mathbf{p})' = \mathbf{p}'.\mathcal{S}(\mathbf{p}) \xrightarrow{\mathtt{g} \cdot \mathtt{ld}} \mathcal{S}(\mathbf{p}).\mathcal{S}(\mathbf{p}) \xrightarrow{\mu} \mathcal{S}(\mathbf{p}).$

Operations on species

Balanced up and down operators from (co)graftings $_{\rm OOOOOO}$

Universal property

$$u_{\mathsf{B}}: \mathcal{S}(\mathbf{p}) \xrightarrow{\mathsf{B}} \mathbf{p}' \hookrightarrow \mathcal{S}(\mathbf{p})'.$$

Theorem (C., Paycha, Vargas):

Let $B : S(\mathbf{t}) \to \mathbf{t}'$ the grafting of forests. For every commutative monoid (\mathbf{q}, ν) with up operator $u : \mathbf{q} \to \mathbf{q}'$, there exists a unique map of monoids with up operators

$$\phi: (\mathcal{S}(\mathbf{t}), \mu, u_{\mathsf{B}}) \to (\mathbf{q}, \nu, u).$$

In particular, the following diagram commutes:

Operations on species

Graftings and cograftings ○○○○○● Balanced up and down operators from (co)graftings $_{\rm OOOOOO}$

(Co)Derivations from (co)graftings

Proposition (C., Paycha, Vargas):

Let (\mathbf{p}, B) be a species with a grafting and (\mathbf{q}, B) a species with a cografting. Then $(\mathcal{S}(\mathbf{p}), \mu, u^B)$ is a comonoid with an up coderivation and $(\mathcal{S}(\mathbf{q}), \Delta, d_B)$ is a monoid with a derivation:

Proof: elegant or brute force.

2 Operations on species

- Products and coproducts for species
- Symmetric algebra
- Species with up and down operators

3 Graftings and cograftings

- From trees to species
- Up and down operators from graftings and cograftings
- Properties of up/down operators from co/graftings

Balanced up and down operators from (co)graftings

Openings and conclusion

Balanced up/down operators from co/graftings

Let (\mathbf{p}, B, B) be a species with grafting and cografting. Then $(S(\mathbf{p}), u_B, d_B)$ is balanced i.f.f.:

$$(1,2).B^{2}(x) = B^{2}(x) \quad \forall x \in \mathbf{p}[n]$$

$$B^{2}((1,2).x) = B^{2}(x) \quad \forall x \in \mathbf{p}[n+2]$$

$$B \circ B = \lambda_{n} \operatorname{Id} \quad \text{for some } \lambda_{n} \in \mathbb{K}$$

$$B((k+1,1).B(x)) = (k,1).B(B(x)) \quad \forall x \in \mathbf{p}[n], \ 1 \le k < n$$

This suggests a strategy to build (hopefully) non-trivial pairs of balanced up/down operators!

Operations on species

Graftings and cograftings 0000000 Balanced up and down operators from (co)graftings 000000

An example

Example:

Let **g** be the species of connected, non-oriented graphs without self-loops. $S(\mathbf{g})$ is the species of non-connected, non-oriented graphs without self-loops. Define

$$\mathsf{B}:\mathcal{S}(\mathbf{g})\longrightarrow \mathbf{g}',\quad \mathsf{B}:\mathbf{g}'\longrightarrow \mathcal{S}(\mathbf{g}).$$

• B adds a new vertex linked to all former vertices,

• 8 removes this vertex and all edges attached to it.

Then $(\mathcal{S}(\mathbf{g}), u_{\mathsf{B}}, d_{\mathsf{B}})$ is balanced with $\lambda_n = 1$.

- First three relations (rather) trivial.
- B((k + 1, 1).B(x)) = (k, 1).B(B(x)) requires some work.

2 Operations on species

- Products and coproducts for species
- Symmetric algebra
- Species with up and down operators

3 Graftings and cograftings

- From trees to species
- Up and down operators from graftings and cograftings
- Properties of up/down operators from co/graftings

Balanced up and down operators from (co)graftings

5 Openings and conclusion

Operations on species

Graftings and cograftings 0000000

Openings and conclusion

Openings:

- Connes-Kreimer comonoid for $\mathcal{S}(t)$ still to be investigated.
- General results about balanced up/down operators from graftings and cograftings?

• Other structures on species from graftings and cograftings? <u>Conclusion:</u>

Operations on species

Graftings and cograftings

Openings and conclusion

Openings:

- Connes-Kreimer comonoid for $\mathcal{S}(t)$ still to be investigated.
- General results about balanced up/down operators from graftings and cograftings?
- Other structures on species from graftings and cograftings? <u>Conclusion:</u>

Species are fun!

THANK YOU FOR YOUR ATTENTION.