Quantum Dynamics of Causal Sets

Sumati Surya Raman Research Institute

Algebraic, analytic, geometric structures emerging from quantum field theory Sichuan University, March, 2024

Outline

- Posets and Lorentzian geometry: an introduction
- Causal Sets: A route to quantising spacetime
- The quantum partition function: entropy versus action
- Sequential growth dynamics and quantum vector measures

Work done in collaboration with S. Carlip, P. Carlip, F. Dowker, S. Johnston, A. Mathur, A. A. Singh, S. Zalel

Posets and Lorentzian Geometry

- Spacetime is a Lorentzian manifold (M, g), where g has signature (-, +, +, +)
- $ds^2 = g_{ab}dx^a dx^b$ can be positive, negative or zero

- Example: Minkowski/Flat Spacetime $ds^{2} = - dt^{2} + dx^{2} + dy^{2} + dz^{2}$
- At every point $p \in M$, the vectors in T_pM are arranged in ``lightcones" to the past and the future.
 - Vectors are either

- future or past timelike ($ds^2 < 0$)
- future or past null/lightlike ($ds^2 = 0$)
- spacelike $(ds^2 > 0)$

Posets and Lorentzian Geometry

Defines an order relations on $M : \prec$ (causality relation) and $\prec \prec$ (chronology relation)

- $x \prec y$ if there exists a curve γ from x to y whose tangent everywhere is future-directed and non-spacelike.
 - \prec is **transitive**: if $x \prec z$ and $z \prec y \Rightarrow x \prec y$
 - If (M, g) is a **causal** spacetime, \prec is **acyclic** : $x \prec y \Rightarrow y \neq x$

(-, -, +, +) has no associated poset

Robb, 1914, "A theory of time and space"

A quick review of terminology

- **Causal relation** \prec : Tangent to γ from x to y is everywhere either timelike or null
- Chronological relation $\prec \prec$: Tangent to γ from x to y is everywhere timelike
- ▶ Both (M, \prec) and (M, \prec) are posets
- Causal Future and Past: $J^+(x) = \{y \in M \mid x \prec y\}, J^-(x) = \{y \in M \mid y \prec x\}$
- Chronological Future and Past: $I^+(x) = \{y \in M \mid x \prec y\}, \quad I^-(x) = \{y \in M \mid y \prec x\}$

Requires g_{ab} to be at least C^2

What part of (M, g) is (M, \prec) ?

Under conformal transformations:

$$\widetilde{g}_{ab} = \Omega^2 g_{ab}, \ d\widetilde{s}^2 = 0 = ds^2 \Rightarrow (M, \widetilde{\prec}) = (M, \prec)$$

A Flat Spacetime Result

• \mathbb{M}^d : *d* dimensional Minkowski spacetime, $ds^2 = -dt^2 + \sum_{i=1}^{n-1} dx_i^2$

- ► Chronological Automorphism $f : \mathbb{M}^d \to \mathbb{M}^d$, $x \prec y \Leftrightarrow f(x) \prec f(y), \forall x, y \in \mathbb{M}^d$.
- Conformal transformations: Lorentz group + local dilatations.

Theorem: The group of chronological automorphisms is isomorphic to the group of conformal transformations on M^d . --- Alexandrov and Ovchinnikova, 1953, Zeeman, 1964

$$(\mathbb{R}^d,\prec_{\min k})$$
 determines $ds^2_{\min k}$ upto a conformal factor

Causal Structure as the ``Essence" of Lorentzian Geometry

- Let $(M_1, g_1), (M_2, g_2)$ be two causal spacetimes
- Let $(M_i, \prec_i), (M_i, \prec_i)$ be their respective chronological and causal posets
- Chronological Bijection: $f: (M_1, \prec _1) \to (M_2, \prec _2), \quad f(x) \prec _2 f(y) \Leftrightarrow x \prec _1 y, \forall x, y \in M_1$
- Causal Bijection: $f: (M_1, \prec_1) \to (M_2, \prec_2), \quad f(x) \prec_2 f(y) \Leftrightarrow x \prec_1 y, \forall x, y \in M_1$
- Future and past distinguishing spacetimes: $I^+(x) = I^+(y)$ or $I^-(x) = I^-(y) \Rightarrow x = y$,

-- Hawking and Ellis, Penrose

- Chronological Bijection \Rightarrow Causal Bijection if they are future and past distinguishing
 - Kronheimer and Penrose, 1967

• Conformal Isometry : $F: (M_1, g_1) \rightarrow (M_2, g_2), \quad g_2 = \Omega^2 g_1$

Theorem: If a chronological bijection exists between two future and past distinguishing spacetimes then they are conformally isometric

--- Hawking, King, McCarthy, 1976, Malament, 1977

- Alexandrov interval topology = Manifold topology in strongly causal spacetimes
- ► Chronological bijection \Rightarrow dimension and the topology (for <u>special</u> distinguishing spts) is the same. -- Malament, 1977, Parrikar and Surya, 2011

Suggests a non-Riemannian order-theoretic route to quantising spacetime

Discretising the ``Essence":

"To admit structures which can be very different from a manifold. The possibility arises, for example, of a <u>locally countable or discrete event-space</u> <u>equipped with causal relations macroscopically</u> <u>similar to those of a space-time continuum</u>." Axiomatic Approach to Causal Structure "Extract from (M, g) its causal essence" -- Kronheimer and Penrose 1967

- Kronheimer and Penrose 1967
- ► Finkelstein, 1969
- Myrheim, 1978
- ▶ 'tHooft, 1979
- ▶ Hemion, 1980
- Bombelli, Lee, Meyer and Sorkin, 1987

Ideas of discrete Causal Structure

Discrete Posets or Causal Sets: A route to quantum spacetime

The Causal Set Hypothesis

1. Causal Sets are the fine grained structure of spacetime

2. Continuum Spacetime is an **approximation** of underlying causal sets

Order + Number \approx Spacetime

 $C \approx (M,g)$

 $Order \leftrightarrow Causal Order$

Number \leftrightarrow Spacetime Volume

 $n \propto V$

The continuum approximation

- $n \propto V$ cannot be implemented covariantly on a regular lattice
- $\langle n \rangle \propto V$, via a Poisson sprinkling: $P_V(n) = \frac{(\rho V)^n}{n!} e^{-\rho V}$, $\rho^{-1} = V_c$
 - ▶ Lorentz Invariance is preserved for $C \approx \mathbb{M}^d$
 - ► Non-locality: resulting graph does not have a fixed/finite valency

Is Poisson optimal?

--Saravani and Aslanbeigi 2014

Very different from a regular lattice or even a Euclidean random lattice

Geometric Reconstruction: spacetime from causal sets

• Fundamental Conjecture: If $C \approx_{\rho} (M_1, g_1)$ and $C \approx_{\rho} (M_2, g_2)$, then $(M_1, g_1) \sim_{\rho} (M_2, g_2)$

 $(M_1, g_1) \sim_{\rho} (M_2, g_2)$: When are two Lorentzian Spacetimes Close?

- Indirect evidence:
 - Timelike distance Myrheim, Myer, Sorkin, Glaser, Surya, ..
 - Spacetime dimension Brightwell, Gregory
 - Spatial homology —*Major, Rideout, Surya*
 - D'Alembertian Sorkin, Henson, Benincasa, Dowker, Glaser
 - Scalar curvature --Benincasa, Dowker, Glaser
 - Einstein-Hilbert Action -- Benincasa, Dowker, Glaser
 - Gibbons-Hawking-York boundary terms Buck, Dowker, Jubb & Surya
 - Locality and Interval Abundance Glaser & Surya
 - Spatial and Spacelike Distance Rideout & Wallden, Eichhorn, Mizera & Surya, Eichhorn, Surya, Versteegen
 - Horizon area —Dou & Sorkin, Barton, Counsell, Dowker, Gould & Jubb, ..
 - Scalar Field theory —Johnston, Sorkin, Dowker, Yazdi, Surya, Nomaan X, Jubb, Rejzner, et al.
 - Entanglement Entropy —Sorkin, Yazdi, Surya, Nomaan X
 -

Quantum Dynamics for Causal Sets

"Causal Sets are the fine grained structure of spacetime"

- In the continuum the gravitational path integral is: $Z = \left[\mathscr{D}[g] e^{\frac{i}{\hbar} S_{EH}(g)} \right]$
- Continuum replaced by discrete structure: `` $g \rightarrow c$ ''
- Lorentzian Path Sum: $Z_n = \sum_{c \in \Omega_n} e^{\frac{i}{\hbar}S_{BDG}(c)}$
 - $\blacktriangleright \ \Omega_n$ is the sample space of all n element posets
 - $S_{BDG}(c)$ is the **Benincasa-Dowker-Glaser action**
- Large *n* (thermodynamic limit): $Z = \lim_{n \to \infty} Z_n$

Discrete Einstein-Hilbert Action: The Benincasa-Dowker-Glaser Action(s)

 $N_J = #$ of *J*-element intervals

A discrete interval is an intersection of an up-set with a down-set

 $J^-(p)$ is "foliated" by the the J- element intervals to the past of $p\in \mathbb{M}^d$

— Benincasa & Dowker, 2010, — Dowker & Glaser, 2012, — Glaser, 2014

•
$$\frac{1}{\hbar} S_{BDG}^{(d)}(C) = -\alpha_d \left(\frac{\ell}{\ell_p}\right)^{d-2} \left(n + \frac{\beta_d}{\alpha_d} \sum_{J=0}^{J_{max}} C_J^d N_J\right)$$

• ℓ_p : Planck Length, ℓ : discreteness scale, α_d, β_d, C_J^d : known consts.

• Eg: For
$$d = 4$$
, $\frac{1}{\hbar} S_{BDG}^{(4)} = \frac{4}{\sqrt{6}} \left(n - N_0 + 9N_1 - 16N_2 + 8N_3 \right)$

$$\lim_{\rho \to \infty} \frac{\ell^2}{\ell_p^2} \langle S_{BDG} \rangle = S_{EH} + \text{bdry terms}$$

``Causal Sets are the fine grained structure of spacetime"

- Ω_n : sample space of all n-element causal sets
- $|\Omega_n| \sim 2^{\frac{n^2}{4} + \frac{3n}{2} + o(n)}$
- Typical causal sets are Kleitmann-Rothschild (KR):
 - 3 layers: \mathbb{L}_k , k = 1,2,3, $|\mathbb{L}_{1,3}| \sim \frac{n}{4}$, $|\mathbb{L}_2| \sim \frac{n}{2}$
 - elements of \mathbb{L}_k form an **antichain**
 - $\forall e \in \mathbb{L}_1, \exists \sim \frac{n}{4} \text{ no. of } e' \in \mathbb{L}_2 \text{ such that } e \prec_* e',$
 - $\forall e \in \mathbb{L}_3, \exists \sim \frac{n}{4} \text{ no. of } e' \in \mathbb{L}_2 \text{ such that } e' \prec_* e$

$$\bullet \ \forall \, e \in \mathbb{L}_1 \,, \, e' \in \mathbb{L}_3 \,, \quad e' \prec e$$

• $|\Omega_{KR}| \sim 2^{\frac{n^2}{4} + \frac{3n}{2} + o(n)}$

Onset of asymptotic regime $n \sim 100$

- Kleitman and Rothschild, Trans AMS, 1975

-- J. Henson, D. Rideout, R. Sorkin and S.Surya, JEM, 2015

A KR poset is not continuum-like $\sim n/4$ $\sim n/2$ $\sim n/4$

- Does not arise from a typical Poisson sprinkling into any continuum (M, g)
 - Myrheim-Myer Continuum Dimension is fractional :

$$\frac{\langle R \rangle}{n^2} = \frac{\Gamma(d+1)\Gamma(d/2)}{4\Gamma(3d/2)} \Rightarrow \frac{\Gamma(d_{KR}+1)\Gamma(d_{KR}/2)}{4\Gamma(3d_{KR}/2)} = \frac{3}{16} \Rightarrow d_{KR} \sim 2.5$$

- Maximal time-like distance $H_{KR} = 3$
- Interval Abundances are not like the continuum:

The layered hierarchy

-- D. Dhar, JMP, 1978 -- Promel, Steger, Taraz 2001

- *K*-layered poset: $C = \mathbb{L}_1 \sqcup \mathbb{L}_2 \dots \mathbb{L}_K : e \prec e', e \in \mathbb{L}_k, e' \in \mathbb{L}_{k'} \Rightarrow k < k'$
- $|\Omega_n^{(K)}| \sim 2^{c(K)n^2 + o(n^2)}, \quad c(K) \le 1/4,$
- Dominant hierarchy: $|\Omega_n^{(3)}| > |\Omega_n^{(2)}| > |\Omega_n^{(4)}| > |\Omega_n^{(5)}| \dots$
- For $K \ll n$ none of these are like continuumlike

- For all $K \ll n$ as well, $Z_K = \sum_{N_0} \Gamma(N_0) e^{iS_L/\hbar}$
- $\Gamma[N_0 = pN_0^{\max}] \propto h(p) = -p \ln p (1-p) \ln(1-p)$ Dhar's Entropy function.

•
$$Z_K \sim e^{i\mu n} \int_0^{1/2} dp \exp\left[n^2 \left(i\mu \lambda_0 p/2 + h(2p)/4\right) + o(n^2)\right]$$

Bilayer calculation —Loomis and Carlip, 2017 **Theorem:** If $\ell > \ell_{\min}$, the BDG action suppresses all *K*-layer orders when K < < n, in any dimension.

• ℓ_{\min} is dimension dependent, $1.13 < (\ell_{\min}/\ell_p) < 2.33$, (Eg: d = 4, $\ell_{\min} = 1.136 \ell_p$)

Bilayer calculation of *—Loomis and Carlip, 2017*

- What about continuumlike causal sets?
- Ongoing work suggests that causal sets $\sim (M, g)$ are NOT suppressed..

What are other (non-layered) families of posets that are entropically sub-dominant?

Can we find a more fundamental, "principled" model of causal set dynamics which is order theoretic?

The Sequential Growth Paradigm

- Rideout & Sorkin,2000-2001
- O'Connor, Martin, Rideout & Sorkin, 2001
- Brightwell, Dowker, Garcia, Henson, Rideout & Sorkin, 2003
- Brightwell, Georgiou, 2010,
- Brightwell and Luczak, 2011-2012,
- Dowker, Johnston & Surya 2011,
- Surya & Zalel 2020
- Dowker, Imambaccus, Owens, Sorkin & Zalel, 2020....

Dynamics as a Measure Space $(\Omega, \mathscr{A}, \mu)$

— Brightwell, Dowker, Garcia, Henson, Rideout & Sorkin

cyl

- Ω : Space of countable past finite causal sets
- Cylinder sets: $cyl(c_n) \equiv \{c \in \Omega \mid c \mid_n = c_n\}$
- ► *A*: Event Algebra generated by
- ► generate the finite time "labelled" algebra
- \blacktriangleright \mathscr{A} is closed under finite unions, intersections and complements Ω

- $\mu : \mathscr{A} \to X$ a ``colour'' invariant measure
- ► But *A* is not covariant!

Covariant Events in \mathscr{A}

- ► Analogues of the "return to the origin" event in the random walk
- ▶ Sigma algebra completion : $\mathscr{A} \to \mathfrak{S}(\mathscr{A})$
- Quotient sigma algebra $\widetilde{\mathfrak{S}} = \mathfrak{S} / \sim$ is covariant.
- ► Does μ extend to $\mathfrak{S}(\mathscr{A})$?
- ▶ If μ is a probability measure, then the Kolmogorov-Caratheodary-Hahn extension theorem guarantees this for any choice of μ

— Dowker, Johnston & Sorkin,2010

Caratheodary-Hahn-Kluvnek theorem:

 $\mu_{\rm v}$ extends to $\mathfrak{S}(\mathscr{A})$ only under special convergence conditions

Experiments with Quantum Sequential Growth

- $p \in \mathbb{C}$, $D(c_1, c_2) = A^*(c_1)A(c_2)$ does not extend to $\mathfrak{S}(\mathscr{A})$ — Dowker, Johnston, Surya 2010
- Simple examples of Commutative Dynamics ($\mathscr{H} \simeq \mathbb{C}$) which extend to $\mathfrak{S}(\mathscr{A})$ — Surya & Zalel, 2020
- Non-Commutative Dynamics, $\mathscr{H} \simeq \mathbb{C}^m, m > 1$
 - ► Transfer Operators:

$$|c_{n+1}^{i}\rangle = \hat{A}_{n}^{i} |c_{n}\rangle, \quad \Rightarrow \sum_{i \in I(c_{n})} \hat{A}_{n}^{i} = \hat{I} \quad n=3$$

► Color independence: $\hat{A}_{\gamma} = \hat{A}_{\gamma'}$, if $\gamma \sim \gamma'$, where \hat{A}_{γ} is a product of a sequence of transfer operators — ongoing work

How can one characterise this algebra of transfer operators? What are the representations of this algebra?

In Conclusion..

•

- Causal set theory is strongly motivated by Lorentzian geometry
- Continuum spacetime can be reconstructed from causal sets : lots of evidence!
- There is an intimate interplay between causality/order and dynamics
- Causal set theory is a discrete playground for mathematicians to explore!
 - Combinatorics: enumeration of $(sub)^{K}$ -dominant posets ?
 - Quantum Stochastic Growth:
 - ► Transfer Operator Algebras
 - ► Vector Measure and its Extension
 - ► Recent comparison of Classical SG with Hopf-Algebras

--Yates, Zalel, 2023

Thank you!