Quantum Dynamics of Causal Sets

Sumati Surya Raman Research Institute

Algebraic, analytic, geometric structures emerging from quantum field theory Sichuan University, March, 2024

Outline

- Posets and Lorentzian geometry: an introduction
- Causal Sets: A route to quantising spacetime
- The quantum partition function: entropy versus action
- Sequential growth dynamics and quantum vector measures

Work done in collaboration with S. Carlip, P. Carlip, F. Dowker, S. Johnston, A. Mathur, A. A. Singh, S. Zalel

Posets and Lorentzian Geometry

- Spacetime is a Lorentzian manifold (M, g) , where g has signature $(-, +, +, +)$
- \bullet $ds^2 = g_{ab}dx^a dx^b$ can be positive, negative or zero
- Example: Minkowski/Flat Spacetime
 $ds^2 = -dt^2 + dx^2 + dy^2 + dz^2$
- \bullet At every point $p \in M$, the vectors in T_pM are arranged in ``lightcones" to the past and the future.
	- Vectors are either

- \blacktriangleright future or past timelike ($ds^2 < 0$)
- future or past null/lightlike $(ds^2 = 0)$
- \blacktriangleright spacelike $(ds^2 > 0)$

Posets and Lorentzian Geometry

Defines an order relations on M : \prec (causality relation) and \prec (chronology relation)

- *x* ≺ *y* if there exists a curve *γ* from *x* to *y* whose tangent everywhere is future-directed and non-
 x anacolike spacelike.
	- \prec is **transitive:** if $x \prec z$ and $z \prec y \Rightarrow x \prec y$
	- If (M, g) is a causal spacetime, \prec is acyclic $: x \prec y \Rightarrow y \not\prec x$

 $(-,-,+,+)$ has no associated poset

Robb, 1914, "A theory of time and space"

z

A quick review of terminology

- \blacktriangleright Causal relation \prec : Tangent to γ from x to y is everywhere either timelike or null \prec *:* Tangent to γ *from x* to γ
- \blacktriangleright Chronological relation $\prec\prec$: Tangent to γ from x to y is everywhere timelike ≺≺ *γ x y*
- \blacktriangleright Both (M, \prec) and $(M, \prec\prec)$ are posets (M, \prec) and $(M, \prec\prec)$
- Causal Future and Past: $J^+(x) = \{y \in M | x \prec y\}$, $J^-(x) = \{y \in M | y \prec x\}$
- Chronological Future and Past: $I^+(x) = \{y \in M | x \prec y\}$, $I^-(x) = \{y \in M | y \prec x\}$

Requires g_{ab} to be at least C^2

What part of (M, g) is (M, \prec) ?

Under conformal transformations:

$$
\widetilde{g}_{ab} = \Omega^2 g_{ab}, \ d\widetilde{s}^2 = 0 = ds^2 \Rightarrow (M, \widetilde{\prec}) = (M, \prec)
$$

A Flat Spacetime Result

 \blacktriangleright \mathbb{M}^{d} : d dimensional Minkowski spacetime, d : d dimensional Minkowski spacetime, $ds^2 = -\, dt^2 +$ *d*−1 ∑ *i*=1 dx_i^2

- ► Chronological Automorphism $f : \mathbb{M}^d \to \mathbb{M}^d$, $x \prec f(x) \prec f(y)$, $\forall x, y \in \mathbb{M}^d$.
- ‣ Conformal transformations: Lorentz group + local dilatations.

Theorem: The group of chronological automorphisms is isomorphic to the group of conformal transformations on \mathbb{M}^d . **---** *Alexandrov and Ovchinnikova, 1953, Zeeman, 1964*

$$
(\mathbb{R}^d, \prec_{mink})
$$
 determines ds_{mink}^2 upto a conformal factor

Causal Structure as the ``Essence" of Lorentzian Geometry

- \bullet Let $(M_1, g_1), (M_2, g_2)$ be two causal spacetimes
- \bullet Let $(M_i, \prec \prec_i)$, (M_i, \prec_i) be their respective chronological and causal posets
- Chronological Bijection: $f : (M_1, \ll_1) \to (M_2, \ll_2), \quad f(x) \ll_2 f(y) \Leftrightarrow x \ll_1 y, \forall x, y \in M_1$
- Causal Bijection: $f : (M_1, \lt_1) \to (M_2, \lt_2)$, $f(x) \lt_2 f(y) \Leftrightarrow x \lt_1 y, \forall x, y \in M_1$
- Future and past distinguishing spacetimes: $I^+(x) = I^+(y)$ or $I^-(x) = I^-(y) \Rightarrow x = y$,

-- Hawking and Ellis, Penrose

— *Kronheimer and Penrose, 1967*

- Chronological Bijection ⇒ Causal Bijection *if they are future and past distinguishing*
- Conformal Isometry : $F : (M_1, g_1) \to (M_2, g_2), \quad g_2 = \Omega^2 g_1$

Theorem: *If a chronological bijection exists between two future and past distinguishing spacetimes then they are conformally isometric*

 --- Hawking, King, McCarthy, 1976, Malament, 1977

- \blacktriangleright Alexandrov interval topology = Manifold topology in strongly causal spacetimes
- ► Chronological bijection \Rightarrow dimension and the topology (for special distinguishing spts) is the same. *-- Malament, 1977, Parrikar and Surya, 2011*

Suggests a non-Riemannian order-theoretic route to quantising spacetime

Discretising the "Essence":

"To admit structures which can be very different from a manifold. The possibility arises, for example, of a locally countable or discrete event-space equipped with causal relations macroscopically similar to those of a space-time continuum."

-- Kronheimer and Penrose 1967 "Extract from (*M*, *g*) *its causal essence"* Axiomatic Approach to Causal Structure

- **‣** *Kronheimer and Penrose 1967*
- **‣** *Finkelstein, 1969*
- **‣** *Myrheim, 1978*
- **‣** *'tHooft, 1979*
- **‣** *Hemion, 1980*
- **‣** *Bombelli, Lee, Meyer and Sorkin, 1987*

Ideas of discrete Causal Structure

Discrete Posets or Causal Sets: A route to quantum spacetime

The Causal Set Hypothesis

1. Causal Sets are the fine grained structure of spacetime

2. Continuum Spacetime is an approximation of underlying causal sets

Order + Number ≈ Spacetime

 $C \approx (M, g)$

Order ↔ Causal Order

Number \leftrightarrow Spacetime Volume

 $n \propto V$

The continuum approximation

- *n* ∝ *V* cannot be implemented covariantly on a regular lattice
- $\langle n \rangle \propto V$, via a Poisson sprinkling: $P_V(n) =$ $(\rho V)^n$ *n*! $e^{-\rho V}$, $\rho^{-1} = V_c$
	- \blacktriangleright Lorentz Invariance is preserved for $C \approx \mathbb{M}^d$
	- ▶ Non-locality: resulting graph does not have a fixed/finite valency

●

●

●

●

●

●

●

10

●

●

●●

●

●

●

●

●

20

●

30

●

●

50 U

40

●

●●

●●

●

●

●

30

●

 \bullet

50 V

40

●

●

20

●

●

●

●

●

●

●

●

●

●

●

10

●

●

●

●●

●

●

●

Very different from a regular lattice or even a Euclidean random lattice

Geometric Reconstruction: spacetime from causal sets

 \bullet Fundamental Conjecture: If $C \approx_\rho (M_1, g_1)$ and $C \approx_\rho (M_2, g_2)$, then $(M_1, g_1) \sim_\rho (M_2, g_2)$

 $(M_1, g_1) \sim_\rho (M_2, g_2)$: When are two Lorentzian Spacetimes Close?

- Indirect evidence:
	- Timelike distance *Myrheim, Myer, Sorkin, Glaser, Surya, ..*
	- Spacetime dimension *Brightwell, Gregory*
	- Spatial homology —*Major, Rideout, Surya*
	- D'Alembertian *Sorkin, Henson, Benincasa, Dowker, Glaser*
	- Scalar curvature --*Benincasa, Dowker, Glaser*
	- Einstein-Hilbert Action --*Benincasa, Dowker, Glaser*
	- Gibbons-Hawking-York boundary terms *Buck, Dowker, Jubb & Surya*
	- Locality and Interval Abundance — *Glaser & Surya*
	- Spatial and Spacelike Distance *Rideout & Wallden, Eichhorn, Mizera & Surya, Eichhorn, Surya, Versteegen*
	- Horizon area —*Dou & Sorkin, Barton, Counsell, Dowker, Gould & Jubb, ..*
	- Scalar Field theory —*Johnston, Sorkin, Dowker, Yazdi, Surya, Nomaan X, Jubb, Rejzner, et al.*
	- Entanglement Entropy —S*orkin, Yazdi, Surya, Nomaan X*
	- \bullet

Quantum Dynamics for Causal Sets

``Causal Sets are the fine grained structure of spacetime"

- In the continuum the gravitational path integral is: $Z = \int \mathscr{D}[g] e^{\frac{i}{\hbar}S_{EH}(g)}$
- Continuum replaced by discrete structure: `` $g \rightarrow c$ "
- Lorentzian Path Sum: $Z_n = \sum e^{\frac{i}{\hbar}S_{BDG}(c)}$ $c \in \Omega$ _n
	- $\blacktriangleright \Omega_n$ is the sample space of all n element posets
	- \blacktriangleright $S_{BDG}(c)$ is the **Benincasa-Dowker-Glaser action**
- Large *n* (thermodynamic limit): $Z = \lim Z_n$ *n*→∞

Discrete Einstein-Hilbert Action: The Benincasa-Dowker-Glaser Action(s)

 $N_J = #$ of *J*-element intervals

A discrete interval is an intersection of an up-set with a down-set

….

J[−](*p*) is "foliated" by the the *J* − element intervals to the past of $p \in \mathbb{M}^d$ lim *— Benincasa & Dowker, 2010, — Dowker & Glaser, 2012, — Glaser, 2014*

$$
\oint_{\mathbf{r}} \mathcal{S}_{BDG}^{(d)}(C) = -\alpha_d \left(\frac{\ell}{\ell_p}\right)^{d-2} \left(n + \frac{\beta_d}{\alpha_d} \sum_{J=0}^{J_{max}} C_J^d N_J\right)
$$

 \bullet ℓ_p : Planck Length, ℓ : discreteness scale, α_d, β_d, C^d_J : known consts.

• Eg: For
$$
d = 4
$$
, $\frac{1}{\hbar} S_{BDG}^{(4)} = \frac{4}{\sqrt{6}} \left(n - N_0 + 9N_1 - 16N_2 + 8N_3 \right)$

$$
\lim_{\rho \to \infty} \frac{e^2}{e_p^2} \langle S_{BDG} \rangle = S_{EH} + b \text{dry terms}
$$

``Causal Sets are the fine grained structure of spacetime''

- \bullet \quad Ω_n : sample space of all n-element causal sets
- $|\Omega_n| \sim 2$ $\frac{n^2}{4} + \frac{3n}{2} + o(n)$
- Typical causal sets are Kleitmann-Rothschild (KR):

• 3 layers:
$$
\mathbb{L}_k
$$
, $k = 1,2,3$, $|\mathbb{L}_{1,3}| \sim \frac{n}{4}$, $|\mathbb{L}_2| \sim \frac{n}{2}$

- $\bullet\;$ elements of \mathbb{L}_k form an **antichain**
- $\forall e \in \mathbb{L}_1$, $\exists \sim \frac{1}{4}$ no. of $e' \in \mathbb{L}_2$ such that $e \prec_* e'$, *n* 4 no . of $e' \in \mathbb{L}_2$ such that $e \prec_* e'$

•
$$
\forall e \in \mathbb{L}_3
$$
, $\exists \sim \frac{n}{4}$ no. of $e' \in \mathbb{L}_2$ such that $e' \prec_* e$

•
$$
\forall e \in \mathbb{L}_1, e' \in \mathbb{L}_3, e' \prec e
$$

• |Ω*KR* | ∼ 2 $\frac{n^2}{4} + \frac{3n}{2} + o(n)$

- Kleitman and Rothschild, Trans AMS, 1975

Onset of asymptotic regime $n \sim 100$ -- *J. Henson, D. Rideout, R. Sorkin and S.Surya, JEM, 2015*

∼ *n*/4 ∼ *n*/2 A KR poset is not continuum-like ∼ *n*/4

- Does not arise from a typical Poisson sprinkling into any continuum (*M*, *g*)
	- Myrheim-Myer Continuum Dimension is fractional :

$$
\frac{\langle R \rangle}{n^2} = \frac{\Gamma(d+1)\Gamma(d/2)}{4\Gamma(3d/2)} \Rightarrow \frac{\Gamma(d_{KR}+1)\Gamma(d_{KR}/2)}{4\Gamma(3d_{KR}/2)} = \frac{3}{16} \Rightarrow d_{KR} \sim 2.5
$$

- \bullet Maximal time-like distance $H_{KR} = 3$
- Interval Abundances are not like the continuum:

The layered hierarchy

-- D. Dhar, JMP, 1978 -- Promel, Steger, Taraz 2001

- *K*-layered poset: $C = \mathbb{L}_1 \sqcup \mathbb{L}_2 ... \mathbb{L}_K : e \lt e', e \in \mathbb{L}_k, e' \in \mathbb{L}_{k'} \Rightarrow k \lt k'$
- \bullet | Ω_{*n*}^{(*K*})</sup>| ∼ 2^{*c*(*K*)*n*²+*o*(*n*²), *c*(*K*) ≤ 1/4,}
- Dominant hierarchy: $| \Omega_n^{(3)} | > | \Omega_n^{(2)} | > | \Omega_n^{(4)} | > | \Omega_n^{(5)} | ...$
- For $K \ll n$ none of these are like continuumlike

For all
$$
K \ll n
$$
 as well, $Z_K = \sum_{N_0} \Gamma(N_0) e^{iS_L/\hbar}$

► $\Gamma[N_0 = pN_0^{\text{max}}]$ ∝ $h(p) = -p \ln p - (1 - p) \ln(1 - p)$ — Dhar's Entropy function.

 \blacktriangleright *Z*_K ∼ $e^{i\mu n}$ 1/2 0 $dp \exp \left[n^2 \left(i \mu \lambda_0 p / 2 + h(2p) / 4 \right) + o(n^2) \right]$

Bilayer calculation *—Loomis and Carlip, 2017* **Theorem:** If $\ell > \ell_{\text{min}}$, the BDG action suppresses all K -layer orders when $K < n$, in any dimension.

 \bullet ℓ_{\min} is dimension dependent, $1.13 < (\ell_{\min}/\ell_p) < 2.33$, (Eg: $d = 4, \quad \ell_{\min} = 1.136 \, \ell_p$)

Bilayer calculation of *—Loomis and Carlip, 2017*

- What about continuumlike causal sets?
- Ongoing work suggests that causal sets \sim (M, g) are NOT suppressed..

What are other (non-layered) families of posets that are entropically sub-dominant?

Can we find a more fundamental, ``principled'' model of causal set dynamics which is order theoretic?

The Sequential Growth Paradigm

- *Rideout & Sorkin,2000-2001*
- *O'Connor, Martin, Rideout & Sorkin, 2001*
- *Brightwell, Dowker, Garcia, Henson, Rideout & Sorkin, 2003*
- *Brightwell, Georgiou, 2010,*
- *Brightwell and Luczak, 2011-2012,*
- *Dowker, Johnston & Surya 2011,*
- *Surya & Zalel 2020*
- *Dowker, Imambaccus, Owens, Sorkin & Zalel, 2020....*

Dynamics as a Measure Space $(\Omega, \mathscr{A}, \mu)$

- Brightwell, Dowker, Garcia, Henson, Rideout & Sorkin

cyl

- \triangleright Ω : Space of countable past finite causal sets
- ► Cylinder sets: $cyl(c_n) \equiv \{c \in \Omega | c|_n = c_n\}$
- \triangleright \mathcal{A} : Event Algebra generated by
- generate the finite time "labelled" algebra
- \blacktriangleright $\mathcal A$ is closed under finite unions, intersections and complements <u>{}</u> 32

- \blacktriangleright $\mu : \mathscr{A} \to X$ a "colour" invariant measure
- \triangleright But $\mathscr A$ is not covariant!

Covariant Events in $\mathscr A$

- ‣ Analogues of the "return to the origin" event in the random walk
- \blacktriangleright Sigma algebra completion : $\mathscr{A} \to \mathfrak{S}(\mathscr{A})$
- ► Quotient sigma algebra $\widetilde{\mathfrak{S}} = \mathfrak{S}/\sim$ is covariant.
- \blacktriangleright Does μ extend to $\mathfrak{S}(\mathcal{A})$?
- \blacktriangleright If μ is a probability measure, then the Kolmogorov-Caratheodary-Hahn extension theorem guarantees this for any choice of *μ*

— Dowker, Johnston & Sorkin,2010

Caratheodary-Hahn-Kluvnek theorem:

 μ _v extends to $\mathfrak{S}(\mathcal{A})$ only under special convergence conditions

Experiments with Quantum Sequential Growth

- $p \in \mathbb{C}$, $D(c_1, c_2) = A^*(c_1)A(c_2)$ does not extend to $\mathfrak{S}(\mathcal{A})$ *— Dowker, Johnston, Surya 2010*
- Simple examples of Commutative Dynamics ($\mathscr{H} \simeq \mathbb{C}$) which extend to $\mathfrak{S}(\mathscr{A})$ *— Surya & Zalel, 2020*
- Non-Commutative Dynamics, $\mathcal{H} \simeq \mathbb{C}^m, m > 1$
	- ‣ Transfer Operators:

$$
|c_{n+1}^i\rangle = \hat{A}_n^i |c_n\rangle, \quad \Rightarrow \sum_{i \in I(c_n)} \hat{A}_n^i = \hat{I} \quad n=3
$$

► Color independence: $\hat{A}_{\gamma} = \hat{A}_{\gamma}$ ['], if $\gamma \sim \gamma'$ ', where \hat{A}_{γ} is a product of a sequence of transfer operators *— ongoing work*

How can one characterise this algebra of transfer operators? What are the representations of this algebra?

In Conclusion..

 \bullet

- Causal set theory is strongly motivated by Lorentzian geometry
- Continuum spacetime can be reconstructed from causal sets : lots of evidence!
- There is an intimate interplay between causality/order and dynamics
- Causal set theory is a discrete playground for mathematicians to explore!
	- \bullet Combinatorics: enumeration of (sub)^{K}-dominant posets ?
	- Quantum Stochastic Growth:
		- ‣Transfer Operator Algebras
		- ‣Vector Measure and its Extension
		- ‣Recent comparison of Classical SG with Hopf-Algebras

--Yates, Zalel, 2023

Thank you!