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Introduction

These lecture notes are a written version of prerequisite lectures aimed at students
attending summer schools in Villa de Leyva, Colombia (1999-2011) on geometric (and
topological) methods for quantum field theory as well as parts of some postgraduate
lectures delivered at the Université Blaise Pascal, in Clermont-Ferrand, France in
2008, the University of Los Andes, Bogotá in 2011 and 2015, the Lebanese University
(Université libanaise) in Beyrouth, Lebanon in 2012. They are intended for gradu-
ate students in mathematics or physics who need some basic concepts in differential
geometry, global analysis, operator algebras and pseudodifferential operators in view
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of understanding how these are used in quantum field theory.

Far from being complete, these notes offer a first guide for the layperson, suggesting
further references for the interested reader. The list of references at the beginning of
each section is also far from complete and is just meant to give the reader a first hint
of the (often huge) literature on the subject. I have mostly chosen to refer to text
books and survey type articles, in order to limit the number of references.
Due to lack of space, I unfortunately have had to leave out numerous examples that
illustrate the sometimes rather abstract concepts presented here. The last chapter
somewhat compensates for this lack of example by illustrating in Yang-Mills, Seiberg-
Witten and string theory how the various concepts introduced in the previous chapter
can come into play to investigate the structure of the configuration and moduli spaces.

For the sake of simplicity, I chose to introduce the concepts of manifold and vec-
tor bundle in the simplest infinite dimensional setting, namely the Hilbert setting,
leaving aside the more subtle concepts needed in the Fréchet setting. A more general
infinite dimensional setting is described in [KM].
The Hilbert setting offers various simplifications; we have the very useful implicit
function theorem at hand and any closed subspace of a Hilbert space splits the Hilbert
space as a direct sum of this subspace with its orthogonal complement. Also, a par-
tition of unity can be defined on a Hilbert manifold, which is not always the case on
Banach manifolds.
In fact the most appropriate setting for our needs is the I.L.H. setting, namely the
inverse limit of Hilbert spaces [O] which we shall only briefly mention in the applica-
tions at the end of these notes.

These notes start at a leisurely pace but the material gets denser as one moves
along in the chapters, relying on the fact that the reader who is acquainted with the
first chapters is familiar enough with the geometric concepts to be able to use them
rather loosely in the last chapters.
The present lecture notes are organised in ten chapters; the first four chapters are
dedicated to prerequisites in differential geometry (including infinite dimensional Ba-
nach structures), chapters 5 to 8 are dedicated to operators and operator algebras of
different types, including a few basic facts concerning pseudodifferential operators.
Chapter 9 offers a brief incursion into index theory and Chapter 10 is dedicated to
the geometry of configuration and moduli spaces one comes across in Yang-Mills,
Seiberg-Witten and string theory.
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1 Manifolds, Lie algebras and Lie groups

1.1 Banach vector spaces

Useful references are [B], [Bre], [L], [Ru], [W].

Recall that a Banach vector space (we shall say Banach space for short) is a vec-
tor space equipped with a norm for which it is closed.

Definition 1 Let E and F be two Banach spaces and U an open subset of E. A
map f : E → F is differentiable at a point x0 of U provided there exists a continuous
linear map L : E → F and a map φ : U ⊂ E → F defined on a neighborhood U of
0 ∈ E such that

f(x0 + y) = f(x0) + L(y) + φ(y)

with limy→0
‖φ(y)‖F
‖y‖E = 0, where ‖ · ‖E is the norm on E and ‖ · ‖F the norm on F .

Then L is a uniquely defined map, called the differential at point x0 and denoted by
Dx0

f .

The space L(E,F ) of continuous linear maps from E to F is also a Banach space

when equipped with the norm ‖|L‖| := supu 6=0
‖Lu‖F
‖u‖E .

Definition 2 Let E and F be two Banach spaces and U an open subset of E. The
map f : U ⊂ E → F is of class C1 on U provided f is differentiable at any point of
U and the map:

Df : U → L(E,F )

x 7→ Dxf

is continuous.

Indentifying L (L(E,L (E, · · · (E,F ) · · · , F )F ) –where E arises k times– with the
Banach space Lk(E,F ) of k-linear maps from Ek to F , we can define the notion of
Ck differentiability.

Definition 3 A differentiable map f : U ⊂ E → F is of class Ck provided Df is of
class Ck−1.
Let E and F be two Banach spaces and U , V two open subsets of E and F , respec-
tively. A differentiable map f : U → V is a diffeomorphism whenever it is one to one
and onto and its inverse map is differentiable. It is a Ck diffeomorphism whenever
it is a diffeomorphism and both f and its inverse f−1 are of class Ck.

The following well-known results in Banach spaces will be used later in these notes.

Theorem 1 (Local inverse function theorem) Let E and F be Banach spaces,
U an open subset of E and f : U → F a Ck map for some k ≥ 1. If for some point
x0 ∈ U the map Dx0

f : E → F is an isomorphism then there exists a neighborhood W
of x0 such that the restriction f|W : W → f(W ) of f to W is a Ck diffeomorphism.

Theorem 2 (Hahn-Banach theorem)Let F ⊂ E be a linear subspace of E s.t.
F̄ 6= E. Then there is a continuous linear form L on E such that L(u) 6= 0 ∀u ∈ F .

Applying this result to the vector space F = 〈u0〉 generated by some u0 ∈ E yields
the following:
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Corollary 1 Let u0 6= 0 ∈ E, where E is a Banach space. Then there is a continuous
linear form L on E such that L(u0) 6= 0.

Another fundamental result for the following is the

Theorem 3 (Open mapping theorem) Let E and F be two Banach spaces. A
continuous linear map L : E → F which is onto takes an open subset to an open
subset. If it is continuous and one to one, it is a homeomorphism.

Corollary 2 Let F and G be two closed linear subspaces in E such that F ⊕G = E.
Then the map:

F ×G → E

(u, v) 7→ u+ v

is an isomorphism of Banach spaces.

Restricting oneself to the Hilbert setting is convenient because of the existence of
orthogonal complements for closed subspaces. This property can be formulated as
follows.

Definition 4 A linear subspace F of a Banach vector space E splits the space E if
it is closed and if there exists a closed linear subspace G of E such that E = F ⊕G.

In the finite dimensional setting, any subspace splits a vector space. In the Hilbert
setting, any closed subspace of a Hilbert space splits the space; the orthogonal com-
plement does the job and the above Corollary takes the following form.

Corollary 3 Let E be a Hilbert vector space and F a closed linear subspace of E
then the map:

F × F⊥ → E

(u, v) 7→ u+ v

is an isomorphism of Hilbert spaces.

1.2 Manifolds, submanifolds

Useful references are [Hu], [KN],[L], [M], [Wu].

Definition 5 A manifold M of class Ck, k ≥ 0 (or Ck-manifold) modelled on a
Banach space E (called the model space) is a topological space equipped with a Ck-
atlas i.e. a set of local charts {(Ui, φi), i ∈ I} satisfying the following requirements:

i) for any i ∈ I the subset Ui is open and M =
⋃
i∈I Ui,

ii) for any i ∈ I, the map φi : Ui → φi(Ui) is a homomeorphism onto an open
subset of E,

iii) for any i, j ∈ I the maps

φi ◦ φ−1
j : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj)

are diffeomorphisms of class Ck called transition maps.
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It is of class C∞ if it is of class Ck for all k ≥ 0.

An atlas is not unique and any Ck (resp. C∞) atlas could do; one usually picks out
the maximal atlas, i.e. one that contains all the others.

A (real) finite dimensional manifold of dimension n is modelled on E = IRn and
local charts provide local coordinates:

φi : Ui → φi(Ui)

x 7→ (x1, · · · , xn) ∈ IRn.

Transition maps are elements of GL(n, IR).

Example 1 • The unit sphere in Rn+1 defined as:

Sn = {(x0, · · · , xn) ∈ IRn+1,

n∑
i=0

|xi|2 = 1}

is a smooth manifold of dimension n. Local charts are (U1, φ1) and (U2, φ2)
where U1 = Sn − {N} and U2 − {S}, N = (0, · · · , 0, 1) the south pole and S =

(0, · · · , 0,−1) the south pole, φ1(x0, · · · , xn) =
(

x0

1−xn , · · · ,
xn−1

1−xn

)
,φ2(x0, · · · , xn) =(

x0

1+xn
, · · · , xn−1

1+xn

)
.

• The n-th dimensional torus Tn = Rn/ ∼ where

z1 ∼ z2 ⇔ ∃ni ∈ ZZ, i = 1 · · · , n, z1 − z2 =

n∑
i=1

niei

where we have set ei = (0, · · · , 0, 1, 0, · · · , 0 ∈ IRn with 1 at the i-th place.

• The projective plane Pn(R) = Rn+1 − {0}/ ∼= Sn/ ' where z1 ∼ z2 ⇔ ∃λ ∈
IR, z1 = λz2 and z1 ' z2 ⇔ ∃λ ∈ {−1, 1}, z1 = λz2. Local charts are given

by Ui = {(x0, x1, · · · , xn) ∈ IRn+1, xi 6= 0} and φi(x) =
(
x0

xi
, · · · , x̂ixi , · · · ,

xn
xi

)
where theˆmeans we have deleted the variable.

• The Grassmann manifold Gnk (IR) of k-dimensional submanifolds of IRn. Given
V ⊂ IRn, we can identify IRn = V × V ⊥. A neighborhood of V ∈ Gnk is mapped
homeomorphically onto an open set in the vector space of linear maps V → V ⊥.
This makes Gnk a manifold of dimension k(n− k). The case k = 1 yields back
the projective space Pn(IR).

Definition 6 Let F be a linear subspace of a Banach vector space E that splits E.
Given a Ck manifold M modelled on E, a subset N of M is a submanifold of M
modelled on F provided there is a Ck-atlas {(Ui, φi), i ∈ I} on M that induces an
atlas on N , i.e. for any i ∈ I there are open subsets Vi,Wi of E,F such that

φi(Ui) = Vi ⊕Wi

and
φi(Ui ∩N) = Vi ⊕ {0}.
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In the case of an n-dimensional real manifold, the model space is Rn and a subspace
F of dimension k ≤ n of IRn can be equipped with a basis which we complete to a
basis of IRn. In this basis local coordinates on N will be of the form:

(φi)|N : Ui ∩N → φi(Ui)

x 7→ (x1, · · · , xk, 0, · · · , 0) ∈ IRn.

In what follows, using local charts, we carry out to manifolds the notion of differentia-
bility, Ck-regularity, and the notion of diffeomorphism, to maps between manifolds.
Although the construction uses local charts, the concept thereby defined is shown to
be independent of the choice of local chart. All the manifolds involved are Banach
manifolds.

Definition 7 Let M,N be two Banach manifolds of class Ck, Cl, k, l ≥ 1 respectively
and modelled on E,F respectively. A map f : M → N is differentiable at a point
x0 ∈M provided there is a local chart (U, φ) of M containing x0, a local chart (V, ψ)
containing f(x0) such that the map

ψ ◦ f ◦ φ−1 : φ(U) ⊂ E → ψ(V ) ⊂ F

is differentiable at point φ(x0).

Definition 8 A tangent vector at a point x of a Ck-Banach manifold M (k ≥ 1)
modelled on E is an equivalence class ξ of triples (U, φ, v) where (U, φ) is a local chart
on M containing x and v a vector in the Banach space E, the equivalence relation
being defined by:

(U, φ, v) ∼ (V, ψ,w)⇔ w = Dφ(x)

(
ψ ◦ φ−1

)
(v).

In other words, v is the tangent vector ξ read in the local chart (U, φ) whereas w is
the tangent vector ξ read in the local chart (V, ψ).

In the finite dimensional setting, say in dimension n, given a local system of coordi-
nates (x1, · · · , xn), a tangent vector reads v :=

∑n
i=1 vi

∂
∂xi

.

The space TxM of tangent vectors at a point x ∈ M can be equipped with a vec-
tor space structure induced from that of the model space E. Since transition maps
are diffeomorphisms, the maps Dφ(x)

(
ψ ◦ φ−1

)
are isomorphisms of Banach spaces

and TxM can be equipped with a Banach structure induced from that on E. Thus
TxM ' E is a Banach space.

Proposition 1 Let M and N be two Banach manifolds of class Ck, Cl respectively,
with k, l ≥ 1. Let f : M → N be a differentiable map, then Dxf : TxM → Tf(x)N is
a linear map, called the differential of f at point x defined by:

Dxf(ξ) = η ⇔ v = Dφ(x)

(
ψ ◦ f ◦ φ−1

)
u

whenever u corresponds to ξ read in a local chart (U, φ) containing x and v corre-
sponds to η read in a local chart (V, ψ) containing f(x).
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This definition is independent of the choice of local chart.

Given a manifold M of class Ck modelled on a Banach space E, k ≥ 1, the set
TM :=

⋃
x∈M TxM can be equipped with a Ck−1- manifold structure; a local chart

at (x, ξ), ξ ∈ TxM reads (U ×E, φ⊗Dφ) where (U, φ) is a local chart on M at point
x.

Definition 9 Given manifolds M,N of class Ck, Cl, k, l ≥ 1, a map f : M → N is
of class Cj, with 1 ≤ j ≤ inf{k, l} provided it is differentiable and Df : TM → TN
is of class Cj−1.

Submanifolds can be obtained via embeddings, a particular class of immersion. As
we saw in the first section, a subspace of a Banach space does not automatically split
the space E, so that we need to encode a “splitting” condition in the definition of
immersion:

Definition 10 A differentiable map f : M → N from a Ck-manifold M , to a Cl-
manifold N with k, l ≥ 1 is an immersion (resp. submersion) provided Dxf is in-
jective (resp. onto) and the range R(Dxf) (resp. the kernel Ker(Dxf) splits Tf(x)N
(resp. TxM) for any x ∈M .

Here again, the Hilbert setting offers a simplification:

A differentiable map f : M → N from a Hilbert manifold M to a Hilbert mani-
fold N is an immersion (resp. submersion) provided Dxf is injective (resp. onto)
and R(Dxf) is closed for any x ∈ M . (Note that the kernel is always closed when
the operator is closed).

An injective immersion is called an embedding. The following result which is a mani-
fold version of the global inverse map theorem will be very useful in the slice theorem.

Theorem 4 (Global inverse mapping theorem) An embedding f : M → N that
is a homeomorphism onto its range yields a submanifold f(M) of N and f(M) 'M ,
namely M is diffeomorphic to its range.

1.3 Partitions of unity

Useful references are [KM], [L].

Partitions of unity provided means of gluing together local objects in order to build
a globally defined one. It is therefore important to define conditions under which
partitions of unity with a certain degree of regularity exist.

Definition 11 A partition of unity of class Ck of a Ck-manifold M is given by a
locally finite covering (ui)i∈I of M and a family {ψi, i ∈ I} of maps of class Ck:

ψi : E → IR

such that:

1. 0 ≤ ψi, ∀i ∈ I

2. The support of ψi is contained in Ui
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3.
∑
i∈I ψi(p) = 1.

Such a partition of unity is said to be subordinated to an atlas (Wi, φi)i∈I on the
manifold if Ūi ⊂ Wi. A partition of unity is smooth whenever it is of class Ck for
any k ∈ IN .

Let us recall that a manifold is paracompact if from any cover of the manifold, one
can extract a locally finite sub-cover, i.e. a subcover such that every point of the
manifold admits a neighborhood which only intersects a finite number of the open
subsets of this covering.
The following topological lemma will be useful in the sequel:

Lemma 1 1) Any paracompact manifold is normal, i.e. two disjoint closed sub-
sets have dijoint neighborhoods.

2) (Urysohn’s Lemma) Given two closed disjoints subsets A and B of a topological
normal vector space E, there is a continuous map f : E → [0, 1] which vanishes
on A and is equal to 1 on B.

3) Given a locally finite covering (Ui) of a paracompact topological vector space,
there is a locally finite subcovering (Vi) such that V̄i ⊂ Ui.

Proposition 2 Any paracompact topological manifold has a continuous partition of
unity.

Proof 1 Let U be an open set on a manifold modelled on some sparable space E and
let x ∈ U . Let (Ui, φi) be an atlas and (Ui0 , φi0) be a local chart at point x0. φi0
can be composed with a map that sends an open ball of E onto E in such a way that
the resulting map (also denoted by φ0) satisfies φi0(Ui0) = E. Since the manifold is
Banach, it is metrisable, since it is moreover separable, it is paracompact ([L], chap.
II, par. 3, Lemma 1). Thus one can extract from the above subcovering a locally
finite one. The third part of the above lemma then yields locally finite subcoverings
(Vi) and (Wi) such that W̄i ⊂ Vi ⊂ V̄i ⊂ Ui. Since every V̄i is closed, given the way
the φi were chosen, so are φi(V̄i) and φi(W̄i) closed subsets in E. E being Banach
and separable, it is paracompact and hence normal. The second part of the above
lemma yields a continuous map ψi : E → [0, 1] which is 1 on W̄i and 0 outside Vi.
Composing it with φi yields continuous maps Ψi : M → [0, 1] which are 1 on W̄i and
that vanish outside Vi. Setting ξi := Ψi∑

Ψi
yields a partition of unity.

However, smooth partitions of unity do not always exist on smooth Banach mani-
folds. They do on smooth Hilbert manifolds as a consequence of the following result
which provides a smooth version of the Urysohn Lemma. It essentially relies on the
smoothness of the squared norm on a Hilbert space.

Lemma 2 ([L, Theorem 3.7]) Given two disjoint closed subets A and B of a separable
Hilbert space, there is a smooth map φ : H → [0, 1] which is 1 on A and which vanishes
on B.

Proof 2 (Idea of the proof) First of all, using the smoothness of the squared norm
‖·‖2 on the Hilbert space H, given any open ball B(x,R) in H centered at point x with
radius R, one can build a smooth function φ : H → [0, 1] which is positive on B(x,R)
and vanishes elsewhere. For this, one picks any smooth function η : IR→ [0, 1] which
is positive for t < R and vanishes beyond R, and composes it with the squared norm
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to build φ := η ◦ ‖ · ‖2. Using the separability and metrisability of H, one can build a
countable set of open balls {Ui = B(xi, ri)} (with xi 6= xj) which cover A and do not
meet B. One can then inductively construct a locally finite refinement {Vi ⊂

⋃
i Ui},

and correspondingly find smooth functions ηi built as above, which are positive on
Vi and vanish outside Vi. The sum η :=

∑
i ηi, which is finite at each point of W ,

defines a smooth function that is positive on A and vanishes on B. Letting σ be a
smooth function positive on the complement W c of W and that vanishes on W , the
map φ := η

η+σ fulfills the requirements of the Lemma.

Proposition 3 ([L] Corollary 3.8) A paracompact manifold of class Cp modelled on
a separable Hilbert space admits a partition of unity of class Cp.

Proof 3 (Idea of the Proof) The proof goes as in the construction of a continuous
partition of unity. One transports an open covering (which by paracompactness is
locally finite) of the manifold by local charts to the model space and applies the above
lemma to the closure of the open subsets obtained this way. Carrying back the smooth
functions thus obtained to the manifold via the local charts yields a smooth partition
of unity on the manifold.

1.4 Vector fields

Useful references are [Hu], [KN], [L], [M], [Wu].

Let M be a Ck-manifold and let j ≤ k. A Cj-vector field is a Cj-map ξ : M → TM
such that ξ(x) ∈ TxM for all x ∈ M . If M is smooth, a smooth vector field is one
that is of class Cj for any j ≥ 0.
Let us denote by Ξ(M) the vector space of smooth vector fields on M . If M is
n-dimensional, given a local system of coordinates (x1, · · · , xn) around a point x, a
vector field ξ ∈ Ξ(M) reads ξ(x) :=

∑n
i=1 ξi(x) d

dxi .

Definition 12 The integral curve of a vector field ξ on a manifold M is a curve
c : I → M (I an open interval in IR) with tangent vector ξ(c(t)) at point c(t) i.e.
such that:

d

dt
c(t) = ξ(c(t)) ∀t ∈ I.

From the theory of classical differential equations in Banach spaces we know, that
given some initial condition c(0) = x (we assume 0 ∈ I), for some x ∈M , there exists
a neighborhood I of 0 and an integral curve uniquely defined on I. The union of
the domains of all integral curves with a given initial condition x is an open interval
which we denote by Ix with end points t−x ≤ t+x (which could be +∞ or −∞).
These integral curves are smooth w.r. to initial conditions namely, given an integral
curve cx starting at point x, there is an open neighborhood Ux of x and a neigh-
borhood Jx of 0 such that for for y ∈ U , the integral curve cy starting at point y is
defined on Jx. Furthermore the map:

Jx × Ux → M

(t, y) 7→ cy(t)

is smooth.

11



For some given vector field ξ, let D(ξ) denote the subset in IR ×M consisting of
all points (t, x) such that t−x < t < t+x . The flow of ξ is a map:

φ : D(ξ)→M

such that the map φx(t) := φ(t, x) defined on Ix is a morphism and an integral curve
for ξ with initial condition x. In particular it satisfies the differential equation:

dφx
dt

= ξ ◦ φx.

The flow φx is complete if it can be extended to Ix = IR. Fixing the starting point
x ∈M and setting φt := φx(t) for any t ∈ IR yields a one parameter semi-group:

φt ◦ φs = φt+s ∀t, s ∈ IR.

As a consequence of the above property it follows that:

φ−1
t = φ−t

so that φt so that {φt, t ∈ IR} defines a one parameter group of diffeomorphisms.

Given a diffeomorphism φ on M and a vector field ξ, we call the vector field de-
fined by:

φ∗ξ(φ(x)) = Dxφ(ξ(x)),

the push forward of ξ and
φ∗ξ :=

(
φ−1

)
∗ ξ

the pull-back of ξ.

Definition 13 The Lie bracket of two vector fields ξ, ξ̃ on a smooth manifold M is
given by the variation of ξ̃ along an integral curve φt of ξ:

[ξ, ξ̃] :=
d

dt |t=0

(φ∗t ξ̃) =
d

dt |t=0

(
(φ−t)∗ ξ̃

)
.

Given a smooth map φ from a manifold N to a manifold M and ξ, ξ̃ ∈ Ξ(M), we
have:

[φ∗ξ, φ∗ξ̃] = φ∗[ξ, ξ̃].

If ξ1, ξ2, ξ3 are three vector fileds on a smooth manifold M and φt is a one parameter
group of local diffeomorphisms generated by ξ3, then differentiating the following
relation:

φt∗[ξ1, ξ2] = [φt∗ξ1, φt∗ξ2]

w.r. to t at t = 0 yields the Jacobi identity:

[[ξ1, ξ2], ξ3] + [[ξ2, ξ3], ξ1] + [[ξ3, ξ1], ξ2] = 0.

12



Vector fields can be identified with derivations on M and Lie brackets with op-
erator brackets of the derivations. By a derivation on M we mean a linear map
L : C∞(M, IR)→ C∞(M, IR) which obeys the Leibniz rule

L(fg) = L(f)g + fL(g) ∀f, g ∈ C∞(M, IR).

The set Der(M) of derivations on M is a vector space over IR. To a given vector
field ξ on M we associate the map:

Lξ : C∞(M, IR) → C∞(M, IR)

f 7→ Df(ξ)

which is clearly a derivation.

Let ξ 6= 0, then there is some x ∈ M such that ξ(x) 6= 0. Let (U, φ) be a local
chart around x and u a representative of ξ(x) in this chart. Since u 6= 0, by the
Hahn-Banach theorem there is some linear form L on the model space E such that
L(u) 6= 0. Thus L◦Dφ = D(L◦φ) does not vanish on Dφ−1(u) which can be identified
with ξ(x). Patching up the locally defined maps f := L ◦ φ : U → IR using a smooth
partition of unity on M (provided there is one) shows the existence of a function
f ∈ C∞(U, IR) such that Lξf(x) = Df(ξ(x)) 6= 0 so that Lξ 6= 0. Thus, provided
there is a smooth partition of unity on M , there is a one to one correspondence:

Ξ(M) → Der(M)

ξ 7→ Lξ : f → Df(ξ).

The following identification holds:

Proposition 4 Given two vector fields ξ, ξ̃ on a smooth manifold M and f ∈ C∞(M, IR):

[ξ, ξ̃]f := [Lξ, Lξ̃]f

where the bracket on the r.h.s is an operator bracket.

This identification yields the antisymmetry of the bracket together with the Jacobi
identity which hold for the operator bracket.

1.5 Lie groups and Lie algebras

Useful references are [Ad1], [Br], [KN].

Definition 14 A Banach (resp. Hilbert) Lie group modelled on a Banach (resp.
Hilbert) space E is a C∞-manifold modelled on E, equipped with a group structure
such that the multiplication and inverse maps

G×G → G

(g, h) 7→ gh

and

G → G

g 7→ g−1

are smooth.

13



In fact this second property follows from the former using the global inverse mapping
theorem (see Section 1.2).

A finite dimensional Lie group is one that has a finite dimensional manifold structure.
Examples of finite dimensional Lie groups are the group GL(n, IR) of invertible n×n
real matrices, the subgroup O(n) of orthogonal matrices both of which arise as struc-
ture groups of frame bundles, the unitary groups U(n) = {A ∈ GL(n, C), AA∗ = 1}
and the special unitary groups SU(n) = {A ∈ U(n),detA = 1}, that play an impor-
tant role in gauge field theory.

Definition 15 Let H,G be two Lie groups and f : H → G an embedding which is
homomorphism of Lie groups and a homeomorphism onto f(H). Then f(H) is called
a Lie subgroup of H.

Remark: Notice that f : H → G being an immersion, Def(TeH) splits TeG.

Definition 16 A Lie algebra A is a vector space equipped with an antisymmetric
bilinear map:

A×A → A

(a, b) 7→ [a, b]

that satisfies the Jacobi identity:

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0 ∀a, b, c ∈ A.

A Banach, resp. Hilbert Lie algebra is a Banach, resp. Hilbert vector space equipped
with a continuous antisymmetric bilinear map which satisfies the Jacobi identity.

On the grounds of the above remark, we call Lie subalgebra of a Banach Lie algebra A
any closed linear subspace of A that splits A and that is stable under the Lie bracket,
i.e.

a, b ∈ B ⇒ [a, b] ∈ B.

In particular, a Lie subalgebra of a Hilbert Lie algebra A is a closed linear subspace
of A stable under the Lie bracket of A.

Definition 17 A left- (resp. right-) action of a Lie group G on a smooth manifold
M is a map:

Θ : G×M → M

(g, x) 7→ Θ(g, x)

such that:
Θ(e, x) = x ∀x ∈M

and
Θ(gh, x) = Θ (g,Θ(h, x)) ∀g, h ∈ G

(resp.
Θ(gh, x) = Θ (h,Θ(g, x)) ∀g, h ∈ G.)

Such an action is smooth if the map Θ is smooth.

14



It is convenient to denote a right action by Θ(g, x) := x · g and a left action by
Θ(g, x) := g · x.

A Lie group acts on itself by a right and a left action via the multiplication maps:

Rg(h) := hg, Lg(h) := gh ∀h, g ∈ G.

It also acts on itself via the adjoint action:

G×G → G

((g, h) 7→ Adg(h) := LgRg−1h = Rg−1Lgh.

A right invariant field on G is a vector field ξ such that:

ξ(hg) = DgR(ξ(h)) i.e. Rg∗ξ = ξ ∀h, g ∈ G

and a left invariant field on G is a vector field ξ such that:

ξ(gh) = DgL(ξ(h)) i.e. Lg∗ξ = ξ ∀h, g ∈ G.

Let ΞL(G), resp. ΞR(G) denotes the space of left, resp. right invariant vector fields
on G. For any u ∈ TeG the vector field g → ξLu (g) := DeLg(u) is left invariant,
g 7→ ξRu (g) := DeRg(u) is right invariant, and we can build two maps:

ΞL : TeG → ΞL(G)
u 7→ DeLg(u)

and
ΞR : TeG → ΞR(G)

u 7→ DeRg(u),

which are one to one and onto.

If the manifold M is a Lie group, given two left invariant vector fields ξL and ξ̃L

on G, their Lie bracket is also left invariant for we have:

[Lg∗ξ, Lg∗ξ̃] = Lg∗[ξ
L, ξ̃L] ∀g ∈ G

and a similar property holds for right invariant vector fields on G. Thus the Lie
bracket on vector fields induces two brackets on TeG:

[u, v]L := [ξLu , ξ
L
v ], [u, v]R := [ξRu , ξ

R
v ] ∀u, v ∈ TeG.

The map:

J : G → G

g 7→ g−1

satisfies gJ(g) = e, i.e. RJ(g)(g) = e (or equivalently J(g)g = e i.e. Lg(J(g)) = e
for any g ∈ G). Differentiating this relation at point h ∈ G yields DhRg−1u +(
Dhg−1Lg

)
DhJu = 0, and gives the expression for its differential map at h ∈ G:

DhJ : ThG → ThG

v 7→ −
(
Dhg−1Lg

)−1
DhRg−1v = −Dhg−1Rg−1 (DhLg)

−1
v
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since DLg commutes with DRg. Hence DJ takes a left invariant vector field ξLu (g) =

DeLg(u) ∈ TgG to a right invariant vector fieldDgJξ
L
u (g) = −DeRg−1 (DgLg)

−1
ξLu (g) =

−ξRu (g−1), so that:

DgJ(ξLu ) = −ξRu ◦ J i.e J∗ξ
R
u = −ξLu .

Since J is a diffeomorphism, it follows that:

[ξLu , ξ
L
v ] =

[
J∗ξ

R
u , J∗ξ

R
v

]
= J∗

[
ξRu , ξ

R
v

]
and hence

[u, v]L = [u, v]R = [ξRu , ξ
R
v ](e) = [ξLu , ξ

L
v ](e).

The tangent space TeG equipped with this Lie bracket becomes a Lie algebra denoted
henceforth by Lie(G).

Every automorphism φ of the Lie group G induces an automorphism φ∗ of its Lie
algebra Lie(G) for if ξ is a left invariant vector field, then so is φ∗ξ and

[φ∗ξ, φ∗ξ̃] = φ∗[ξ, ξ̃].

In particular, for any g ∈ G, the automorphism

Ad(g) : G → G

h 7→ ghg−1

induces an automorphism of Lie(G) also denoted by Adg.

To the left invariant and right invariant vector fields ξLu and ξRu built from an el-
ement u ∈ Lie(G), we can associate two local flows φLu and φRu defined by

dφLu (t)

dt
= ξLu (φLu (t)),

dφRu (t)

dt
= ξRu (φRu (t)).

Let us assume such a flow φu is defined up to time t1. For simplicity we drop the
superscript L and set g1 = φu(t1). Then ξLu being left invariant ψu(t) := g1φu(t)
verifies:

d

dt
ψu(t) = Dφu(t)Lg1

d

dt
Dφu(t) = Dφu(t)Lg1

ξLu (φu(t))

= ξLu (φu(t))(g1φu(t)) = ξLu (u)(ψu(t))

and ψu(0) = g1. As before, ψu can be defined on an interval [0, t1[ thus extending
the flow φu defined on [0, t1[ to a flow on, [0, 2t1[. Iterating this procedure shows that
the flow can be extended to all IR. The same holds for the flow φRu .

The left invariant and right invariant integral flows φLu and φRu of some vector u
in the Lie algebra of a Lie group are therefore complete.
Let us compare these two flows:

d

dt
(J ◦ φLu )(t) = DφLu (t)J

(
ξLu (φLu (t))

)
= −ξRu

(
J ◦ φLu (t)

)
16



and hence
d

dt

(
φLu (t)

)
=

d

dt

(
J ◦ φLu (−t)

)
= ξRu

(
J ◦ φLu

)
(−t)

so that φLu (t) satisfies the same differential system as φRu (t) with the same initial
conditions.

From the uniqueness of such a solution, we conclude that

φLu (t) = φRu (t) := φu(t).

Definition 18 The map:

exp : Lie(G) → G

ξ 7→ φu(1)

is called the exponential map on the Lie group G.

Since De exp = Id, by the local inverse mapping theorem recalled in section 1.1, it
induces a local diffeomorphism:

exp : U ⊂ Lie(G)→ V ⊂ G

from an open neighborhood of 0 to an open neighborhood of e ∈ G.
On GL(n, IR) it coincides with the exponential map of matrices expA =

∑∞
0

1
k!A

k.

Given a ∈ Lie(G), we can define a one parameter family gt := exp(ta), t ∈ I ⊂ IR
where I is a (small enough open) interval containing 0, and define the adjoint action
of Lie(G) on itself by differentiating that of G on Lie(G):

ada : Lie(G) → Lie(G)

b 7→ d

dt |t=0

Adgt(b) = [a, b]

thus recovering the Lie bracket of Lie(G).

The exponential map is not a morphism from the vector space (Lie(G),+) to the
group (G, ·) as can be seen from the Lie Campbell-Hausdorff formula:

exp a · exp b = exp

( ∞∑
k=0

C(k)(a, b)

)

using the Banach topology on Lie(G) and where C(1)(a, b) = a + b and for k > 1,
C(k)(a, b) is a linear combination of Lie monomials of degree k in a and b given by:

C(k)(a, b) =

∞∑
j=1

(−1)j+1

(j + 1)

∑ (ad a)α1(ad b)β1 · · · (ad a)αj (ad b)βj b

(1 +
∑j
l=1 βl)α1! · · ·αj !β1! · · ·βj !

.

Here we have set ad a(c) := [a, c] and the inner sum is over all j-tuples of pairs of
nonnegative integers (αl, βl) with αl + βl > 0 and α1 + · · ·αj + β1 + · · ·βj + 1 = k
(terms with βj 6= 0 vanish).
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2 Vector bundles and tensor fields

2.1 Definition and first properties

Useful references are [HUs], [KN], [Na], [S], [Ts], [Wu].

Definition 19 A fibre bundle of class Ck with typical fibre a Ck Banach manifold
V (we shall also say modelled on V and call V the model space) is a triple (F,B, π)
often denoted by π : F → B where

- F and B are differentiable manifolds of class Ck, called total space and base
space respectively,

- π : F → B is a map of class Ck, called canonical projection , such that there is
a set of local charts (Ui, φi)i∈I covering B and Ck diffeomorphisms

τi : π−1(Ui)→ φi(Ui)× V

satisfying the following requirements:

i) the fibre Fb = π−1(b) is a Banach manifold and

ii) τi(b) := τi|Fb is a diffeomorphism from Fb to F .

A triple (Ui, φi, τi) is called a local trivialisation of the bundle.
Two local trivializations (Ui, φi, τi) and (Uj , φj , τj) give rise to maps τij := τi ◦ τ−1

j

called transition maps of the form:

τij : φi(Ui ∩ Uj)× V → φj(Ui ∩ Uj)× V
(b, v) 7→ (b, τij(b)(v))

where the τij(b) are diffeomorphisms of class Ck of V .

Transition maps satisfy the following properties:

τii(b) = idV ∀b ∈ Ui
τij(b) ◦ τji(b) = idV ∀b ∈ Ui ∩ Uj

τij(b) ◦ τjk(b) ◦ τki(b) = idV ∀b ∈ Ui ∩ Uj ∩ Uk.

The family {τij} is called a cocycle associated to the trivialization {Ui, τi, i ∈ I}, and
the last relation mentioned above a cocycle relation. From a covering of a manifold B
together with a set of transition maps satisfying these relations one can reconstruct
the fibre bundle on B.

In the following we mainly consider smooth manifolds and smooth bundles as well as
smooth sections.

Definition 20 A morphism of Ck fibre bundles π : F → B and π′ : F ′ → B′ is a
couple (f0, f) of Ck morphisms f0 : B → B′ and f : F → F ′ such that π′ ◦ f = f0 ◦π
and the induced map on the fibres fx : π−1(x) → (π′)

−1
(x) is a morphism of the

fibres.
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In what follows we shall often take B = B′.

Two fibre bundles are isomorphic if there is a diffeomorphism from one to the other.
A trivial fibre bundle is a fibre bundle isomorphic to the bundle π : F = B×V → V. It
can be shown (see [At], [1]) that a finite rank vector bundle V over a closed manifold
M can be completed to a trivial bundle i.e., that there exists a vector bundle W over
M such that V ⊕W is trivial.

Definition 21 Let B′ → B be a Ck morphism of Banach manifolds, and let F → B
be a Ck-fibre bundle on B. The pull-back φ∗F of F by φ is a fibre bundle φ∗π :
φ∗F → B′ with total space:

φ∗F := {(b′, v(φ(b′))) ∈ B′ × Fφ(b′))}

where V is the model space of F and with fibres (φ∗π)
−1

(b′) = π−1 (φ(b′)) at a point
b′ in B.

A (real or complex) vector bundle of class Ck is a fibre bundle of class Ck with typical
fibre a (real or complex) vector space V , and such that there is a local trivialization
inducing automorphisms τij(x) of the Banach vector space V , i.e. τij ∈ GL(V ).

When V = IRd (resp. Cd), the vector bundle has rank d. If d = 1 it is called a
line bundle.

Example 2 The Grassmann bundle γnk over the Grassmann manifold Gnk is the vec-
tor bundle with fibre above the vector space V ⊂ IRn given by the pairs (V, x) such
that x ∈ V

Operations on linear spaces such as the direct sum carry out to vector bundles; the
direct sum of two vector bundles E1 → B and E2 → B over the same base space B
is a vector bundle E1 ⊕ E2 → B over B whose model space is the direct sum of the
model spaces of E1 and E2.

Definition 22 A Ck section of a fibre bundle π : F → B is a map s : B → F of
class Ck such that π ◦ s = IdB . It is smooth when it is of class Ck for all k ∈ IN .

The set of Ck-sections (resp. C∞-sections) of a vector bundle E forms a vector space
denoted by Ck(E) (resp. C∞(E)).

A real finite rank vector bundle is orientable provided it has a trivialization with
transition maps τij(b) with positive determinant. A manifold is orientable whenever
its tangent bundle is orientable.

Example 3 Given a manifold M of class Ck+1 (resp. of class C∞) modelled on
a Banach space V , the tangent bundle TM is a Ck (resp. C∞)-vector bundle with
fibres modelled on that same space V ; given a local trivialization (Ui, φi) on M , a
local trivialization (Ui, φi, τi) on TM is given by (Ui, φi, Dφi) and Dφi ◦Dφ−1

j is of

class Ck−1.

Vector fields on a smooth manifold M are smooth sections of the tangent vector
bundle so that the space Ξ(M) is now viewed as the vector space of smooth sections
C∞(TM) of the tangent bundle TM .
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Definition 23 A morphism of Ck vector bundles π : E → B and π′ : E′ → B′ is a
couple (f0, f) of Ck morphisms f0 : B → B′ and f : E → E′ such that π′ ◦ f = f0 ◦π
and the induced map on the fibres fx : π−1(x)→ (π′)

−1
(x) is a linear map.

An isomorphism of vector bundles clearly preserves the rank of the vector bundle.
The direct sum of vector bundles induces a direct sum of isomorphic classes of
vector bundles so that isomorphism classes of vector bundles form a semi-group.
Grothendieck suggested a ”symmetrisation” procedure similar to the one which yields
ZZ from IN × IN by as the set of equivalent classes (a, b) ∼ (c, d) ⇔ ∃e ∈ IN, a +
d+ e = c+ b+ e, to build the K-theory group K(B) from the semi-group of complex
vector spaces over B for the direct sum (see [At], [1]).

2.2 Tensor, dual and morphism bundles

We refer the reader to the same references as the previous section.
The (topological) tensor product of two Banach spaces is built from their algebraic
tensor product as follows.

Definition 24 Given two Banach vector spaces V1 and V2, the tensor product V1⊗̂V2

is the unique Banach vector space V such that the following map:

L(V,W ) → B(V1 × V2,W )

f 7→ ((u1, u2) 7→ f(u1 ⊗ u2))

is continuous for any Banach space W . Here B(V1 × V2,W ) denotes the set of con-
tinuous bilinear forms on V1 × V2 with values in W .

If ‖ · ‖i denotes the norm on Vi for i = 1, 2 then V1⊗̂V2 coincides with the closure of
the tensor product for the norm on Vi defined by:

‖v1⊗̂v2‖ = ‖v1‖1 · ‖v2‖2.

If both V1 and V2 are finite dimensional, then the tensor product ⊗̂ coincides with
the ordinary tensor product ⊗. In what follows we shall drop the explicit mention of
the completion .̂

Definition 25 Let π1 : E1 → B and π2 : E2 → B be two vector bundles of class Ck

with fibres modelled on V1 and V2 respectively. The tensor product π1⊗π2 : E1⊗E2 →
B is a vector bundle of class Ck modelled on V1⊗V2 with fibre π−1

1 (b)⊗π−1
2 (b) above

b ∈ B and the local trivializations of which are built from the tensor product of local
trivializations (Ui, φi, τ

1
i ), (Ui, φi, τ

2
i ) and (Ui, φi, τ

1
i ⊗ τ2

i ).

Transition functions are given by tensor products τ1
ij ⊗ τ2

ij where τkij , k = 1, 2 are
transition maps for the bundles Ek, k = 1, 2.
Whenever E1 and E2 have ranks d1 and d2, their tensor product has rank d1d2.

Given a topological vector space V , the dual space V ∗ is the space of continuous
linear forms on V .

Definition 26 Let π : E → B be a Ck vector bundle with fibres modelled on a Banach
space V . The dual bundle π∗ : E∗ → B is a vector bundle of class Ck modelled on
V ∗ with fibre

(
π−1(b)

)∗
above b ∈ B and local trivializations (Ui, φi,

(
τ−1
i

)∗
) induced

by some local trivialization (Ui, φi, τi) of E.
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The transition maps are given by
(
τ−1
ij

)∗
, where the τij are transition maps for E.

Combining duals and tensor products yields different types of bundles which are
useful for geometric purposes. The homomorphism bundle is one of them:

Definition 27 Given two vector bundles E → B and F → B, we can build the
bundle Hom(E,F ) := E∗ ⊗ F of linear morphisms from E to F .

Also we shall use the notion of symmetrised and antisymmetrised tensor products of
vector bundles:
Given vector bundles E1, · · · , Ek based on some manifold B, we can build symmetric
sections of their tensor product from sections σ1, · · · , σk of E1, · · · , Ek:

σ1 ⊗s σ2 ⊗s · · · ⊗s σk :=
1

k!

∑
α∈Σk

σα(1) ⊗ σα(2) ⊗ · · · ⊗ σα(k),

and similarly antisymmetric sections:

σ1 ∧ σ2 ∧ · · · ∧ σk :=
1

k!

∑
α∈Σk

(−1)sign(α)σα(1) ⊗ σα(2) ⊗ · · · ⊗ σα(k)

where sign(α) is the signature of the permutation. Another useful class of bundles
is that of tensor bundles on a manifold:

Definition 28 Given a Banach manifold X of class Ck modelled on a Banach vector
space E then:

- The dual bundle T ∗X to the tangent bundle TX is a vector bundle called the
cotangent bundle. It is a vector bundle of class Ck−1 based on B and with fibres
modelled on E∗. Its sections are called cotangent vector fields.

- The tensor bundle TXq := ⊗qTX, q ∈ IN∗ is a vector bundle of class Ck−1

based on B and with fibres modelled on ⊗qE. Its sections are called contravari-
ant q-tensor fields.

- The tensor bundle (TX∗)
p

:= ⊗pTX, p ∈ IN∗ is a vector bundle of class Ck−1

based on B and with fibres modelled on ⊗pT ∗X. Its sections are called covariant
p-tensor fields. Antisymmetric sections are called p-forms.

- A (p, q) tensor field is a section of the bundle (⊗qTX)⊗ (⊗pT ∗X).

In finite dimensions, one often writes a (p, q) tensor T in local coordinates as T
j1···jq
i1···ip .

The exterior product α ∧ β of a p-form α and a q-form β is a p+ q form:

α ∧ β =
∑

σ∈Sh(p,q)

(−1)|σ|α(xσ(1), · · · , xσ(p) β(xσ(p+1), · · · , xσ(p+q),

where Sh(p, q) is the subset of (p, q) shuffles, namely permutations of the set {1, . . . , p+
q} such that σ() < σ(2) · · · < σ(p) and σ(p+ 1) < · · · < σ(p+ q).
Pull-backs can be extended to covariant tensor fields.

Given a morphism φ : X → Y between two Ck manifolds X and Y , the pull-back by
φ of a covariant p-tensor field T on Y is given by:

(φ∗T )x(U1, · · · , Up) := Tφ(x)(Dxφ(U1), · · · , Dxφ(Up)) ∀U1, · · · , Up ∈ TxX.
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In particular, the pull-back of a p-form is also a p-form. It is easy to check that

φ∗(T1 ⊗ T2) = φ∗T1 ⊗ φ∗T2

and that given two morphisms φ, ψ we have:

(φ⊗ ψ)∗ = ψ∗ ⊗ φ∗.

If φ is a diffeomorphism, the pull-back can be extended to contravariant vector fields:

φ∗(ξ1 ⊗ · · · ξq) := (φ−1)∗ξ1 ⊗ · · · ⊗ (φ−1)∗ξq.

2.3 Examples of tensors: metrics and almost complex struc-
tures

Important examples of covariant tensor fields are the Riemannian (resp. Hermitian)
metrics.

Definition 29 A weak (resp. strong) Riemannian metric on a smooth real vector
bundle with fibres modelled on a Banach space and based on a manifold B, is a
smooth section g of E∗⊗E∗ such that for any b ∈ B, gb induces a symmetric positive
definite form on each fibre Eb, producing a weaker topology than the Banach topology
on the fibre (respectively the same topology as the Banach topology on the fibre).

Definition 30 A weak (resp. strong) Hermitian metric on a smooth complex vector
bundle with fibres modelled on a Banach space and based on a manifold B, is a smooth
section h of E∗⊗E∗ such that for any b ∈ B, hb induces a Hermitian positive definite
form on each fibre Eb, producing a weaker topology than the Banach topology on the
fibre (respectively the same topology as the Banach topology on the fibre).

In the following when there is no other explicit mention, we shall be thinking of strong
metrics.

A weak (resp. strong) Riemannian (Hermitian) metric on a Banach manifold is a
weak (resp. strong) Riemannian (Hermitian) metric on the tangent bundle TB.

If M is a manifold of dimension n, then weak and strong topologies coincide and
one only requires that gx (resp. hx) at a point x ∈M be a positive definite symmet-
ric (resp. Hermitian) form on the fibres, locally represented by an n×n matrix (gij)
(resp. (hij(x)) whose inverse is denoted by (gij). In a local orthonormal system of
coordinates gij(x) := gx(ei, ej) = δij , i.e. the matrix representing gx in this coordi-
nate system is the identity matrix.

Given a diffeomorphism φ : N → M between two manifolds and a Riemannian
(resp. Hermitian) metric g (resp. h) on a vector bundle based on M , the pull-back
φ∗g (resp. φ∗h) yields a Riemannian (resp. Hermitian) metric on the pull-back vector
bundle φ∗E based on N .
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In particular, if ξ is a vector field on a Riemannian manifold (M, g) the local one pa-
rameter group of diffeomorphisms φt generated by ξ acts on the metric by pull-back
φ∗t g. A Killing vector field also called an infinitesimal isometry, is a vector field ξ
such that the Lie derivative of the metric in the direction ξ vanishes, i.e.:

Lξg :=

(
d

dt

)
t=0

φ∗t g = 0.

If ξ, ξ̃ are two Killing vector fields, then so is their bracket [ξ, ξ̃].

A vector bundle equipped with a (strong) Riemannian (resp. Hermitian) metric
is called a Riemannian (resp. Hermitian) vector bundle. A manifold M such that
TM is equipped with a (strong) Riemannian (resp. Hermitian) metric is called a
Riemannian (resp. Hermitian) manifold.

Notice that a Banach vector bundle equipped with a strong Riemannian metric be-
comes a Hilbert bundle since the fibres become Hilbert spaces when equipped with
the inner product induced by the metric. This is of course not the case anymore if
the Riemannian structure is weak.

Metrics do not always exist on a manifold; however, provided there is a smooth
partition of unity on the manifold, one can always build a Riemannian metric patch-
ing up locally defined positive definite forms. Also, if M is a Riemannian manifold,
tensor bundles over M can be equipped with a metric structure induced from that of
M .

The existence of a Riemannian metric on a manifold M provides explicit isomor-
phisms between the tangent and cotangent vector fields called musical isomorphisms:

TxM → T ∗xM

V 7→ V [

defined by
V [(W ) = 〈V,W 〉x, ∀W ∈ TxM

where 〈·, ·〉x is the scalar product on the fibre TxM of the tangent bundle above
x ∈ M induced by the Riemannian metric. Similarly, using the Riesz theorem, one
defines:

T ∗xM → TxM

α 7→ α]

by
α(W ) = 〈α],W 〉x, ∀W ∈ TxM.

Definition 31 An almost complex structure on an oriented Banach vector bundle
π : E → B is a smooth section J of E∗ ⊗ E ' End(E) preserving orientation and
such that J2 = −Id. An almost complex structure on an oriented manifold M is one
on the tangent bundle TM , i.e. it is a (1, 1) tensor J inducing a morphism J on TM
which preserves orientation and satisfies J2 = −Id.
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An almost complex structure J on a real vector bundle E extends linearly to its
complexification JC : EC → EC . This complexified vector bundle splits EC =
E1,0⊕E0,1 where E1,0 is the vector bundle over B with fibre Ker(J(b)− i) := {ub ∈
EC
b , J(b)(ub) = iub} above b ∈ B, resp. E0,1 the vector bundle over B with fibre

Ker(J(b) + i) := {vb ∈ EC
b , J(b)(vb) = −ivb} above b ∈ B.

Definition 32 Let M be a manifold equipped with an almost complex structure J
which induces a splitting TM C = T 1,0M ⊕T 0,1M . If T 1,0M is stable under brackets
of vector fields, then J is said to be integrable.

Proposition 5 An almost complex structure J on M is integrable if and only if the
Nuijenhuis tensor field N : C∞(TM)× C∞(TM)→ C∞(TM) defined by

N(U, V ) = [U, V ] + J [JU, V ] + J [U, JV ]− [JU, JV ]

vanishes for any U ∈ C∞(TM), V ∈ C∞(TM).

Proof 4 Extending the Nuijenhuis tensor to complex vector fields, W = U + iV, Z =
X + iY , we can write:

N(W,Z) = N(U,X)−N(V, Y ) + i (N(V,X) +N(U, Y )) .

Thus if N vanishes on real vector fields, it also vanishes on complex vector fields.
Assume that W,Z ∈ C∞(T 1,0M). Then JW = iW and JZ = iZ so that N(W,Z) =
2 ([W,Z] + iJ [W,Z]). Hence N(W,Z) = 0 ⇒ J [W,Z] = −i[W,Z], i.e. [W,Z] ∈
C∞(T 1,0M). It follows that J is integrable.

Conversely, let us write W = W+ +W− and Z = Z+ +Z− according to the splitting
C∞(T CM) = C∞(T 1,0M)⊕ C∞(T 0,1M). Then

N(W,Z) = N(W+, Z+)−N(W−, Z−) + i
(
N(Z−,W+) +N(W+, Z−)

)
.

Since JW+ = iW+, JW− = −iW−, JZ+ = iZ+, JZ− = −iZ−, it follows that
N(W+, Z−) = N(W−, Z+) = 0 and N(W+, Z+) = N(W−, Z−) = 0 so that N
finally vanishes on all complex tangent fields.

Definition 33 A complex manifold is a manifold M equipped with a complex struc-
ture i.e., with an atlas (Ui, φi) with transition maps given by holomorphic maps.

A complex manifold inherits from the local charts an almost complex structure. Let
us comment on the finite dimensional case; if M has finite real dimension 2n then,
in a local chart (x1, · · · , xn, y1, · · · , yn) the complex structure is given by

Jx

(
∂

∂xk

)
=

∂

∂yk
, J

(
∂

∂yk

)
= − ∂

∂xk

at point x in M . This defines a (1, 1) tensor on M independently of the choice of local
coordinates. Indeed, given another system of local coordinates {z′k := x′k + iy′k, k =
1, · · · , n}, the Cauchy-Riemann equations

∂xi
∂x′j

=
∂yi
∂y′j

,
∂xi
∂y′j

=
∂yi
∂x′j
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lead to a similar expression

J

(
∂

∂x′k

)
=

∂

∂y′k
, J

(
∂

∂y′k

)
= − ∂

∂x′k

so that we obtain an almost complex structure J on M . Conversely we have:

Theorem 5 (Newlander and Nirenberg) Let M be an (even dimensional) real man-
ifold equipped with an almost complex structure J . If J is integrable, it yields a
complex structure on the manifold with associated almost complex structure J .

If M and N are two complex manifolds, a map f : M → N is called holomor-
phic if it is holomorphic in any local chart, this requirement being independent of the
choice of local chart since the transition maps are holomorphic.

Let M be a real even dimensional manifold equipped with a complex structure c.
Given another real even dimensional manifold N , a diffeomorphism f : N → M in-
duces a complex structure f∗c := {f−1(Ui), φi ◦ f} on N called the pull-back of c by
f . If N = M then f∗c is a priori different from the initial complex structure c in the
sense that the charts are not only different from the initial ones but also incompatible
with them. Yet (M, c) and (M,f∗c) are holomorphically equivalent in the sense that
f : (M, c)→ (M,f∗c) is a holomorphic map and so is its inverse.

A Riemannian metric h on a complex manifold M with complex structure J is called
a Hermitian metric if J is isometric:

h(·, ·) := h(J ·, J ·)

and the pair (M,h) is called a Hermitian manifold .
Given a h Hermitian manifold (M,h) with complex structure J , we build a covariant
tensor

ω(·, ·) = h(J ·, ·),

called the Kähler form of h. The two-form ω is antisymmetric since J2 = −Id and
invariant under J :

ω(J ·, J ·) = h(J2 ·, J ·) = h(J3 ·, J2 ·) = h(J ·, ·) = ω.

Remark 1 On a complex manifold of complex dimension n with complex structure
J , the form ω ∧ · · · ∧ ω (n-times) is nowhere vanishing since with the notation of the
above remark we have

ω ∧ · · ·ω(e1, Je1, e2, Je2, · · · , en, Jen) =
∑
σ∈Σn

ω(eσ(1), Jeσ(1)) · · ·ω(eσ(n), Jeσ(n))

= n!Ω(e1, Je1) · · ·Ω(en, Jen) = n!.

It serves as a volume element on M , which is therefore orientable.

2.4 Bundle valued forms

Useful references are [BGV], [MT].

25



Definition 34 Let π : E → B be a smooth fibre bundle. An E-valued p-form α on
B is a smooth section of the tensor product ⊗pT ∗B ⊗ E such that:

α
(
Uσ(1), · · · , Uσ(p)

)
= (−1)ε(σ)α(U1, · · · , Up) ∀U1, · · · , Up ∈ TbB ∀σ ∈ Σp

where ε(σ) is the signature of σ.

In particular, such an expression vanishes whenever two vectors Ui and Uj coincide
so that if the manifold B is n-dimensional, using the multilinearity property, one can
show that a p-form with p > n vanishes identically.

We denote by Ωp(E) the space of smooth E-valued p-forms and Ω(E) := ⊕p=0Ωp(E),
which becomes a finite sum when B is finite dimensional. For p = 0 we get back the
space of smooth sections of E. The degree of a p-form α is the integer p also denoted
by |α|.

If E is the trivial vector bundle E = B × IR (or B × C) we set Ωp(B) := Ωp(E),
and Ω(B) := ⊕Ωp(B) which is in fact a finite sum as soon as B is finite dimensional.
Given a local system of coordinates (x1, · · · , xn) around a point x of an n-dimensional
manifold, a one form α(x) reads α(x) :=

∑n
i=1 αi(x)dxi.

Whenever A is a fibration of algebras, the space Ω(A) can be equipped with the
exterior product or wedge product which sends α ∈ Ωp(A) and β ∈ Ωq(A) to α ∧ β ∈
Ωp+q(A):

(α ∧ β) (U1, · · · , Up, Up+1, · · · , Up+q)

:=
1

p!q!

∑
σ∈Σp+q

(−1)sign(σ)α(Uσ(1), · · · , Uσ(p)) · β(Uσ(p+1), · · · , Uσ(p+q)).

In particular, for two one-forms α and β and two vector fields U, V we have α ∧
β(U, V ) = α(U) · β(V ) − α(V ) · β(U). Here the dot denotes the product of sections
of A. Thus Ω(A) becomes a graded algebra with the grading given by the degree on
forms. here are two important examples:

• Starting from the bundle E = B×K where K is a field, yields a graded algebra
structure on Ω(B,K) using the product on K.

• Starting from a vector bundle E based on B, the bundle A = Hom(E) yields
a fibration of algebras on B and Ω(Hom(E)) can be equipped with a graded
algebra structure using the composition of homomorphisms.

We introduce two operators on forms which are useful to construct a Clifford multi-
plication on forms later in these notes.

• Given a Riemannian manifold M , the exterior multiplication ε(V ) : Ω∗(M)→
Ω∗+1(M) is the operator defined by:

ε(V )α = V ] ∧ α (1)

where V ] is the 1-form associated to the vector field V by the musical isomor-
phisms.
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• Given a fibration of algebras A and a vector field V on B, the contraction
operator ι(V ) : Ω∗(A)→ Ω∗−1(A) is the unique operator such that:

ι(V )α = α(V ) ∀α ∈ Ω1(A) (2)

extended to higher order forms by the Leibniz rule:

ι(V )(α ∧ β) = ι(V )α ∧ β + (−1)|α|α ∧ ι(V )β ∀β ∈ Ω(A).

On a smooth oriented closed n-dimensional manifold M , any smooth n-form ω can be
integrated to give a complex (or real) number

∫
M
ω. Given a smooth map f : N →M

between two closed oriented n-dimensional smooth manifolds N and M , the pull-back
f∗ω by f of this form can be integrated on N and we have:∫

N

f∗ω = deg(f) ·
∫
M

ω

where deg(f) is an integer called the degree of the map f . The bilinear map:

Ωp(M)× Ωn−p(M) → C

(α, β) 7→
∫
M

α ∧ β

will later yield a dual pairing between p-th and n− p-th cohomology groups. Notice
that when n = 2k, for two k-forms α and β we have

∫
M
α ∧ β = (−1)

k
2

∫
β ∧ α, so

that this bilinear map yields a symmetric bilinear form on Ωk(M)whenever k is even.

A Riemannian structure on a finite n-dimensional oriented manifold M yields a par-
ticular n-form, the volume form given in a local system of coordinates (x1, · · · , xn)
at a point x by:

dvol(x) =
√

detgx dx1 ∧ · · · ∧ dxn = e∗1 ∧ · · · ∧ e∗n

where detgx is the positive determinant of the matrices representing the metric locally
at point x and where {e∗1(x), · · · , e∗n(x)} is an orthonormal basis of T ∗xM equipped
with the inner product induced by the Riemannian metric.
Given an n-dimensional Riemannian manifold (M, g), the Hodge star operator ? is
defined pointwise by the linear operator

?x : ΛpT ∗xM → Λn−pT ∗xM (3)

on a positively oriented orthonormal local basis {e∗1, · · · , e∗n} of T ∗xM by:

e∗i1 ∧ · · · ∧ e
∗
ip ∧ ?x(e∗i1 ∧ · · · ∧ e

∗
ip) = dvol(x)

for any i1 < · · · < ip. This definition is independent of the choice of oriented or-
thonormal basis and one can check that ?2 = (−1)p(n−p) on ΛpT ∗xM. The Hodge ?
operator induces a duality on forms Ωp(M) ' Ωn−p(M) called Hodge duality. When
M is closed, the above bilinear form on differential forms yields the following bilinear
form on Ωp(M):

〈α, β〉 =

∫
M

〈α, β〉xdvol(x) =

∫
M

α(x) ∧ ?β(x).
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When M is a complex manifold, just as TMC = T 1,0M ⊕ T 0,1M , the complexi-
fied space of forms Ωr(M)⊗ C splits:

Ωr(M)⊗ C =

r∑
p+q

Ωp,q(M),

where Ωp,q(M) is the space of smooth antisymmetric sections of the tensor bundle((
T 1,0M

)∗)⊗p ⊗ ((T 0,1M
)∗)⊗q

.

A Hermitian metric h on M is a (1, 1) covariant two tensor which, if M is n-
dimensional reads in local coordinates:

h(z) =
∑

1≤j,k≤n

hjkdzj ⊗ dz̄k.

Given a Hermitian manifold (M,h) with complex structure J , we build a covariant
tensor

ω(·, ·) = h(J ·, ·),

called the Kähler form of h. The two form ω is antisymmetric since J2 =I d and
invariant under J :

ω(J ·, J ·) = h(J2 ·, J ·) = h(J3 ·, J2 ·) = h(J ·, ·) = ω.

Remark 2 On a complex manifold of complex dimension n with complex structure
J , the form ω ∧ · · · ∧ ω (n-times) is nowhere vanishing since with the notation of the
above remark we have

ω ∧ · · · ∧ ω(e1, Je1, e2, Je2, · · · , en, Jen) =
∑
σ∈Σn

ω(eσ(1), Jeσ(1)) · · ·ω(eσ(n), Jeσ(n))

= n!Ω(e1, Je1) · · ·Ω(en, Jen) = n!.

It serves as a volume element on M , which is therefore orientable.
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3 Differential forms and connections

The exterior differential Useful references are [BGV], [MT].

Exterior differentiation on forms on a given smooth manifold M is defined as fol-
lows:

Proposition 6 The derivation f → Df defined on the space of smooth functions on
a manifold M extends to a unique derivation map d : Ω(M)→ Ω(M) such that

i) d sends Ωp(M) to Ωp+1(M).

ii) (d ◦ d) (f) = 0 ∀f ∈ C∞(M).

We set df = Df for f ∈ C∞(M) = Ω0(M).

As a derivation map, exterior differentiation is linear and satisfies the (graded) Leibniz
rule, which reads here:

d(α ∧ β) = (dα) ∧ β + (−1)|α|α ∧ dβ ∀α, β ∈ Ω(M).

On a form α ∈ Ωp(M), and for smooth vector fields U0, · · · , Up on M , the exterior
differentiation reads:

dα(U0, · · · , Up) =

p∑
k=0

(−1)kUk

(
α(U0, · · · , Ûk, · · · , Up)

)
+

∑
1≤k,l≤p

(−1)k+lα
(

[Uk, Ul], U0, · · · , Ûk, · · · , Ûl, · · · , Up
)

where the “hat” above the vector fields means we have deleted them. It is important
to notice that the second requirement that d◦d vanishes on functions in fact implies,
using the other two requirements, that it vanishes on all forms.

On a compact finite dimensional oriented Riemannian manifold, one can define the
adjoint d∗ of d setting:

〈dα, β〉 = 〈α, d∗β〉 ∀α ∈ Ωp(M), β ∈ Ωp+1(M), (4)

so that we have:

〈α, d∗β〉 =

∫
M

α ∧ d∗β

=

∫
M

dα ∧ ?β

=

∫
M

d(α ∧ ?β)− (−1)p
∫
M

α ∧ d ∗ β

= (−1)p+1

∫
M

α ∧ d ? β(
since

∫
M

dγ = 0

)
= (−1)p+1(−1)(n−p)(n−(n−p))

∫
M

α ∧ ? ? d ∗ β
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= (−1)np+1

∫
M

α ∧ ?(?d ∗ β)

= (−1)np+1〈α, ?d ? β〉

Thus on Ωp(M) we get:
d∗ = (−1)np+1 ? d ? .

3.1 Connections and geodesics

Useful references are [GHL], [J], [K], [KN], [L].

Covariant derivatives extend the exterior differentiation to sections of vector bun-
dles.

Definition 35 Given a vector bundle π : E → B based on a manifold B, a covariant
derivative (also abusively called connection) on E is a differential operator:

∇ : C∞(E)→ C∞(T ∗B ⊗ E)

which satisfies the Leibniz rule:

∇(fσ) = df ⊗ σ + f∇σ.

It extends in a unique way to the space Ω(B,E) of E-valued forms on B in such a
way that:

∇(α ∧ θ) := dα ∧ θ + (−1)|α|α ∧∇θ ∀α ∈ Ω(B), θ ∈ C∞(E).

Notice that setting ∇U := ι(U) ◦ ∇ for U ∈ C∞(TM) we have:

∇fUσ = f∇Uσ

and
∇U+V σ = ∇Uσ +∇V σ ∀σ ∈ C∞(E), f ∈ Ω0(B), U, V ∈ TB.

A covariant derivation ∇ on a vector bundle E induces a dual connection ∇∗ on the
dual bundle E∗, given by the Leibniz rule using the duality product 〈·, ·〉 : C∞(E∗)×
C∞(E)→ C∞(M):

d〈ρ∗, σ〉 = 〈∇∗ρ∗, σ〉+ 〈ρ∗,∇σ〉, ∀σ ∈ C∞(E), ρ ∈ C∞(E∗),

and a connection ∇End on the bundle End(E) ' E∗ ⊗ E defined by:

∇End := ∇∗ ⊗ 1 + 1⊗∇.

On a trivial vector bundle E → B, a connection is given by an EndE-valued one form
θ via the formula ∇ = d + θ. As a consequence, a connection on a general vector
bundle EndE can locally be described by ∇ = d+θU where now θU is a EndE-valued
one form on an open subset U ∈ B over which we have trivialised the bundle. An-
other consequence is that two connections on π : E → B differ by a (globally defined)
EndE-valued one form on B. An easy computation yields that if ∇ = d+ θU locally,
then ∇∗ = d− θU and ∇End = d+ [θU , ·].
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A similar formula to that of the differentiation on ordinary forms holds for a co-
variant derivative on E-valued forms:

∇α(U0, · · · , Up) =

p∑
k=0

(−1)k∇Ui
(
α(U0, · · · , Ûi, · · · , Uk)

)
+

∑
0≤k<l≤p

(−1)k+lα(∇UkUl −∇UlUk, U0, · · · , Ûk, · · · , Ûl, · · · , Up)

where Ûi means that we have left out the vector field Ui.

A connection ∇ on a Riemannian (resp. Hermitian) bundle π : E → B based on
a manifold B is Riemannian provided it is compatible with the Riemannian (resp.
Hermitian) metric in the following sense:

d〈σ, ρ〉b = 〈∇σ, ρ〉b + 〈σ,∇ρ〉b ∀σ, ρ ∈ C∞(E) ∀b ∈ B

where 〈·, ·〉b is the inner product on the fibre above b.

Given a connection ∇ on a finite n-dimensional manifold M , and given a local system
of coordinates (x1, · · · , xn) at a point x ∈M , we define the Christoffel symbols:

∇ ∂
∂xi

∂

∂xj
=

n∑
k=1

Γkij
∂

∂xk
.

These extend to the Banach setting as follows. Let π : E → B be a vector bundle
with base B modelled on a linear Banach space V and fibre modelled on a linear
Banach space V1. Let (U, φ,Φ) be a local trivialization of the bundle E over an open
subset U of B. A Christoffel coefficient corresponding to this trivialization is given
by a map:

ΓΦ : Φ(π−1(U))→ L(V × V1, V1)

with the following property. If (W,ψ,Ψ) is another trivialization then

D(Ψ ◦Φ−1)ΓΦ(φ∗X, τσ) = D2((Ψ ◦Φ−1)(φ∗X,Φσ) + Γψ ◦ (D(ψ ◦φ−1)X,D(Ψ ◦Φ−1)

where X is a vector at a point of U ∩W and σ a section of E. Under this assumption,
it makes sense to define a connection ∇ : C∞(E) → C∞(T ∗M ⊗ E) in a local
trivialization (U, φ,Φ) using the Christoffel symbol ΓΦ by:

Φ(∇Xσ) = D(Φσ).φ∗X + ΓΦ(φ∗X,Φσ)

since the latter definition is independent of the choice of local trivialization.

Definition 36 The torsion of a connection on the tangent bundle TM to a manifold
M is given by:

T (U, V ) := ∇UV −∇V U − [U, V ] ∀U, V ∈ TM.

In a system of local coordinates (x1, · · · , xn) around a point x of a finite n-dimensional
manifold M , setting ei = ∂

∂xi
we have T (ei, ej) = ∇eiej −∇ejei so that if the torsion

vanishes then ∇eiej = ∇ejei, i.e. the Christoffel symbols are symmetric Γkij = Γkji.
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Remark 3 In the absence of torsion, i.e. when T = 0 the covariant derivative on
forms reads:

∇α(U0, · · · , Up) =

p∑
k=0

(−1)k∇Ui
(
α(U0, · · · , Ûi, · · · , Uk)

)
+

∑
0≤k<l≤p

(−1)k+lα([Uk, Ul], U0, · · · , Ûk, · · · , Ûl, · · · , Up).

Proposition 7 There is a unique connection on a Riemannian manifold which has
vanishing torsion and is compatible with the (strong) Riemannian metric; it is called
the Levi-Civita connection.

Proof 5 (Idea of the proof) We first write

U〈V,W 〉 = d〈V,W 〉(U) = 〈∇UV,W 〉+ 〈V,∇UW 〉

as well as circular combinations of this expression. Using the fact that the torsion
vanishes yields the following expression of 〈∇UV,W 〉:

2〈∇UV,W 〉 = 〈[U, V ],W 〉 − 〈[V,W ], U〉+ 〈[W,U ], V 〉
+ U〈V,W 〉+ V 〈W,U〉 −W 〈U, V 〉.

in terms of differentials of the inner product 〈U, V 〉, 〈V,W 〉 and 〈U,W 〉. The existence
and uniqueness of ∇UV then follows from Riesz’s theorem.

A torsion free connection relates to the exterior differentation:

Proposition 8 If ∇ is a torsion free connection on M then the exterior differential
coincides with ε ◦ ∇ where ε is the exterior multiplication. In particular, if ∇ is the
Levi-Civita connection on a Riemannian manifold M , then d = ε ◦ ∇.

Proof 6 (Idea of the proof) Setting d̃ = ε ◦ ∇ one proves that d̃2f = −〈T, df〉 for
any smooth function f on M where T is the torsion. Since the torsion vanishes
by assumption, this will prove that d̃2f = 0. One is then left to check the Leibniz
property for d̃ and the fact that it coincides with the ordinary differentiation on smooth
functions in order to conclude that it coincides withg d̃ on all differential forms.

A Hermitian complex manifold (M,h) can be equipped with a Riemannian metric
g(·, ·) := h(·, J ·) where J is the almost complex structure on M induced by the
complex structure.

Proposition 9 A Hermitian complex manifold M is Kählerian provided the bundles
T 1,0M and T 0,1M are preserved by the Levi-Civita connection ∇, or equivalently
provided the Levi-Civita connection ∇ is compatible with the complex structure J i.e.
[∇, J ] = 0.

Proof 7 (Idea of proof) Recall that if M is a complex manifold with a Hermitian
metric h, the real part of h restricted to the tangent bundle TM is a Riemannian
metric g on M , while the imaginary part ω restricted to TM is a two form on M .
For any two vector fields on M , we have g(U, V ) = ω(JU, V ) where J is the almost
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complex structure on M . Letting 〈·, ·〉 denote the Riemannian scalar product, we
have:

〈(∇UJ)V,W 〉 = 〈∇U (JV ),W 〉+ ω(∇UV,W 〉
= −Uω(V,W ) + ω(∇UV,W ) + ω(V,∇VW )

= −(∇Uω)(V,W ).

Since ∇ is torsion free, d = ε ◦ ∇ where ε is the exterior product and dω(U, V,W ) =
(∇U )ω(V,W ) − (∇V )(W,U) + (∇W )(U, V ), which vanishes as a consequence of the
condition ∇J = 0. Hence ∇J ⇒ dω = 0. On the other hand, the formula for the
Levi-Civita connection applied to the holomorphic coordinate system zi yields:

2〈∇∂zj ∂zk , ∂zl〉 = 0

2〈∇∂z̄j ∂zk , ∂zl〉 = i dω (∂zk , ∂zl , ∂z̄j )

2〈∇∂z̄j ∂zk , ∂z̄l〉 = idω (∂z̄j , ∂zk , ∂z̄l) , 1

from which it follows that if dω = 0, then the Levi-Civita connection preserves T 1,0M .

Definition 37 A geodesic on a Banach Riemannian manifold M is a smooth curve
c : I →M on M solution of the second order differential equation:

∇ċ(t)ċ(t) = 0

where I is some open interval in IR.

Such a solution exists locally by the theory of differential equations on Banach
spaces and there is a unique solution cx,u determined by the initial conditions c(0) =
x, ċ(0) = u ∈ TxM provided 0 ∈ I.

Taking u in a small enough neighborhood of 0 ensures the existence of the geodesic
up to time 1 and we define the exponential map:

exp : U ⊂ TxM → M

u 7→ cx,u(1)

which yields, by the local inverse mapping theorem (see section 1.1), a local diffeo-
morphism from U onto its range.

The Riemannian manifold is complete provided all geodesics are defined on IR, in
which case the exponential map is defined on the whole tangent bundle. A compact
Riemannian manifold is complete.

The exponential map defined on Lie groups can in some cases be described as an
exponential map built from geodesics, choosing an adapted left invariant metric on
the group, e.g. on GL(n, IR) the one given by the inner product 〈A,B〉 := tr(AtB)
on gl(n, IR).

33



3.2 De Rham and Dolbeault cohomology

Combining the interior and exterior products on Ω(M), where M is a Riemannian
manifold, yields a Clifford multiplication from which we shall later build a Dirac
operator using the Levi-Civita connection.

Proposition 10 1. ε(v)∗ = ι(v) ∀v ∈ TxM,x ∈M ,

2. c = ε− ι acting on Ω(M) satisfies the Clifford relations i.e.

c(v)c(w) + c(w)c(v) = −2〈v, w〉x, ∀v, w ∈ TxM, (5)

where 〈·, ·, 〉x is the inner product on TxM induced by the metric structure.

3. [∇, c] = 0.

4. d =
∑n
i=1 ε(ej)∇ej ,

5. d∗ = −
∑n
j=1 i(ej)∇ej ,

where (e1, · · · , en) is an orthonormal basis of TxM .

Proof 8 (Partial) To avoid technicalities, we prove the results on one forms only.

1. Given v ∈ TxM , f ∈ Ω0(M) and α ∈ T ∗xM we have:

〈ι(v)α, f(x)〉x = 〈α(v), f(x)〉x = α(v)f(x).

On the other hand

〈α, ε(v)f(x)〉x = 〈α, f(x)v[〉 = 〈α(x), v[〉xf(x) = α(v) f(x).

Hence ε∗ = ι on 1-forms.

2. Let v, w ∈ TxM . We first observe that

ε(v)ι(w) + ι(w)ε(v) = 〈v, w〉x ∀v, w ∈ TxM.

Here again, we check the property on a one-form α.

(ε(v)ι(w) + ι(w)ε(v))α = α(w)v[+i(w)(v[∧α) = α(w)v[+v[(w)α−v[α(w) = v[(w)α = 〈v, w〉x α.

As a consequence we have:

c(v)c(w)+c(w)c(v) = ε(v)ε(w)+ε(w)ε(v)+ι(v)ι(w)+ι(w)ι(v)−2 (ε(v)ι(w) + ι(w)ε(v)) = −2〈v, w〉x,

where we have used the fact that ε(v)ε(w)+ε(w)ε(v) = ι(v)ι(w)+ ι(w)ι(v) = 0.

3. For any u, v ∈ TxM ,α ∈ Ω1(M) we have

(∇u c(v)) (α(x))− c(∇uv)α = ∇u(c(v)α)− c(v) (∇uα)

= ∇u
(
v[ ∧ α− α(v)

)
−
(
v[ ∧∇uv − (∇uα)(v)

)
= c(∇uv)(α).

4. Let us set d̃ =
∑n
i=1 ε(ej)∇ej and show that d̃ satisfies the requirements i), ii),

iii) which define d uniquely:
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i) Since ∇ej sends Ωp(M) to Ωp(M), and ε(ej) increases the degree of the

form by 1, d̃ sends Ωp(M) to Ωp+1(M).

ii) d̃ ◦ d̃ (f) = 0 ∀f ∈ C∞(M, C). We prove that d̃2f = −〈T, df〉 where T
is the torsion. Since the torsion of the Levi-Civita connection vanishes
by definition, this will prove that d̃2 = 0. To simplify notations we set
∇j = ∇ ∂

∂xj

= ∇ej where ej = ∂
∂xj

.

d̃2f = d̃(df)

=
∑
ij

ε(dxi)∇i(∂jfdxj)

=
∑
ij

∂i∂jfdxi ∧ dxj +
∑
ij

ε(dxi)∂jf∇i(dxj)

=
∑
ij

ε(dxi)∂jf∇i(dxj).

By Leibniz’s rule:

0 =
∂

∂xi
〈dxj , ek〉 = 〈∇idxj , ek〉+ 〈dxj ,∇iek〉

so that

d̃2f = −
∑
ijk

ε(dxi)
∂

∂xj
f〈dxj ,∇iek〉dxk

= −
∑
ijk

∂

∂xj
f〈dxj ,∇iek〉x dxi ∧ dxk

= −
∑
i<k

〈df,∇iek −∇kei〉x dxi ∧ dxk

= −
∑
i<k

〈df, T (ei, ek)〉x dxi ∧ dxk

= −〈T, df〉.

iii) d̃ is a derivation. Indeed, the Levi-Civita connection on the tangent bundle
TM extends to a connection on the exterior cotangent bundle ΛT ∗M and
satisfies the following rule:

∇X(α ∧ β) = ∇Xα ∧ β + α ∧∇Xβ ∀α, β ∈ Ω(M),∀X ∈ C∞(TM).

Hence d̃ =
∑
i ε(e

∗
i )∇ei satisfies a graded Leibniz rule:

d̃(α ∧ β) = d̃α ∧ β + (−1)|α| α ∧ d̃β ∀α, β ∈ Ω(M)

and therefore yields a (graded) derivation.

5. Given α ∈ Ωp(M) and β ∈ Ωp+1(M) we want to check that 〈ε(dxi)∇iα, β〉 =
〈α, ι(dxi)∇iβ〉. Differentiating the one form defined on v ∈ TxM by α(v) =
〈α, ι(v)β〉x and using Leibniz’s rule yields:∑
i

(eiα(ei)− α(∇iei)) = 〈∇iα, ι(ei)β〉x+〈α,∇iι(ei)β〉x = 〈ε(ei)∇iα, β〉x+〈α, i(ei)∇iβ〉
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where we have used the fact that ε∗ = i. On the other hand since the divergence
is given by d∗α = −tr(∇α) for a one form α, it follows from Stokes’ theorem
that tr(∇α) :=

∑n
i=1∇α(ei, ei) =

∑
i (eiα(ei)− α(∇iei)) integrates to 0 on M ,

i.e. ∫
M

tr(∇α) dvol = −
∫
M

d∗α = 0.

Thus
〈ε(ei)∇iα, β〉x + 〈α, i(ei)∇iβ〉 = 0

so that d∗ = −ι ◦ ∇.

Combining d and d∗ yields the operator

D := d+ d∗ =

n∑
j=1

c(ej)∇ej (6)

whose square is the Laplacian on forms given by

∆ = d∗ ◦ d+ d ◦ d∗

whose restriction to p-forms reads ∆p = d∗p ◦ dp + dp−1 ◦ d∗p−1 where dp : Ωp(M) →
Ωp+1(M).

Remark 4 The operator D yields an example of Dirac type operator introduced later
in these notes; it is of the form

∑n
j=1 c(ej)∇ej for some connection ∇ (here the Levi-

Civita connection) which commutes [c,∇] = 0 with the Clifford multiplication (here
c = ε− ι), a property characteristic of Clifford connections.

A form α is closed whenever dα = 0, and exact whenever there is a form β such that
α = dβ. Since d ◦ d = 0, exact forms are closed but closed forms are not expected
to be exact, they are only locally exact by the Poincaré lemma. The obstruction to
their global exactness is measured by the de Rham cohomology groups:

Hp(M) := Ker(d|Ωp(M))/R(d|Ωp−1(M))

where R(d|Ωp−1(M)) denotes the range of the map d|Ωp−1(M). The theory of elliptic
operators on closed manifolds which we describe later in these notes shows that these
cohomology groups are finite dimensional, the dimension of Hp(M) corresponds to
the Betti number of M introduce later in the notes.

When M is a complex manifold, the exterior differentiation splits d = ∂ + ∂̄ where
∂ : Ωp,q(M) → Ωp+1,q(M) and ∂̄ : Ωp,q(M) → Ωp,q+1(M) and it follows from the
relation d ◦ d = 0 that ∂ ◦ ∂̄ + ∂̄ ◦ ∂ = 0, ∂2 = 0, ∂̄2 = 0.
Since ∂̄2 = 0,a ∂̄-exact form α (i.e.α = ∂̄β) is ∂̄-closed (i.e. ∂̄α = 0) and there is an
associated complex

0→ Ω0,0(M)→ Ω0,1(M)→ Ω0,2(M)→ · · · ,

called the Dolbeault complex. A ∂̄-closed form is however generally not δ̄-exact and the
obstruction to the exactness of closed forms is measured by the Dolbeaut cohomology
groups:

Hp,q(M) := Ker(∂̄|Ωp,q(M))/R(∂̄|Ωp,q−1(M))
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where R(d|Ωp,q−1(M)) denotes the range of the map ∂̄|Ωp,q−1(M). The Hodge decompo-
sition theorem gives a relation between the de Rham and the Dolbeault cohomology
groups:

Hk(M) = ⊕p+q=kHp,q(M).

Using the theory of elliptic operators on closed manifolds one can show that these
cohomology groups are finite dimensional; their dimensions are called the Hodge num-
bers hp,q := dimHp,q(M).

From the Hodge decomposition theorem it follows that the Betti numbers relate
to the Hodge numbers as follows:

bk =
∑
p+q=k

hp,q.

Definition 38 A complex manifold (M,J) is Kähler if and only if the Kähler form
ω is closed dω = 0.

Proposition 11 A complex Hermitian manifold (M,h) is Kähler if and only if
∇ J = 0 where ∇ is the Levi-Civita connection on M and J the almost-complex
structure on TM i.e., if and only if the holomorphic and anti-holomorphic tangent
bundles are preserved by covariant differentiation.

Remark 5 Consequently (using the fact that the Levi-Civita connection is torsion
free) the Lie bracket preserves the holomorphic and anti-holomorphic tangent bundles
on a Kähler manifold.

Proof 9 Let ω = h(J ·, )̇ be the Kähler form. For any three vector fields U, V and W
we have:

Uω(V,W ) = (∇Uω)(V,W ) + ω(∇UV,W ) + ω(V,∇UW ).

Using the fact that the Levi-Civita connection is torsion free (i.e., ∇UV − ∇V U =
[U, V ] for any tangent vector fields U and V ) and the antisymmetry of ω we write:

dω(U, V,W ) = Uω(V,W )− V ω(U,W ) +Wω(U, V )

− ω([U, V ],W )− ω([V,W ], U) + ω([U,W ], V )

= (∇Uω)(V,W ) + ω(∇UV,W ) + ω(V,∇UW )

− ∇V ω(U,W )− ω(∇V U,W )− ω(U,∇VW )

+ ∇Wω(U, V ) + ω(∇WU, V ) + ω(U,∇WV )

− ω([U, V ],W )− ω([V,W ], U) + ω([U,W ], V )

= (∇Uω)(V,W ) + ω(∇UV,W ) + ω(V,∇UW )

− (∇V ω)(U,W )− ω(∇V U,W )− ω(U,∇VW )

+ (∇Wω)(U, V )− ω(V,∇WU) + ω(U,∇WV )

− ω([U, V ],W ) + ω(U, [V,W ])− ω(V, [U,W ])

= ∇ω(U, V,W ).

Hence dω = ∇ω. Furthermore, for any vector fields U, V and W we have

∇Uω(V,W ) = Uω(V,W )− ω(∇UV,W )− ω(V,∇UW )

= Uh(JV,W )− h(J∇UV,W )− h(JV,∇UW )

= h(∇UJV,W )

37



and hence
Uω(V,W ) = ∇Uω(V,W ) = h(∇UJV,W )

holds for any vector fields U, V,W . Consequently dω = 0⇐⇒ ∇J = 0.

Example 4 The projective space Pn(C) has a natural Kählerian metric called the
Fubini Study metric defined by:

π∗ω =
1

2π
∂∂̄log

(
|ζ0|2 + |ζ1|2 + · · ·+ |ζn|2

)
where the ζi, i = 0, · · · , n are the coordinates on Cn+1 and where π : Cn+1/{0} →
Pn(C) is the canonical projection. Let z = ( ζ1ζ0 , · · · ,

ζn
ζ0

) be the homogeneous coordi-

nates of the chart Cn ⊂ Pn(C) then:

ω =
1

2π
∂∂̄ log(1 + |z|2).

Using the Hodge decomposition theorem, on a closed kähler manifold M , one can
relate the de Rham cohomology groups to the Dolbeault cohomology groups by:

Hk(M) = ⊕p+q=kHp,q(M).

3.3 The curvature and characteristic classes

Useful references are [BGV], [LM], [MS], [Na], [S].

Definition 39 The curvature of a covariant derivation is given by the Hom(E)-

valued two form ΩE =
(
∇E
)2 ∈ Ω2(B,Hom(E)):

ΩE(U, V ) := [∇EU ,∇EV ]−∇E[U,V ] ∀U, V ∈ C
∞(B, TB).

An easy computation shows that the curvature is a local operator, meaning by this that
ΩE(U, V )f = fΩE(U, V ), although one could expect a priori from the above formula
that f might get differentiated.

It is clear from the definition of the curvature that the Bianchi identity

[∇E ,ΩE ] = 0 (7)

holds.
Writing the connection on a vector bundle in a trivialization over an open subset U
of the base manifold ∇E = d+ θEU , the curvature reads

ΩE = dθEU + θEU ∧ θEU .

Lemma 3 Let E be a real Riemannian vector bundle equipped with a connection ∇E
which is compatible with the metric. Its curvature ΩE is an so(E)-valued 2-form on
M where so(E) is the subbundle of Hom(E) of antisymmetric morphisms of E.

Proof 10 Let U, V be two vector fields on the base manifold:

0 = (UV − V U − [U, V ])〈σ, ρ〉
= U〈∇V σ, ρ〉+ U〈σ,∇V ρ〉
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− V 〈∇Uσ, ρ〉 − V 〈σ,∇Uρ〉
− 〈∇[U,V ]σ, ρ〉 − 〈σ,∇[U,V ]ρ〉
= 〈∇U∇V σ, ρ〉+ 〈∇V σ,∇Uρ〉
+ 〈∇Uσ,∇V ρ〉+ 〈σ,∇U∇V ρ〉
− 〈∇V∇Uσ, ρ〉 − 〈∇Uσ,∇V ρ〉
− 〈∇V σ,∇Uρ〉 − 〈σ,∇V∇Uρ〉
− 〈∇[U,V ]σ, ρ〉 − 〈σ,∇[U,V ]ρ〉
= 〈Ω(U, V )σ, ρ〉+ 〈σ,Ω(U, V )ρ〉

so that 〈ΩE(U, V )σ, ρ〉 = −〈σ,ΩE(U, V )ρ〉 which shows that ΩE(U, V ) is antisymmet-
ric.

Let now E = TM where M is a Riemannian manifold. We drop the upper index E
in the notation.

The Ricci tensor of a connection ∇ on a Riemannian manifold M is defined by

R(X,Y,W,Z) := 〈Ω(X,Y )W,Z〉

where X,Y,W,Z are vector fields on M and 〈·, ·〉 the inner product induced by the
Riemannian structure. We have:

R(X,Y,W,Z) = −R(Y,X,W,Z) = −R(X,Y, Z,W )

and
R(X,Y,W,Z) = R(W,Z,X, Y ).

When M is finite dimensional, the Ricci curvature is given by the trace of the op-
erator Ω(X, ·)Y , i.e. Ricc(X,Y ) := tr(Ω(X, ·)Y ). The scalar curvature is the trace
of the Ricci curvature s(x) =

∑n
i=1 Ricc(ei(x), ei(x)), where (ei(x))i∈{1,···,n} is any

local orthonormal frame of TxM .

A connection with vanishing curvature is called a flat connection. When the Ricci
curvature vanishes, the manifold is called Ricci flat.

The ordinary differentiation on sections of a trivial bundle is flat since d ◦ d = 0.

Characteristic classes:

• Complex vector bundles: Recall that the trace tr : gln(C) → C on matrices
has the following invariance property:

tr(C−1AC) = tr(A) ∀C ∈ Gln(C).

As a consequence it extends to a morphism of complex vector bundles:

tr : End(E)→ B × C
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where E is a complex vector bundle over B. It furthermore extends to a ZZ2-
graded (the grading is given by the parity of the forms) trace on End(E)-valued
forms on B setting:

tr(α⊗A) := αtr(A) ∀α ∈ Ω(B), A ∈ C∞(End(E))

with the following (graded) cyclicity property:

tr ([α⊗A, β ⊗B]) = 0 ∀α, β ∈ Ω(B), ∀A,B ∈ C∞(End(E)), (8)

using the graded brackets on endomorphism valued forms:

[α⊗A, β ⊗B] = (−1)|α|α ∧ β ⊗ [A,B].

Remark 6 If E is ZZ2-graded, one equips End(E) with a ZZ2-graded super-trace
which then extends (see e.g. [BGV] Definition 1.32 and Paragraph 1.5) to a
ZZ2-graded super-trace on End(E)-valued forms on the base manifold.

Combining the cyclicity of the (graded) trace with the Bianchi identity, provides
closed forms.

Proposition 12 Let E → M be a finite rank complex vector bundle over a
closed finite dimensional manifold M equipped with a connection ∇E. For any
non negative integer k

rk(∇E)) := tr
((

ΩE
)k)

defines a de Rham cohomology class which is independent of the choice of con-
nection ∇E.

Remark 7 In the above formula, the product Ωk uses both the exterior product
and the composition in Hom(E) since Ω is a Hom(E)-valued form.

Proof 11 For convenience we drop the upper index E in the notation. The local
description ∇ = d+ [θ, ·] of a connection on Hom(E) induced by a connection
∇ = d+ θ on E combined with the cyclicity of the trace tr([A,B]) = 0 yields

tr
(
[∇,Ωj ]

)
= tr

(
d(Ωj)

)
+ tr

(
[θ,Ωj ]

)
= tr

(
d(Ωj)

)
∀j ∈ IN.

On the other hand, by the Bianchi identity (7) we have

[∇,Ωj ] =

j∑
i=1

Ωj−1[∇,Ω]Ωi−j = 0 ∀j ∈ IN, ∀i ∈ [[1, j]].

Hence,

d tr(Ωk) = k tr(dΩk) = k tr(Ωk−1dΩ) = k tr(Ωk−1[∇,Ω]) = 0.

Let now ∇t be a differentiable one-parameter family of connections on E, mean-
ing by this that in a local trivialising chart ∇t = d + θt where θt is a differ-
entiable one parameter family of local one-forms. The differential ∇̇t = θ̇t
defines a family of globally defined one-forms on the manifold and we have
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d
dtΩt = ∇t ∇̇t + ∇̇t∇t = [∇t, θ̇t] where the bracket is now an anticommutator.
Similar arguments to the ones above then yield

d

dt
tr(Ωkt ) = tr(

d

dt
Ωkt )

= k tr(Ωk−1
t

d

dt
Ωt)

= k tr(Ωk−1
t [∇t, θ̇t])

= k tr
(

[∇t,Ωk−1
t θ̇t]

)
= k dtr(Ωk−1

t θ̇t).

This formula extends replacing the k-th power by any analytic function f so
that tr(f(Ω)) (which is in fact a polynomial expression in Ω of degree

[
n
2

]
, the

integer part of half the dimension of the manifold M) is closed in the de Rham
cohomology. Its cohomology class, called Chern-Weil cohomology class, is in-
dependent of the choice of connection.

Different Chern-Weil classes carry different names according to the choice of
the function f . As an example, the first Chern form is obtained from f(x) := x,

r1(∇) := tr(Ω),

the Chern character is obtained from f(x) := e−x,

ch(∇) := tr(e−Ω)

where we have set Ω = ∇2 for the curvature. The exponential map involves
wedge products as well as composition of morphisms since Ω is a Hom(E)-
valued two-form. Notice that r1(∇) = −[ch(∇)][2], namely minus the part of
degree 2 of the form ch(∇).
Choosing f(z) = z

ez−1 on a complex bundle E yields the Todd genus

Td(∇) = e
tr log

(
Ω

eΩ−1

)
.

• Real vector bundles: Since the trace vanishes on antisymmetric matrices, the
trace is not very useful to define characteristic classes from real vector bun-
dles for which the curvature is an antisymmetric tensor. We therefore use
another tool to define characteristic classes form real vector bundles, namely
the Pfaffian, which in turn is related to another very useful tool, namely Berezin
integration.

Let G = SOn(IR) and γ = son(IR), there is a one to one correspondence:

Λ2IRn ↔ son(IR)

aijei ∧ ej ↔ (aij)

where ei, i = 1, · · · , n is an orthonormal basis for the canonical scalar product
on IRn.
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Definition 40 Berezin integration on ΛIRn is the linear map defined by:

T : ΛIRn −→ IR

α 7−→ e∗i ∧ · · · e∗n(α)

where e∗i , i = 1, · · · , n is the dual basis e∗i (ej) = δij .

Notice that T vanishes on ΛpIRn for any p < n so that for any v ∈ IRn and
any α ∈ ΛIRn, T (ι(v)α) = 0 where ι(v) is the interior product. The fact that
T yields a linear map which vanishes on derivations justifies the terminology
”integral” (analogy with Stokes’ theorem).

Given a real oriented Riemannian vector bundle E of rank n based on a manifold
M , Berezin integration generalizes to a vector bundle morphism:

T : ΛE −→ M × IR
α 7→ e∗i ∧ · · · e∗n(α)

where e∗i , i = 1, · · · , n is now an orthonormal frame of E. T in turn induces a
map on sections (denoted by the same symbol) T : C∞(M,ΛE)→ C∞(M, IR)
in an obvious way.

Definition 41 Under the above assumptions on E, the Pfaffian of A = (aij) ∈
C∞(M,Λ2E ' so(E)) is the real valued function on M defined by:

Pf(A) := T
(
e

1
2

∑n
i,j=1 aijei∧ej

)
= T

(
e
∑n
i<j;i,j=1 aijei∧ej

)
.

In some cases, the Pfaffian is identified to the top form Pf(A)e1 ∧ · · · en.

We state the following result without proof, leaving the proof as an exercise.

Lemma 4 Given A = (aij) ∈ C∞(M,Λ2E ' so(E)), if the rank n of E is
even, setting n = 2k we have:

Pf(A) =
(−1)k

2kk!

∑
σ∈Σn

ε(σ)aσ(1)σ(2) · · · aσ2k−1σ2k

and the Pfaffian vanishes if the rank of E is odd. Here ε(σ) denotes the signature
of σ.

Given a function with Taylor expansion at all orders at 0, namely f(z) =∑K
k=0

f(k)

k! (0)zk + o(zK) ∀K ∈ IN and an oriented metric real vector bun-
dle (E,∇E) equipped with a connection compatible with the metric, similarly
to the construction of characteristic classes via the trace, here again, using
the Bianchi indentity and the properties of the Pfaffian, one can show that
P (Ω) = Pf

(
f(ΩE)

)
defines a closed form with cohomology class independent
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of the choice of connection.

Choosing f(z) = −z yields the Euler class

e(∇E) = Pf(−ΩE) ∈ ΩN (M) (9)

where N is the rank of E. The Euler class vanishes if N is odd as a consequence
of the vanishing of the Pfaffian in odd dimensions. Moreover, as a consequence
of the multiplicativity of the Pfaffian on tensor products, this characteristic
class obeys the following property:

e(∇E⊕F ) = e(∇E) ∧ e(∇F ).

Remark 8 If M is an oriented Riemannian surface, and (E = TM,∇TM ) is
the tangent bundle equipped with the Levi-Civita connection, then

e(∇TM ) = K dvol

where K is the Gaussian curvature (see (40)).

Choosing f(z) =
z
2

shz
2

yields the Â-genus

Â(∇E) = Pf

(
ΩE

2

shΩE

2

)

and f(z) =
z
2

thz
2

the L-genus

L(∇E) = Pf

(
ΩE

2

thΩE

2

)
. (10)

As a consequence of the multiplicativity of the Pfaffian on tensor products,
these characteristic classes obey the following property:

Â(∇E⊕F ) = Â(∇E) ∧ Â(∇F ); L(∇E⊕F ) = L(∇E) ∧ L(∇F ).

The Todd genus and Â genus are cllosely related: for any oriented real vector bundle
E we have:

Td(E ⊗ C) = Â(E)2.
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4 Principal bundles

4.1 Classification of principal bundles

Useful references are [MM], [Gr], [S].

Definition 42 A (Banach) Ck-principal G-bundle based on a Ck-manifold B, where
G is a Banach Lie group is a (Banach ) Ck-fibre bundle P based on B with typical
fibre G, such that if Φ and Ψ are two trivialisations above some open subset U ∈ B,
there exists a local map γ : U ⊂ B → G verifying:

Φb ◦Ψ−1
b = γ(b) ∀b ∈ B.

G is called the structure group of P .

If the group G acts on itself by left translation Lg : h → g · h and if (U, φ,Φ) and
(W,ψ,Ψ) are two local trivialization with b ∈ U ∩W , then we have:

Φb(pb) = g · Φb(qb)⇒ Ψb(pb) =
(
γ(b)−1gγ(b)

)
Ψb(qb)

for any g ∈ G, pb, qb ∈ Eb where Eb is the fibre over b. Thus, a change of trivialization
induces an inner automorphism g 7→ γ(b)−1gγ(b) of G.

Given a Ck-morphism φ : B′ → B between two Ck-manifolds, the pull-back φ∗P
to B′ of a Ck-principal G-bundle on B is a Ck-principal G-bundle on B′.

Let us now restrict ourselves to C0-bundles. One can show that two homotopic maps
φ : B′ → B and ψ : B′ → B give rise to equivalent principal G-bundles φ∗P ' ψ∗P .
One can therefore associate to the homotopy class [φ] ∈ [B′, B] of a map φ : B′ → B
the equivalence class of φ∗P . This leads to the following definition.

Definition 43 A classifying space for a Lie group G is a connected topological space
BG together with a principal G-bundle PG→ BG, such that for any compact Haus-
dorff space X, there is a one to one correspondence between the homotopy classes
[φ] of maps φ : X → BG and equivalence classes of principal G-bundles on X. A
principal G-bundle PG on BG yields a pull-back bundle φ∗PG on X. The base space
BG is defined up to homotopy type and the bundle PG→ BG is called the universal
principal G-bundle.

A principal G-bundle P → B with the property that the total space is contractible
yields a classifying space B for G. An important example is the Grassmannian
Gn(C∞) := ∪∞N=nGn(CN ) which yields a classifying space for the unitary group
U(n) so that BU(n) = Gn(C∞).

Letting πn(G) := [Sn, G] denote the n-th homotopy group of G, the long exact
sequence of homotopy groups:

· · · → πn(P )→ πn(B)→ πn−1(G)→ πn−1(P )→ · · ·

yields πn(B) ' πn−1(G), using the fact that πn(P ) = {1}. Singular cohomology is
needed for further information on the principal bundle (we refer the reader to any
classical text on algebraic topology). A universal characteristic class for a principal
G-bundle is a non zero class in the singular cohomology H∗(BG,Λ) with coefficients
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in a ring Λ. Given a class c ∈ Hk(BG,Λ), and any principal G-bundle P → B, there
is a map φ : B → BG such that P ' φ∗PG and c(P ) := φ∗(c) ∈ Hk(B,Λ) is the
c-characteristic class of P . In particular the cohomology ring H∗(BU(n), ZZ) is a ZZ-
polynomial ring with canonical generators ck ∈ H2k(BU(n), ZZ), called the universal
k-th Chern class. Thus to any U(n)-principal bundle P → B, classified by a map
φ : B → BU(n), one can associate the k-th Chern class ck(P ) := φ∗(ck). The relation
to the Chern classes described at the end of the previous chapter will become clear
once we have set up a correspondence between vector bundles and principal bundles;
via this correspondence, the Chern class ck(P ) can be seen as a Chern class on a
complex rank n vector bundle E.

4.2 From group actions to principal bundles

Useful references in view of the applications we have in mind for quantum field theory
are [AM], [Br], [E], [KR], [FU], [Tr]. Foundations for this type of slice theorem were
set up in [P].

4.3 The slice theorem in the Hilbert setting

Foundations for this type of slice theorem were set up in [P].

Definition 44 A Ck-manifold (resp. C∞-manifold) modelled on a topological (real)
vector space V is a Hausdorff topological space X together with a family of charts
(Uα, φα), α ∈ A, such that

1. Uα are open subsets of X which cover X i.e., X ⊂ ∪α∈A;

2. φα : Uα → φα(Uα) ⊂ V are homeomorphisms onto open sets φα(Uα), α ∈ A

3. φβ ◦ φ−1
α : φα(Uα ∩ Uβ) −→ φβ(Uα ∩ Uβ) are Ck (resp. C∞) maps.

We recall that a locally convex vector space is said to be convenient [KM] if a curve
c : IR→ V is smooth whenever λ◦c : IR→ IR is smooth for any λ ∈ V ∗ the topological
dual of V . A map f : U ⊂ V −→ W from an open subset U of a convenient vector
space V to another convenient vector space W is said to be smooth if f ◦c : IR→W is
smooth for any smooth curve c in U ⊂ V . For maps on Fréchet spaces this notion of
smoothness coincides with all other reasonable definitions and multilinear mappings
are smooth if and only if they are bounded.

Definition 45 If in the above definition, V is (in increasing level of generality) a
Banach, resp. Hilbert vector space, resp. Fréchet vector space, resp. convenient
locally convex vector space, then X is called a Banach, resp. Hilbert, resp. Fréchet,
resp. convenient locally convex manifold.

Remark 9 If V is finite-dimensional, V ' IRn for some n ∈ IN , we recover the
definition of a finite n-dimensional manifold.

Example 5 • Ck diffeomorphisms of a closed manifold M

Diffk(M) = {f ∈ Ck(M,M), f bijective, f−1 ∈ Ck(M,M)}

form a Banach manifold.
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• An important Fréchet manifold is the diffeomorphism group of a closed manifold
M :

Diff(M) = {f ∈ C∞(M,M), f bijective, f−1 ∈ C∞(M,M)}.

Definition 46 A set G endowed with a group structure and a smooth Banach, resp.
Hilbert , resp. Fréchet, resp. convenient manifold structure, in such a way that these
two structures are compatible i.e., the mapping G × G 3 (g, h) 7−→ g h−1 ∈ G is
smooth, is called a Banach, resp. Hilbert , resp. Fréchet, resp. convenient
Lie group. If the manifold is finite dimensional, this concept coincides with the
usual concept of a Lie group.

Example 6 Diff(M) is a Fréchet Lie group yet Diffk(M) is a Banach topological
group but not a Banach Lie group, due to the lack of smoothness of the composition
map.

The tangent space of a Banach, resp. Hilbert , resp. Fréchet, resp. convenient
manifold is a Banach, resp. Hilbert , resp. Fréchet, resp. convenient vector space. A
strong Riemannian structure on a Hilbert manifold is a (smooth) choice of inner
products which induces a Hilbert space structure on each tangent space.

Definition 47 Let G be a Hilbert Lie group acting on the right on a Hilbert manifold
X via a smooth action:

Θ : G×X → X

(g, x) 7→ x.g := Rg(x)

i.e. Rg·g′ = Rg ◦Rg′ for g, g′ ∈ G.

1. The action Θ is proper provided the map

Ξ : G×X → X ×X
(g, x) 7→ (x · g, x)

is proper, i.e. preimages of compact sets have compact closure.

2. The action Θ is free provided it has no fixed points:

∃x ∈ X, x · g = x⇒ g = e.

3. If X equipped with a strong Riemannian metric, we say that the action is iso-
metric provided it leaves the metric (given by inner products 〈·, ·〉x on the fibre
TxX) invariant:

〈DRgU,DRgV 〉x·g = 〈U, V 〉x ∀U, V ∈ TxX.

The metric is said to be compatible with the group action.

Remark 10 • The freedom of the action Θ corresponds to the injectivity of the
map θx, that for any x ∈ X sends an element of G to an element of the orbit
Ox = {x·, g, g ∈ G}:

θx : G → Ox

g 7→ x · g.
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• If G is a compact Lie group the action is proper. To see this, we show that one
can extract a convergent subsequence from any sequence (xn, gn) ∈ G×X such
that Ξ((xn, gn)) = (xn · gn, xn) ∈ K where K is a compact subset of X × X.
K being compact, so is its projection onto the second component and we can
extract from (xn) a convergent subsequence (xφ(n)). G being compact, there is
a subsequence of (gφ(n)) which we denote by the same symbol for simplicity,
converging to some g ∈ G. The subsequence (xφ(n), gφ(n)) therefore does the
job.

Theorem 6 (The slice theorem) Let G be a Hilbert Lie group acting on the right
on a (strong) Riemannian (Hilbert) manifold X via an isometric action:

Θ : G×X → X

which is smooth, free and proper.
If for any x ∈ X the tangent map τx := Deθx has a closed range, then

1) the orbits are closed submanifolds of X and θx : G → Ox is a diffeomorphism
of manifolds,

2) the quotient space X/G has a smooth Hilbert structure,

3) the projection π : X → X/G yields a principal fibre bundle.

Remark 11 In the finite dimensional case, there is no need for the splitting condition
(R(τx) is closed) on τx, which is automatically fulfilled. In the more general Hilbert
setting, a Fredholm operator τx fulfills the additional requirement that the range be
closed.

Proof 12 • We first check item 1).

i) Θ being proper, θx is a closed mapping. Indeed, if θx(gn) converges to y,
then (x, gn ·x) converges to (x, y) and the properness of the action implies
the existence of a subsequence gφ(n) converging to some g ∈ G. The action
being continuous, θx(gφ(n)) = gφ(n) · x converges to y = g · x. It follows
that θx(gn) converges to y = g · x. Thus θx is a homeomorphism onto its
range Ox.

ii) Let us check that Dgθx is injective. Otherwise, there is some u 6= 0 ∈ g
such that Dgθx(u · g) = 0. But since Dgθx = DRg ◦ τx ◦DR−1

g , this would
imply that τxu = 0. Then, for any t0 ∈ IR

d

dt |t=t0
x · etu =

d

dt |t=0

x · etu · et0u

= DRg0

d

dt |t=0

x · etu

= DRg0(τxu)

= 0

where we have set g0 := exp t0u. This would imply that θx(gt) is constant
which contradicts the freedom of the action.
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iii) Let us check that the range of the map Dθx is closed. This follows from
R(Dgθx) = DRgR(τx) (see the second preliminary remark) combined with
the fact that τx has closed range. Moreover, since Rg is an isometry, it
preserves orthogonality and
R(Dgθx)⊥ = DRg (R(τx))

⊥
so that we have the following orthogonal split-

ting:
Tx·gX = R(Dgθx)⊕DRg (R(τx))

⊥
.

iv) Thus θx is an injective immersion which is also a homeomorphism onto its
image. The inverse mapping theorem for Hilbert manifoldss then implies
it is a diffeomorphism G ' Ox and the orbit Ox is a submanifold of X.
The tangent space of Ox at point y = x · g is R(Dgθxg). This finishes the
proof of point 1) of the Theorem.

• Let us now check items 2) and 3).

i) Let Ux be an open neighborhood of x in R(τx)⊥, small enough to build
the submanifold Sx := expx(U) of X using the exponential map expx :
U → Vx ⊂ X at point x, where U is an open neighborhood of the zero
section of the tangent bundle TX and Vx an open neighborhood of x ∈ X.
Since the exponential map defines a local diffeomorphism, Sx inherits a
manifold structure which by construction has tangent space at point x given
by Nx(Ox) := R(τx)⊥ where N stands for normal, Nx(Ox) being the fibre
above x of the normal bundle to the orbit Ox.

ii) The action being continuous, free and proper, one can chose U small
enough so that

(Sx) .g ∩ Sx 6= φ⇔ g = e. (11)

Indeed, otherwise, we could find a sequence (un) ∈ Nx(Ox) with norm
‖un‖ ≤ 1

n such that both (xn) and (xn · gn) converge to some x. But in
that case, the properness of the action yields the existence of a subsequence
(gφ(n)) converging to some g ∈ G. The continuity of the action then implies
that in the limit x · g = g. But the action being free, this implies in turn
that g = e.

iii) It follows from (11) that the local slice Sx is in one to one correspondence
with a subset Ux̄ of the quotient space X/G := B. Equipping B with the
quotient topology turns the projection map π : X → B into a continuous
map and yields a homeomorphism π : Sx → Ux̄. The manifold structure on
Sx then yields a local chart over the neighborhood Ux̄ of x̄ ∈ B. Patching
up such local trivializations yields a smooth atlas on B with transition
maps obtained from the exponential maps.

iv) This quotient manifold inherits a metric structure from the G-invariant
structure on X. Given Ū , V̄ ∈ Tx̄B we set:

〈Ū , V̄ 〉x̄ := 〈U, V 〉x

for any x in the fibre above x̄ and any U, V ∈ TxX such that Dπ(U) =
Ū ,Dπ(V ) = V̄ . Since the metric is G-invariant, this is independent of the
choice of x and of U and V .
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v) The above local charts induce local trivializations for the projection π :
X → B so that we can equip X with a G-principal bundle structure over
B. Locally we have:

X|Ux̄ ' Sx̄ ×G.

4.4 From vector bundles to principal bundles and back

Useful references are [BGV], [KN].

To a smooth vector bundle E → B based on a manifold B with typical fibre a
Banach space V , we associate a principal bundle GL(E) → B called the associated
frame bundle with structure group G := GL(V ) and fibre above b ∈ B given by:

GLb(E) := {Lb : V → Eb, continuous and one to one}.

(Recall from the open mapping theorem that it is a homeomorphism).
Letting

(φ,Φ) : E|U → U × V
(b, u) 7→ (φ(b),Φbu)

be a local trivialization of E above an open subset U of B, a local trivialization (φ, Φ̄)
of GL(E) above U is given by

GL(E)|U → U ×GL(V )

(b, Lb) 7→
(
φ(b), Φ̄b(Lb) := Φb ◦ Lb

)
.

Given two local trivializations (φ,Φ) and (ψ,Ψ) of E and hence two induced trivial-
izations (φ, Φ̄), (ψ, Ψ̄) of GL(E) we can build a map:

ρ : U → GL(V )

b 7→ Ψ̄b ◦ Φ̄−1
b : L→ Ψb ◦ Φ−1

b ◦ Lb

A Banach vector bundle E of class Ck (resp. C∞) is trivial if and only if GL(E)
admits a global section of class Ck (resp. C∞). Indeed, a global α section of class
Ck (resp. C∞) yields a diffeomorphism:

E → B × V
(b, ub) 7→ (b, α(b)(ub)).

If E is a rank n vector bundle, a global section of class Ck (resp. C∞) of the principal
bundle GL(E) corresponds to a family of frames (e1(b), · · · , en(b)) of class Ck (resp.
C∞) parametrized by B and the section α yields the coordinates αi(b), i = 1, · · · , n
of the vector ub in the basis (e1(b), · · · , en(b)) of the fibre Eb above b.

When E = TM , the tangent bundle to a manifold M of class Ck (resp. C∞),
the existence of a global section of GL(E) is a constraint on the manifold M and we
say that M is Ck- (resp. C∞-) parallelizable. If we only require this section to be
continuous, it is a topological constraint. A Lie group is clearly C∞-paralellizable
since left (or right) action Lg : h 7→ g · h (or Rg : h 7→ h · g) of the group on itself
induces a smooth parallelization Lg : Lie(G)→ TgG (resp. Rg : Lie(G)→ TgG).
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A result by Kuiper [K] tells us that given a Ck (resp. smooth) Hilbert vector bundle
E → B, the associated frame bundle GL(E) admits a global C0 section. Thus any
Hilbert manifold is C0-parallelizable.

Conversely, given a principal bundle with structure group G and a representation
ρ : G→ Diff(V ) on a Banach space V , we can build the associated vector bundle:

P ×ρ V := P × V/∼

where ∼ is the equivalence relation defined by

(p, v) ∼ (p′, v′)⇔ ∃g ∈ G, p = p′ · g and v′ = ρ(g)v

so that (p · g, v) and (p, ρ(g)v) get identified. Locally, above an open subset U of the
base manifold, we have:

P ×ρ V|U ' (U ×G)×ρ V ' U × V.

In particular, a vector bundle E with typical fibre V is associated to its frame bundle
GL(E) with structure group GL(V ):

GL(E)×ρ V = E

where ρ is the natural the action of GL(V ) on V .

4.5 Connections on a principal bundle

Useful references are [BGV], [KN], [MM], [Ts].

Given a principal bundle π : P → B with structure group G, and the induced
map Dπ : TP → TB, we call a vector field ξ vertical provided Dπ(ξ) = 0. Let us
denote by V TP the subbundle of vertical vector fields with fibre above p ∈ P given
by

V TpP := {v ∈ TpP,Dpπ(v) = 0}.

Given a point p ∈ P , the right action

θp : G −→ P

g 7−→ p · g

induces a map:

τp : Lie(G) → TpP

u 7→ d

dt |t=0

(p · exp(tu)),

which in turn gives rise to a vertical vector field:

p 7→ ξ(p) := ūp := τp(u),

called the canonical vector field associated to u. τp : u → ūp is an isomorphism of
Lie(G) onto V TpP .
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Definition 48 A connection on the principal bundle P with structure group G is a
smooth splitting

TpP := V TpP ⊕HTpP, ∀p ∈ P
with an equivariance property HTp·gP = DRg(HTpP ) ∀p ∈ P,∀g ∈ G. HTP
is called a horizontal distribution and HTpP the horizontal tangent space to P at
point p. A horizontal distribution HTP turns the map Dπ : HTP → TB into an
ismorphism and we call ξ̃ the horizontal lift of a vector field ξ on B.

Equivalently,

Definition 49 A connection on the principal bundle P is given by a Lie algebra
valued one form on P , ω ∈ Ω1(P,Lie(G)) such that:

(i) ωp(ūp) = u ∀u ∈ Lie(G)

(ii) ωp·g = R∗gωp ∀p ∈ P where Rg : p → p · g corresponds to the action of G on
P .

The two formulations are equivalent. Indeed, given a smooth horizontal distribution
HTP , any tangent vector field ξ splits in a unique way ξ = ξv ⊕ ξh into a vertical
part ξv := τpu for some unique u ∈ Lie(G), and a horizontal part ξh. ω(ξ) := u
defines a unique Lie(G) valued one form ω on P satisfying requirements (i) and (ii).
The curvature of the connection reads Ω := dω + ω ∧ ω. it measures in how far the
splitting TP = V TP ⊕ HTP does not respect the Lie algebra structure on vector
fields, Ω(U, V ) = [Ũ , Ṽ ] − ˜[U, V ] where Ũ , Ṽ are the horizontal lifts of the vector
fields U and V .

Conversely, such a one form ω defines a vector bundle HTP := {ξ ∈ TP, ω(ξ) = 0}
which has the required invariance property by property (ii).

There is a natural horizontal distribution HTP = (V TP )⊥ whenever there is a
(strong) Riemannian metric compatible with the action of the structure group G on
P .
There is a one to one correspondence between covariant derivations defined on vector
bundles E and connections defined on principal bundles in the following sense.

A connection ω on the principal bundle π : P → B, seen as a horizontal distri-
bution on P , yields a covariant derivation on the associated vector bundle E. Let
X ∈ TbB, b ∈ B and let X̃ be its horizontal lift. Letting ρ : G→ Aut(V ) be an action
of the gauge group G of P on a Banach vector space V , a section σ of the associated
vector bundle P ×G V can be seen locally as a map from an open subset of B to the
vector space V so that it makes sense to set

∇Xσ :=
(
p, X̃σ

)
.

Notice that we implicitly have used the equivariance of the horizontal distribution
in this definition. ∇ yields a connection on the associated vector bundle E := P×GV .

The covariant derivation ∇ is compatible with the metric whenever the horizon-
tal distribution is given by the orthogonal supplement to the vertical bundle.
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Conversely, a covariant derivation ∇E on a vector bundle E with typical fibre V
yields a connection on the frame bundle GL(E) (recall that its structure group is
GL(V ) with Lie algebra Lie(G) = Hom(V )). Let us set P = GL(E), the canonical
projection π : P → B induces a map Dpπ : TpB → Tπ(b)B so that given a tangent
vector X ∈ TpP , we can set:

ω(X) = ∇Hom(E)
DpπX

,

where∇Hom(E) is the covariant derivation induced by∇E onHom(E). Here TGL(E),
on which the form ω is defined, is locally seen as U × Hom(V ). Since Hom(E) is
also locally seen as U × Hom(V ), it makes sense to let the covariant derivation on
the r.h.s. act on a section of TGL(E).

4.6 Reducing and lifting principal bundles: spin and spinc

structures

Useful references are [H], [LM], [Ma], [Mo].

Definition 50 Let H be a closed subgroup of a Banach Lie group G. A princi-
pal bundle P based on B with structure group G reduces to a principal bundle with
structure group H whenever there is an atlas of charts (Ui,Φi) for P such that the
transition maps have values in the subgroup H. Let {1} → H → G̃ → G → {1} be
an exact sequence of Banach Lie groups. A G-principal bundle P based on B lifts to
a G̃-principal bundle P̃ whenever P̃ reduces to P , where we view G as a subgroup of
G̃ via the isomorphism G̃ ' H ×G.

A principal bundle reduces to a bundle with structure group H = {1} whenever the
bundle is trivial.

Reducing the structure group is a way to impose geometric constraints on the bundle.
In particular, a real (resp. complex) vector bundle E → B with typical fibre V can
be equipped with a (strong) Riemannian (resp. Hermitian) structure whenever the
associated frame bundle GL(E) with structure group GL(V, IR) (resp. GL(V, C))
reduces to the orthonormal frame bundle, a principal bundle with structure group
O(V ) := {g ∈ GL(V, IR), g∗g = I} (resp. U(V ) := {g ∈ GL(V, C), g∗g = 1}). In par-
ticular, when E := TM where M is an n-dimensional real (resp. complex manifold),
then V = IRn (resp. V = Cn) and M can be equipped with a Riemannian (resp. Her-
mitian) metric whenever the frame bundle GL(M) := GL(TM), with structure group
GL(n, IR) (resp. GL(n, C)), reduces to the orthonormal (resp. unitary) frame bundle
O(M) (resp. U(M)) with structure group O(n) (resp. U(n)). Furthermore a real
rank n Riemannian vector bundle E is orientable whenever its frame bundle GL(M)
reduces to a principal bundle with structure group SO(n) := {g ∈ O(n), detg > 0}.

Lifting principal bundles is not always possible, as we shall see shortly, when try-
ing to define spin and spinc structures.

Definition 51 Let V be a real Euclidean vector space. The algebra C`(V ) over IR
generated by V with the relations:

v · w + w · v = −2〈v, w〉

where 〈·, ·〉 denotes the inner product on V is called the Clifford algebra of V .
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The Clifford algebra of V can also be seen as a quotient space C`(V ) = T (V )/{v ⊗
v + 2‖v‖2} of the tensor algebra T (V ) = ⊕∞k=1V

⊗k by the relation v ⊗ v = −2‖v‖2.
The ZZ-grading on T (V ) induces a natural ZZ2 -grading on C`(V ):

C`(V ) =: C`0(V ) + C`1(V )

into even and odd (Clifford) products.
A linear map c : V → Emd(W ) for some vector space W extends to an algebra
morphism c : C`(V )→ End(W ). whenever c(v)2 = −1W .

Example 7 Given v ∈ V , let c(v) act on the exterior algebra W := ΛV by

c(v)α := ε(v)α− ι(v)α

where ε(v)α := v ∧ α is the adjoint of the contraction operator ι(v)(u) := 〈u, v〉 for
any u ∈ V extended to ΛV by the Leibniz rule:

ι(v)(α ∧ β) := ι(v)α ∧ β + (−1)|α|α ∧ ι(v)β ∀α, β ∈ ΛV.

Since it satisfies the relation

c(v)c(w) + c(w)c(v) = −2〈v, w〉

it extends to an action of C`(V ) on ΛV , which makes ΛV a C`(V )-module.
The symbol map σ : C`(V )→ ΛV is defined by:

σ(a) := c(a)1 ∈ ΛV.

These constructions can be extended fibrewise to vector bundles. Given a Riemannian
bundle E based on B with typical fibre V , one can define the bundle C`(E) of Clifford
algebras based on B with typical fibre C`(V ) defined fibrewise by C`(Eb) where Eb
is the fibre above b ∈ B equipped with the inner product induced by the Riemannian
structure.

Definition 52 A Clifford module on a Riemannian manifold M is a vector bundle
E →M with a Clifford action of C`(M) := C`(TM) on it:

C`(M)× E → E

(v, σ) 7→ c(v)σ.

Example 8 Take E := ΛTM , a vector field v ∈ C∞(TM) acts on a form α ∈ Ω(M)
by the following Clifford action:

c(v)α := ε(v)α− ι(v)α,

which by Proposition 10 extends to an action of sections of the bundle C`(TM) on
Ω(M). Thus E := ΛT ∗M the exterior bundle on M yields a Clifford module over M .
The symbol map sends a section a of C`(M) to c(a) ∈ Ω(M).

Going back to the algebraic setting, let us assume that V is finite dimensional. The
space C`2(V ) := c(Λ2V ) is a Lie subalgebra of C`(V ) with bracket given by the com-
mutator of C`(V ). The spin group Spin (V ) is the group generated by elements in
C`0(V ) with norm 1. It can also be seen as the group obtained by exponentiating the
Lie algebra C`2(V ) inside the Clifford algebra C`(V ). Letting V := IRn, we simply
write C`(n) := C`(IRn) and Spin (n) := Spin(IRn).

Here is a very classical result which we do not prove here since it is purely alge-
braic and can be found in any text book on spin structures.
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Proposition 13 If dim V > 1, there is an exact sequence of groups:

1→ ZZ2 → Spin(V )→ SO(V )→ 1.

Spin(V ) is therefore a double covering of SO(V ).

Similarly, Spinc(V ) is the subgroup of C`0(V ) ⊗IR C generated by Spin(V ) and the
unit circle of complex scalars. It yields a double covering of SO(V ) × S1 and there
is an exact sequence of groups:

1→ ZZ2 → Spinc(V )→ SO(V )× S1 → 1.

Spin(V ) is then naturally identified with the subgroup Spin(V )×+
−1 {

+
−1} of Spinc(V )

and
Spinc(V ) ' Spin(V )×+

−1 S
1.

Letting V := IRn, we simply write Spinc(n) := Spinc(IRn).

Definition 53 An oriented Riemannian rank n-bundle E → B admits a spin (resp.
spinc) structure whenever the bundle SO(E) of oriented orthonormal frames lifts to a
principal bundle Pspin(E) (P̃spinc(E)) with structure group Spin (n) (resp. Spin c(n)).
In particular an n-dimensional oriented Riemannian manifold M is spin (resp. spinc)
whenever its frame bundle GL(TM) admits a spin (resp. spinc) structure.

The obstruction to the existence of a spin structure on a vector bundle is measured by
the second Stiefel Whitney class in H2(M,ZZ2). The obstruction to the existence of
a spinc structure is weaker since such a structure exists whenever this second Stiefel-
Whitney class is a reduction modulo 2 of an integral class c ∈ H2(M,ZZ2), i.e. if its
third Stiefel-Withney class vanishes. In particular, any spin manifold is spinc.

Let us make a short comment on Stiefel-Whitney classes. To any rank n real Rie-
mannian vector bundle E → B classified by a map fE : B → BO(n), one can
associate the k-th Stiefel-Whitney class wk(E) := f∗E(wk) ∈ Hk(B,ZZ2) where wk ∈
Hk(BO(n), ZZ2) are the canonical generators of the ZZ2-polynomial ringH∗(BO(n), ZZ2).
The first Stiefel-Whitney class measures an obstruction to the orientability of a Rie-
mannian bundle, and the second Stiefel-Whitney class measures the obstruction to
the existence of a spin structure on an orientable Riemannian bundle.

Back again to the algebraic setting, let us set C`(n) := C`(n)⊗ C. Then Spin(n) ⊂
C`(n) ⊂ C`(n) so that any complex representation of the complexified Clifford alge-
bra C`(n) on some vector space S reduces to a complex representation of Spin(n).
There are essentially two types of representations according to the parity of the man-
ifold which we briefly describe in the following proposition, referring the reader to
any classical text on spin structures for a proof.

Proposition 14 When n is odd all irreducible complex representations C`(n) →
HomC(S, S) restrict to a unique irreducible representation of Spin(n). When n is
even, a complex representation C`(n) → HomC(S, S) yields a representation ∆n of
Spin(n) which decomposes into a direct sum of two inequivalent irreducible complex
representations ∆+

n and ∆−n on S+ and S− respectively. Such representations are
called spinor representations and the corresponding representation spaces S, S+,S−

are called spinor spaces.
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These spinor spaces give rise to spinor bundles:

S(E) := Pspin(E)×Spin(n) S,

S
+
−(E) := Pspin(E)×Spin(n) S

+
− ,

where E → B is some vector bundle with a spin structure. In fact, any Clifford
module M based on a odd (resp. even) dimensional spin manifold B, i.e. any (resp.
ZZ2-graded) vector bundleM with an (graded) action of the bundle C`(B) of Clifford
algebras on it

C∞(C`(B))× C∞(M) → C∞(M)

(a, s) 7→ c(a) · s

is of the form:
M := S(TB)⊗W,

(resp. M
+
− := S

+
−(TB)⊗W )

where W is an exterior vector bundle based on B.

Any complex representation ρ : Spin(V ) → GLC(W ) extends in an unique way
to a representation ρ̃ : Spinc(V )→ GLC(W ). In particular the complex representa-
tions ∆n, ∆−n , ∆+

n uniquely extend to ∆̃n, ∆̃−n , ∆̃+
n on S̃, S̃+, S̃−. The corresponding

spinor spaces give rise to spinor bundles:

S̃(E) := P̃spinc(E)×Spinc(n) S̃,

S̃
+
−(E) := P̃spinc(E)×Spinc(n) S̃

+
−

where E → B is some vector bundle with a spinc structure.
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5 Bounded and unbounded linear operators

5.1 Bounded linear operators

Useful references are [B], [Bre], [Mu], [KR], [RLL], [RS], [Ru], [We].

Let E and F be two complex Banach spaces with norm ‖ · ‖E and ‖ · ‖F respec-
tively.

Definition 54 The space of bounded linear operators from E to F

B(E,F) := {A : E→ F, ∃C > 0, ‖Au‖F ≤ C‖u‖E ∀u ∈ E}

equipped with the norm ‖|A‖| ≡ supu∈E,x 6=0
‖Au‖F
‖u‖E is a Banach space.

When F = E we set B(E) := B(E,E) which is an example of Banach algebra, a notion
we briefly recall. Let us first give a useful example of bounded operator.

Example 9 The left shift operator L : `2 → `2 on the set `2 := {(un),
∑∞
n=0 |un|2 <

∞} convergent sequences of complex numbers defined by

L((un)) := (vn), vn = un+1

is a bounded linear operator.

Let = IR or = C. A -algebra A is a -vector space equipped with a bilinear map:

A×A → A
(a, b) → a b

such that a(bc) = (ab)c. It is a normed algebra whenever it can be equipped with
a map ‖ · ‖ : A→ IR≥0 with the following submultiplicativity property

‖ab‖ ≤ ‖a‖ · ‖b‖ ∀(a, b) ∈ A2.

It is a unital algebra whenever it admits a unit 1, i.e. 1 a = a 1 = a ∀a ∈ A.
A Banach algebra is a complete normed algebra.

A C∗-algebra is a Banach C-algebra A 1 equipped with a map ∗ : A → A ful-
filling the following properties:

1. (conjugate linearity) (a + b)∗ = a∗ + b∗; (λ a)∗ = λ̄ a∗ for any λ ∈ C and
any (a, b) ∈ A2;

2. (involution) (a∗)
∗

= a for any a ∈ A;

3. (compatibility with the product) (a b)
∗

= b∗ a∗ for any (a, b) ∈ A2,

and such that
(C∗ − identity)‖a∗a‖ = ‖a‖2 ∀a ∈ A. (12)

1The real case = IR requires a special treatment; ∗ is the identity operator so that only the
relation ‖a2‖ = ‖a‖2, one needs an extra assumption, namely 1 + a∗a is invertible in A.
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Example 10 The space Cb(U) of bounded continuous functions on an open subset U
of IRn equipped with ∗ : f 7−→ f and the supremum norm ‖f |vert = supx∈U |f(x)|, is
a C∗-algebra.

Remark 12 Let A be a C∗-algebra. We have

1. (compatibility with the norm) ‖a∗‖ = ‖a‖ ∀a ∈ A. Indeed, using the
submultiplicativity, we have

‖a‖2 = |a∗ a‖ ≤ ‖a‖ ‖a∗‖ =⇒ ‖a‖ ≤ ‖a∗‖ ≤ ‖(a∗)∗‖ = ‖a‖ =⇒ ‖a ∗ ‖ = ‖a‖.

2. ‖a∗ a‖ = ‖a‖ ‖a∗‖∀a ∈ A. Indeed, the C∗- identity reads ‖a∗ a‖ = ‖a‖2 =
‖a‖ ‖a∗‖ as a consequence of the first item.

There is another characterisation of bounded operators on Hilbert spaces using the
Hermitian products. Letting H1,H2 be two Hilbert spaces equipped with the Her-
mitian products 〈·, ·〉1, 〈·, ·〉2, A an operator in B(H1,H2), for any u ∈ H1, v ∈ H2 we
have | < Au, v >2 | ≤ |‖A‖| ‖u‖1‖v‖2 by the Cauchy-Schwartz inequality so that the
following inequality holds

|‖A‖| ≥ sup‖u‖1=‖v‖2=1|〈Au, v〉2|.

To prove the equality, we observe that by the very definition of |‖A‖|, there is a
sequence (un) in H1 such that ‖un‖ = 1 and (‖Aun‖) converges to |‖A‖|. If A is
not identically zero, the sequence (Aun) in H2 does not identically vanish so that
(extracting a subsequence if necessary) we can assume that Aun 6= 0 for any integer

n. The sequence (vn) :=
(

Aun
‖Aun‖2

)
, whose general term has norm 1 is such that

|〈Aun, vn〉2| = ‖Aun‖2 tends to |‖A‖| so that

|‖A‖| = sup‖u‖1=‖v‖2=1|〈Au, v〉2|. (13)

5.2 Self-adjoint bounded operators

Given two Hilbert spaces (H1, 〈·, ·〉1) and (H2, 〈·, ·〉2) and an operator A ∈ B(H1,H2),
by the Riesz Lemma the relation

〈Au, v〉2 := 〈u,A∗v〉1 ∀u ∈ H1, v ∈ H2

uniquely defines an operator A∗ ∈ B(H2,H1) called the adjoint of A.

Example 11 In Example 12, it is easy to check that the adjoint L∗ of the left shift
operator corresponds to the right shift operator

R : l2 → l2

(un) 7→ R((un)) = (un−1)

where we have set u−1 = 0 by convention. Hence we have LL∗ = Id but L∗L 6= Id..
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6 Bounded and unbounded linear operators

6.1 Bounded linear operators

Useful references are [B], [Bre], [Mu], [KR], [RLL], [RS], [Ru], [We].

Let E and F be two complex Banach spaces with norm ‖ · ‖E and ‖ · ‖F respec-
tively.

Definition 55 The space of bounded linear operators from E to F

B(E,F) := {A : E→ F, ∃C > 0, ‖Au‖F ≤ C‖u‖E ∀u ∈ E}

equipped with the norm ‖|A‖| ≡ supu∈E,x 6=0
‖Au‖F
‖u‖E is a Banach space.

When F = E we set B(E) := B(E,E) which is an example of Banach algebra, a notion
we briefly recall. Let us first give a useful example of bounded operator.

Example 12 The left shift operator L : `2 → `2 on the set `2 := {(un),
∑∞
n=0 |un|2 <

∞} convergent sequences of complex numbers defined by

L((un)) := (vn), vn = un+1

is a bounded linear operator.

An algebra A is a vector space equipped with a bilinear map:

A×A → A

(a, b) → a b

such that a(bc) = (ab)c. It is a normed algebra whenever it can be equipped with a
submultiplicative norm ‖ · ‖ with the following property:

‖ab‖ ≤ ‖a‖ · ‖b‖ ∀(a, b) ∈ A2.

It is a unital algebra whenever it admits a unit 1, i.e. 1 a = a 1 = a ∀a ∈ A.
A Banach algebra is a complete normed C-algebra.

A C∗-algebra is a Banach C-algebra A 2 equipped with an involution ∗ : A → A
(i.e. ∗ is a linear map satisfying ∗2 = I) such that ‖a∗a‖ = ‖a‖2 for any a ∈ A.
Consequently, the involution is isometric, i.e. ‖a∗‖ = ‖a‖ ∀a ∈ A.

There is another characterisation of bounded operators on Hilbert spaces using the
Hermitian products. Letting H1,H2 be two Hilbert spaces equipped with the Her-
mitian products 〈·, ·〉1, 〈·, ·〉2, A an operator in B(H1,H2), for any u ∈ H1, v ∈ H2 we
have | < Au, v >2 | ≤ |‖A‖| ‖u‖1‖v‖2 by the Cauchy-Schwartz inequality so that the
following inequality holds

|‖A‖| ≥ sup‖u‖1=‖v‖2=1|〈Au, v〉2|.
2The real case requires a special treatment.
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To prove the equality, we observe that by the very definition of |‖A‖|, there is a
sequence (un) in H1 such that ‖un‖ = 1 and (‖Aun‖) converges to |‖A‖|. If A is
not identically zero, the sequence (Aun) in H2 does not identically vanish so that
(extracting a subsequence if necessary) we can assume that Aun 6= 0 for any integer

n. The sequence (vn) :=
(

Aun
‖Aun‖2

)
, whose general term has norm 1 is such that

|〈Aun, vn〉2| = ‖Aun‖2 tends to |‖A‖| so that

|‖A‖| = sup‖u‖1=‖v‖2=1|〈Au, v〉2|. (14)

6.2 Self-adjoint bounded operators

Given two Hilbert spaces (H1, 〈·, ·〉1) and (H2, 〈·, ·〉2) and an operator A ∈ B(H1,H2),
by the Riesz Lemma the relation

〈Au, v〉2 := 〈u,A∗v〉1 ∀u ∈ H1, v ∈ H2

uniquely defines an operator A∗ ∈ B(H2,H1) called the adjoint of A.

Example 13 In Example 12, it is easy to check that the adjoint L∗ of the left shift
operator corresponds to the right shift operator

R : l2 → l2

(un) 7→ R((un)) = (un−1)

where we have set u−1 = 0 by convention. Hence we have LL∗ = Id but L∗L 6= Id..

Definition 56 Given a Hilbert space H, an operator A ∈ B(H) is self-adjoint if
A = A∗.

Here is another characterisation (14) of the norm of a bounded operator when the
operator is self-adjoint.

Lemma 5 Let H be a Hilbert space equipped with a scalar product 〈·, ·〉 and A ∈ B(H)
a self-adjoint operator then

|‖A‖| = sup‖u‖=‖v‖=1|〈u,Av〉| = sup‖u‖=1|〈u,Au〉|.

Proof 13 Taking v = u in (14) we infer that

|‖A‖| = sup‖u‖=‖v‖=1|〈u,Av〉| ≥ sup‖u‖=1|〈u,Au〉|.

Conversely, let C := sup‖u‖=1|〈u,Au〉| and let us assume that A is self-adjoint. We
want to show that sup‖u‖=‖v‖=1|〈u,Av〉| ≤ C. From

〈u+ v,A(u+ v)〉 − 〈u− v,A(u− v)〉 = 4 Re〈u,Av〉

we infer that

‖u‖ = ‖v‖ = 1 =⇒ |Re〈u,Av〉| ≤ C

4

(
‖u+ v‖2 + ‖u− v‖2

)
≤ C

2

(
‖u‖2 + ‖v‖2

)
= C.

Choosing θ such that the image Rθu of u under the rotation of angle θ gives rise to a
real number 〈Rθu,Av〉, and applying the above inequality to Rθu instead of u we get

‖u‖ = ‖v‖ = 1 =⇒ |〈u,Av〉| ≤ C

and consequently the identity

|‖A‖| = sup‖u‖=‖v‖=1|〈u,Av〉| = sup‖u‖=1|〈u,Au〉|.
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Here are a few useful spectral properties of self-adjoint operators.

Lemma 6 Let H be a Hilbert space and A ∈ B(H) be a self-adjoint operator. The
following properties hold:

1. The eigenvalues of A are real.

2. The eigenspaces of A associated to different eigenvalues are orthogonal.

3. Any non-zero vector u such that

|〈Au, u〉|
‖u‖2

= |‖A‖|

is an eigenvector of A with eigenvalue in {−|‖A‖|, |‖A‖|}.

Proof 14 1. Let λ ∈ C be an eigenvalue of A and u an associated eigenvector,
then < Au, u >= λ < u, u >=< u,Au >= λ̄ < u, u >. But since ‖u‖ 6= 0, it
follows that λ̄ = λ and λ ∈ IR.

2. Given two eigenvalues λi, i = 1, 2, we have

λ1 6= λ2 ⇒ Ker(A− λ1I) ⊥ Ker(A− λ2I).

Indeed, if λ1 6= λ2 are two eigenvalues associated with the eigenvectors u1 and
u2, then < Au1, u2 >= λ1 < u1, u2 >=< u1, Au2 >= λ2 < u1, u2 >, from
which it follows that < u1, u2 >= 0.

3. By the Cauchy-Schwartz inequality, we have

|‖A‖| = |〈Au, u〉|
‖u‖2

≤ ‖Au‖ ‖u‖
‖u‖2

≤ |‖A‖|

and in particular
|〈Au, u〉| = ‖Au‖ ‖u‖.

This leads to the existence of a complex constant λ such that Au = λu and
|λ| = |‖A‖|. The fact that this eigenvalue of A is real then follows from the first
item so that λ ∈ {−|‖A‖|, |‖A‖|}.

Proposition 15 Given a Hilbert space H, the algebra B(H) equipped with the adjoint
map A 7→ A∗ is a C∗-algebra.

Proof 15 We shall take for granted the fact that B(H) defines a Banach space for
the topology induced by the operator norm.

1. The product of two operators A,B in B(H) satisfies the inequality

|‖BA‖| ≤ |‖A‖| |‖B‖|.

2. The product of two bounded operators is bounded as a consequence of the above
inequality and B(H) is a unital algebra since it contains the identity operator.
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3. Since

|‖A‖| = sup‖u‖1=‖v‖2=1|〈Au, v〉2|
= sup‖u‖1=‖v‖2=1|〈u,A∗v〉2|
= sup‖u‖1=‖v‖2=1|〈A∗v, u〉2|
= |‖A∗‖|,

the map A 7−→ A∗ preserves the boundedness and defines an involution on
B(H).

4. Using Lemma ??, we have

|‖A∗A‖| = sup‖u‖=1|〈A∗Au, u〉|
= sup‖u‖=1|〈Au,Au〉|
= |‖A‖|2.

The Gelfand-Naimark theorem says that every abstract (resp. commutative) unital
C∗-algebra is isometrically ∗-isomorphic to a ‖ · ‖-closed ∗-subalgebra of B(H) (resp.
to the space C(K) of continuous functions on some compact Hausdorff space K)
for some Hilbert space H. To prove the statement in the general (not necessarily
commutative) case, one uses the Gelfand-Naimark-Segal or GNS construction which
produces a representation from a state. To a state ρ on a C∗-algebra A, i.e. a positive
linear functional ρ : A → C (ρ(a∗a) ≥ 0∀a ∈ A), one can associate a positive semi-
definite bilinear form 〈a, b〉 = ρ(b∗a) with kernel Nρ = {a ∈ A, ρ(a∗a) = 0} which is
a subvector space of A and a left ideal in A. This bilinear form therefore induces a
positive definite form 〈·, ·〉 on A/Nρ and hence a pre-Hilbert space structure on that
quotient space, which by completion gives rise to a Hilbert space Hρ. The left regular
representation

πρ : A → B(Hρ)
b 7→ (a 7→ ba)

is cyclic with cyclic vector xρ := 1A +Nρ and ρ(a) = 〈πρ(a)xρ, xρ〉 for any a ∈ A.

6.3 Closed graph theorem

Useful references are [Br], [Ru].

The operators one comes across in geometry or in physics usually are unbounded
and only defined on a dense domain of the Banach space.

Definition 57 Let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be two Banach space. The graph of an
operator

A : D(A) ⊂ E → F

defined on a domain D(A) is the set:

Gr(A) := {(u,Au) ∈ E × F, u ∈ D(A)}.

61



It can be equipped with the (graph) norm

‖(u, v)‖ := ‖u‖E + ‖v‖F .

Notice that whenever A is invertible and its inverse bounded, then the graph of A−1

is the symmetric of the graph of A w.r.to the diagonal axis.

Definition 58 The operator A is closed whenever its graph is closed for the graph
norm.

When E and F are separable, there is another characterisation for closed operators.

Lemma 7 An operator A : D(A) ⊂ E → F is closed if, given any sequence (un)
converging to u ∈ E such that Aun converges in F , then the limit u lies in the domain
D(A) and Aun → Au.

Proof 16 The graph of A is closed whenever for a sequence (un, Aun) in Gr(A)
which converges in E × F to (u, v) we have that u ∈ D(A) and v = Au i.e. Aun
converges to v = Au, which corresponds to the characterisation in the lemma.

We shall henceforth assume that the Banach spaces under consideration are separable.

Lemma 8 Any bounded linear operator defined on a closed domain is closed.
Furthermore, a closed linear operator A : D(A) ⊂ E→ F defined on a dense domain
D(A) of E extends in an unique way to a bounded operator on E whenever there is a
constant C > 0 such that ‖Au‖F ≤ C‖u‖E,∀u ∈ D(A).

Example 14 Let F = C([0, 1]) equipped with the norm ‖f‖∞ = supx∈[0,1]|f(x)| and

E = C1([0, 1]) equipped with the norm ‖f‖∞,1 := ‖f‖∞ + ‖f ′‖∞. The operator A :
f 7→ f ′ is defined on D(A) = C∞([0, 1] which is dense in E and we have ‖A(f)‖∞ ≤
‖f‖∞,1 for any f ∈ D(A). This yields back the well-known fact that A extends to a
bounded linear operator A : E→ F.

Proof 17 • Let A be a bounded linear operator on a closed domain D(A). A
sequence (un, Aun) in Gr(A) which converges in E × F, therefore converges to
(u, v) ∈ D(A)×F. It follows from the continuity of A that v = limAun so that
the sequence (un, Aun) converges in Gr(A).

• To prove the second one, all we need is to define the image of any element
u ∈ E by an extension of A. Since D(A) is dense in E, u can be seen as a
limit u = limn→∞ un of a sequence (un) in D(A). Since (un) is convergent it
is a Cauchy sequence, and hence so is the sequence (Aun) a Cauchy sequence
so that it converges to some v ∈ F since F is complete. The operator A being
closed, this implies that u lies in the domain D(A) and Au = v. This extended
operator (also denoted by A) is clearly a bounded operator.
Moreover this extension does not depend on the choice of the sequence. For
if (u′n) is another sequence tending to u, from the inequality ‖Aun − Au′n‖ ≤
C‖un − u′n‖, it follows that Au′n → Au.

Proposition 16 (Open mapping Theorem) A surjective bounded linear operator
A : E → F between two Banach spaces is open i.e., it sends open subsets to open
subsets.
Consequently, if it is invertible, its inverse is continuous.

62



Proof 18 It relies on the following result which we take for granted. Under the
assumptions of the proposition, the image A(BE(0, r)) of an open non void ball in E
contains a non void ball BF(0, ε) in F.
Assuming this, we want to show that the range A(U) of an open subset U in E is
open i.e., that any y = A(x) in A(U) is the center of a ball BF(y, ε) in A(U).
The subset U − x of E is open and contains 0 so it contains an open non void
ball BE(0, r). Thus, A(U − x) = A(U) − y which contains A(BE(0, r)) contains
a non void ball BF(0, ε). This implies that A(U) contains the non void open ball
BF(y, ε) = BF(0, ε) + y.

We have shown that a bounded linear operator is closed; the closed graph theorem
provides a converse statement.

Theorem 7 (Closed graph Theorem) Let A : E→ F be a closed linear operator
with closed domain D(A). In particular, a closed linear operator with domain E lies
in A ∈ B(E,F), i.e. A is bounded on E.

Proof 19 • Since E and F are complete, the cartesian product E×E is complete.
Since D(A) is closed, its graph Gr(A) is closed in E× E and hence complete.

• The map P : Gr(A) → D(A) defined as P (x, y) = x is linear and bounded
since ‖u‖E ≤ ‖(u,Au)‖Gr(A). It is a bijection with inverse x 7−→ (x,Ax).
The open mapping theorem implies that its inverse is continuous and hence
‖u‖E +‖Au‖F = ‖P−1(u)‖Gr(A) ≤ C ‖u‖E for some positive constant C (chosen
large enough). Thus ‖Au‖F ≤ (C − 1) ‖u‖E and A is bounded.

In the following, we assume the operators are closed and defined on a dense domain
D(A).

Proposition 17 The inverse of a bijective linear operator A : D(A) ⊂ E → F is a
bounded operator A−1 : F→ E.

Proof 20 Since the graph of A is closed so is the graph of A−1 and the result follows
from the closed graph theorem.

Definition 59 The resolvent of A is the set

ρ(A) := {λ ∈ C,A− λI is bijective }
= {λ ∈ C,A− λI is bijective and (A− λI)−1 ∈ B(H)}.

The spectrum σ(A) of A is the complement of the resolvent:

σ(A) := C/ρ(A).

The point spectrum σp(A) is the set

σp(A) := {λ ∈ C,Ker(A− λI) 6= {0}}.

In finite dimensions, σp(A) = σ(A), which is not generally the case in infinite dimen-
sions.

Example 15 Letting H = l2 be the space of l2 convergent sequences and let A : l2 →
l2 be the operator sending a sequence (un) to a sequence (vn) with v0 = 0, vi = ui−1.
0 does not belong to σp(A) but 0 ∈ σ(A).
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6.4 Adjoint of an (unbounded) operator

Useful references are [Br], [RS].

Let H1 and H2 be Hilbert spaces equipped with the Hermitian products 〈·, ·〉1 and
〈·, ·〉2 respectively. We extend here the notion of adjoint of an operator to unbounded
operators.

Definition 60 The adjoint of an operator A : D(A) ⊂ H1 → H2 defined on a dense
domain D(A) is an operator A∗ defined on

D(A∗) := {v ∈ H2,∃C(v) > 0, | < Au, v >2 | ≤ C(v)‖u‖1 ∀u ∈ D(A)}

by < Au, v >2=< u,A∗v >1 ∀u ∈ D(A), v ∈ D(A∗).

This defines A∗ in an unique way. For if v∗1 et v∗2 are elements in H1 such that
< Au, v >2=< u, v∗i >1, i = 1, 2 for any u ∈ D(A), then 0 =< u, v∗1 − v∗2 >1 for any
u ∈ D(A) dense in E, which implies v∗1 = v∗2 .

Remark 13 Provided R(A) ⊂ D(A∗) we have Ker(A∗A) = Ker(A). Indeed, clearly
the inclusion Ker(A) ⊂ Ker(A∗A) holds. Conversely we have

A∗Au = 0 =⇒ 〈A∗Au, u〉 = 0 =⇒ ‖Au‖ = 0 =⇒ Au = 0,

so that Ker(A∗A) ⊂ Ker(A).

Whenever E = F = H is a Hilbert space equipped with the inner product 〈·, ·〉 :=
〈·, ·〉E = 〈·, ·〉F , we say A is self-adjoint if A = A∗, i.e

D(A) = D(A∗) and < Au, v >=< u,Av > ∀u ∈ D(A).

The graph of the adjoint A∗ of an operator A is given by

(Gr′(−A∗))⊥ = Gr(A)

where “prime” means the symmetric set w.r.to the diagonal axis. This is an easy
consequence of the fact that

< (u,Au), (−A∗v, v) >=< u,−A∗v > + < Au, v >= 0

for u ∈ D(A), v ∈ D(A∗).

Proposition 18 The domain D(A∗) of the adjoint A∗ of an operator A : D(A) ⊂
H1 → H2 is dense in H1, and the adjoint is also closed.
(Recall that as before, D(A) is dense in H1 and that A is closed.)

Proof 21 Let us assume that the domain of A∗ is not dense in H2. Then there
exists a non zero vector u ∈ H2 such that < u, v >2= 0 for any v ∈ D(A∗). Using
the closedness of A, this would imply that

< u, v >2= 0 ⇔ < u, v >2 + < 0,−A∗v >1= 0

⇔ (0, u) ∈ (Gr′(−A∗))⊥ = Gr(A)
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and hence A(0) = u 6= 0 which contradicts the linearity of A.
Let us check that A∗ is closed. Let (vn, A

∗vn) be a Cauchy sequence in D(A∗) × H1

converging to (y, x) ∈ H2 ×H1. For any u ∈ D(A), we have

< Au, y >2= lim
n→∞

< Au, vn >2= lim
n→∞

< u,A∗vn >1=< u, x >1

so that | < Au, y >2 | ≤ ‖x‖1 · ‖u‖1 for any v ∈ D(A), which implies y ∈ D(A∗) and
A∗y = u.

Let A : D(A) ⊂ H → H. When the space Hp(A) spanned by the eigenvectors of
A coincides with the total Hilbert space H, letting {en, n ∈ IN} be an orthonormal
basis of eigenvectors of H, the operator has the following discrete resolution:

Au =
∑
n

λn < u, en > ∀u ∈ D(A).

Given a map f : σp(A) ⊂ C → C, using this spectral representation of A we can
define the map f(A) on the domain:

D(f(A)) := {u ∈ H,
∑
n

f(λn)2 < u, en >
2<∞}

by

f(A)u =
∑
n

f(λn) < u, en > en for u ∈ D(f(A)).

Example 16 When A has a discrete resolution with purely discrete spectrum and
positive eigenvalues outside a discrete set of eigenvalues, the function f(x) = e−tx de-
fines a bounded operator e−tA called the heat-operator associated to A. Heat-operators
will be investigated more thoroughly in the sequel.

Let A : D(A) ⊂ H1 → H2 be a closed operator defined on a dense domain D(A) of a
Hilbert space (H1, 〈·, ·〉1) with values in (H2, 〈·, ·〉2), then the domain D(A∗) is dense
in H2 and we can define the adjoint A∗∗ of A∗ which coincides with A.

Let us first check that A ⊂ A∗∗. Given x ∈ D(A), | < x,A∗y > | = | < Ax, y > | ≤
‖Ax‖‖y‖ for any y ∈ D(A∗) and hence x ∈ D(A∗∗). Since < x,A∗y >=< Ax, y >
the operators A and A∗∗ coincide on D(A). Since A∗∗ is closed as the adjoint of a
closed operator, so is its graph and we have Gr((A∗)

∗
) = (Gr′(−A∗))⊥ = Gr(A), for

Gr(A) is closed. This ends the proof of the identity A∗∗ = A.

Another useful property for A : D(A) ⊂ H1 → H2 is

R⊥(A) = Ker(A∗)

and hence
Ker(A∗)⊕R(A) = H2,

which applied to A∗ yields:
R⊥(A∗) = Ker(A)

and hence
Ker(A)⊕R(A∗) = H1.
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Indeed, we have R⊥(A) ⊂ KerA∗. For if < y,Ax >= 0 ∀x ∈ D(A) then y ∈ D(A∗)
and < A∗y, x >= 0 ∀x ∈ D(A). But D(A) is dense in H so it follows that y ∈ KerA∗.
Let us now check the other inclusion. Given x ∈ KerA∗, we have < A∗x, y >= 0 for
any y ∈ D(A) and hence < x,A∗∗y >=< x,Ay >= 0 for any y ∈ D(A) which shows
that x ∈ R(A)⊥.
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7 Compact and Fredholm operators

7.1 Compact operators

Useful references are [Bre], [HL], [Mu]. We also used some notes by B. Driver [Dr].

We first recall equivalent characterisations of compactness.
Let (E, d) be a metric space. A subset S of E is compact if it satisfies one of the
following equivalent (Theorem of Heine Borel) assertions:

1. Any (infinite) sequence of points in S has a converging subsequence in S. In
other words any (infinite) sequence of points in S has an accumulation point
in S.

2. From any open covering of S we can extract a finite open covering.

Let us also recall that a compact subset of a metric space can be covered by a finite
number of balls of any given positive radius.
Any compact set is closed and bounded but if a normed space E contains a closed
and bounded subset which is compact, then it is finite dimensional.

Definition 61 A relatively compact subset of a metric space E is a subset whose
closure is compact. Equivalently, it is a set in which any infinite sequence of points
has a converging subsequence (whose limit does not necessarily lie in the set).

Example 17 The open unit ball B(0, 1) in (IRn, ‖ · ‖∞) is relatively compact.

Let E,F be two Banach spaces.

Proposition 19 For an operator A ∈ B(E,F), the following conditions are equiva-
lent

1. the range A(BE(0, 1)) of the unit ball BE(0,1) of E is relatively compact.

2. given any bounded sequence (xn) in E, one can extract from the sequence (Axn)
a convergent sequence in F.

Such an operator A ∈ B(E,F) is called compact.

Proof 22 The equivalence between the two properties follows from the equivalence of
the corresponding characterisations of compactness.

Coexample 1 The identity operator on E is compact if BE(0, 1) is compact which
implies that E is finite dimensional.

Sobolev inclusions on closed manifolds (see e.g. [Ad2], [Gi]) give rise to compact
operators.
Given a closed manifold M and a vector bundle E based on M , using a partition of
the unity, one can define for any s ∈ IR, the Hs Sobolev closure E := Hs(E) of the
space C∞(E) of smooth sections of E (se e.g. [Gi]).

Example 18 For t < s, the inclusion i : Hs(E)→ Ht(E) is a compact operator.
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An invertible operator A : E→ E is not compact if E is infinite dimensional. Other-
wise, one could extract from any bounded sequence (un), a converging subsequence
(Auφ(n)) so that (uφ(n)) = (A−1Auφ(n)) would itself converge, contradicting the finite
dimensionality of E.

Finite rank operators (see e.g. [Bre]) form a subclass of compact operators.

Definition 62 A bounded operator A in B(E,E) has finite rank if its range is finite
dimensional. The dimension of the range is called the rank of the operator.

Finite rank projection operators are finite rank operators.

Example 19 Let (ek) be a complete orthonormal basis of a separable Hilbert space
H, the projection operator Pk defined by Pkej ≡ ej if j ≤ k, Pkej ≡ 0 otherwise, is a
finite rank operator since its range has dimension k.

Any finite rank operator is compact since the closure of the range A(B(0, 1)) of the
unit ball by a finite rank operator A is compact as a closed and bounded subset of a
finite dimensional space.

Let K(E,F) denote the set of compact operators from E to F. When E = F we
set K(E) := K(E,E).

Lemma 9 K(E) is a two sided ideal in B(E).

Proof 23 For if A ∈ K(E), B ∈ B(E) and a bounded sequence (un) in E, (Bun) is
also bounded. A being compact we can extract from (ABun) a convergent subsequence
(ABuφ(n)) which shows that AB is compact. Similarly we show that the product BA
is compact. Indeed, A being compact, we can extract a subsequence (uφ(n)) of (un)
such that (Auφ(n)) converges and B being bounded, (BAuφ(n)) therefore converges.
This shows that BA is compact.

Lemma 10 K(E) is closed in B(E) and hence a Banach algebra for the operator
norm ‖ · ‖.

Proof 24 Let An be a sequence of compact operators converging to A. To show the
compactness of A(B(0, 1)) and hence of A, it is sufficient to show we can cover the
image ball A(B(0, 1)) by a finite number of balls with given radius. Let ε > 0 and
n ∈ IN such that ‖|An − A‖| < ε

2 . Since An is compact, we can cover An(B(0, 1))

by a finite number N of balls with radius ε/2, An(B(0, 1)) ⊂
⋃N
i=1B(hi, ε/2). This

induces a covering of A(B(0, 1)) by a finite number of balls of radius ε and ends the
proof of the closedness of the set of compact operators.

Remark 14 Since any finite rank operator is compact, and the set of compact op-
erators being closed, the limit (in the operator norm topology) of a sequence of finite
rank operators is also compact.

Example 20 Any linear operator

A : `2(IN) −→ `2(IN)

(un) 7−→ (λnun)
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with (λn) a sequence of complex numbers converging to zero, is compact. Indeed,
A = limN→∞ PNA in the operator norm, where PN denotes the projection onto the
N -dimensional space spanned by {e1, · · · , eN} with ei the sequence whose entries all
vanish outside the i-th one. This convergence holds due to the convergence of the
sequence (λn) for

‖|A−PNA‖| = ‖|A(1−PN )‖| ≤ sup{n≥N}|λn| ‖|(1−PN )‖| ≤ sup{n≥N}|λn| −→n→∞ 0.

Lemma 11 When E = H is a Hilbert space, K(H) is a ∗-ideal i.e. A ∈ K(H) ⇒
A∗ ∈ K(H).

Proof 25 Indeed, let A be compact and let us assume that A∗ is not compact. Then
there is a sequence (un) in the unit ball B(0, 1) such that ‖A∗un − A∗um‖ ≥ ε > 0
for any n,m ∈ IN . Let vn = A∗un, then

< Avn −Avm, un − um >= ‖A∗un −A∗um‖2 ≥ ε2

so that by the Cauchy-Schwartz inequality and using the fact that ‖un‖ ≤ 1, we get

ε2 ≤ ‖Avn −Avm‖ ‖un − um‖ ≤ 2‖Avn −Avm‖

in which case (Avn) would not have a convergent subsequence. This would contradict
the compactness of A.

We sum up these properties in the following statement.

Theorem 8 K(H) is a C∗-algebra.

7.2 Spectral decomposition for compact self-adjoint operators

We now investigate spectral properties of self-adjoint compact operators.

Lemma 12 Let H be a Hilbert space and A ∈ B(H) be a self-adjoint compact opera-
tor. Either |‖A‖| or −|‖A‖| is an eigenvalue of A.

Proof 26 If A = 0 the statement is trivial, so that we can assume that A is not
identically zero. Since |‖A‖| = sup‖u‖=1|〈u,Au〉| there is a sequence (un) in H such
that ‖un‖ = 1 and |〈un, Aun〉| converges to |‖A‖|. One can extract a subsequence
(uφ(n)) such that 〈uφ(n), Auφ(n)〉 (it is real due to the self-adjointness), converges to
some λ in {−|‖A‖|, |‖A‖|}. Using the compactness of A one can extract another sub-
sequence (uψ(n)) such that

(
vψ(n)

)
:=
(
A(uψ(n))

)
converges. Relabeling the sequences

we simply assume that (〈un, vn〉) converges. Thus the expression

‖Aun − λun‖2 = ‖Aun‖2 − 2λ 〈Aun, un〉+ λ2 ≤ λ2 − 2λ 〈Aun, un〉+ λ2

tends to zero as n tends to infinity. Hence (un) converges to u := 1
λ limn→∞Aun.

By the continuity of A it follows that Au = λu.

We are now ready to give the spectral theorem which provides a spectral resolution
for compact self-adjoint operators.
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Theorem 9 A compact self-adjoint operator in a Hilbert space H has a compact and
at most countable (possibly finite) purely discrete real spectrum, with at most one
limit point zero. The sequence (λn) of non-zero eigenvalues can be arranged so that
|λn| ≥ |λn+1| tends to zero as n tends to infinity unless A has finite rank, in which
case there is a finite set of eigenvalues. Moreover we have the following discrete
spectral resolution:

Au =

∞∑
n=1

λn 〈u, un〉un ∀u ∈ H,

and the orthonormal sequence (un) of eigenvectors associated with (λn) verifies H =
〈un, n ∈ IN〉⊕Ker(A). This spectral resolution is finite if the operator has finite rank

N in which case we have Au =
∑N
n=1 λn 〈u, un〉un ∀u ∈ H.

Proof 27 1. The compactness of the spectrum is a general property of bounded
operators; indeed it is closed as the complement of an open set and bounded as
a consequence of the boundedness of the operator. The fact that the eigenvalues
are real is due to the self-adjointness.

2. The non-zero eigenvalues λn and the eigenvectors un are built recursively using
the above lemma. Assuming that A 6= 0, let λ1 ∈ {−|‖A‖|, |‖A‖|} and u1

an associated eigenvector as in the above proposition. Let H1 = 〈u1〉 be the
subspace spanned by u1, then A(H1) ⊂ H1. We easily check that A(H⊥1 ) ⊂ H⊥1
and we can therefore restrict A to H⊥1 : let A1 denote this restriction. If A1 is
identically zero, the statement holds. Otherwise A1 is a compact operator so
that as above, from A1 we build an operator A2 defined as the restriction of
A1 to the orthogonal complement of the space H2 := 〈u1, u2〉 where u2 ∈ H⊥1
with norm 1 is such that A1u2 = Au2 = λ2u2 for some λ2 ∈ {−|‖A1‖|, |‖A1‖|}
. We continue this procedure until we reach an operator Ai which vanishes
identically, or otherwise we pursue indefinitely. This way, we build a sequence
(λn) of eigenvalues and orthonormal associated eigenvectors (un) such that

|λn| = ‖|An|‖ = supu∈〈u1,···,un〉⊥
‖Au‖
‖u‖

.

3. The sequence (|λn|) is decreasing by construction. Let us show that it converges
to zero as n tends to infinity; otherwise there would be a common positive lower
bound ε for all the |λn|, in which case (vn) := (un λ

−1
n ) would be a sequence

bounded by ε−1. The compactness of A would then yield the existence of a sub-
sequence (vφ(n)) such that (uφ(n)) = (Avφ(n)) is convergent, which is impossible
since the (un) form an orthonormal set. Indeed, were uφ(n) to converge to some
limit ` then we would have 〈uφ(n), uφ(n+1)〉 = 0 =⇒ ‖`‖2 = 0 =⇒ ` = 0, which
contradicts the fact that uφ(n) has norm 1.

4. Since {λn, n ∈ IN} is a subset of the spectrum σ(A) which is closed, it follows
that 0 lies in σ(A) so that {λn, n ∈ IN} ∪ {0} ⊂ σ(A). We need to show that
these two sets actually coincide.
Let H∞ := 〈un, n ∈ IN〉 be the space spanned by the vectors un, n ∈ IN . Then

‖|A|H⊥∞ |‖ ≤ ‖|A|H⊥n |‖ = supu∈〈u1,···,un〉⊥
‖Au‖
‖u‖

= |λn| ∀n ∈ IN
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vanishes since λn tends to zero as n tends to infinity. Hence A|H⊥∞
= 0 which

implies that H = 〈un, n ∈ IN〉 ⊕Ker(A).
Letting P0 denote the orthogonal projection onto Ker(A) we write u = P0u +∑
n∈IN 〈u, un〉un, which yields Au =

∑
n∈IN λn 〈u, un〉un, since A ◦ P0 = 0.

5. Using this decomposition we can show that {λn, n ∈ IN} ∪ {0} = σ(A). For
this, we need to show that any λ outside the set S := {λn, n ∈ IN} ∪ {0} does
not belong to σ(A) or in other words, that (A− λI)−1 exists and is bounded.

6. For this purpose, we consider the distance d between λ and the set S, which
is positive since σ(A) is closed and we have λ − λn ≥ d which in the limit
yields |λ| ≥ d. We observe that the operator A− λI is invertible since for u =∑
n∈IN 〈u, un〉un+P0u ∈ H we have (A−λI)−1u =

∑
n∈IN (λn−λ)−1〈u, un〉un−

λ−1P0u. Furthermore,

‖(A− λI)−1u‖2 =
∑
n∈IN

|〈u, un〉|2

|λn − λ|2
+
‖P0u‖2

|λ|2
≤ ‖u‖

2

d2

so that the operator (A− λ I)−1 is bounded and λ /∈ σ(A).

The spectral theorem extends to any compact operator.

Corollary 4 (see e.g. [Dr], [Ru]) Let H1 and H2 be two Hilbert spaces. A compact
operator A : H1 → H2 has a compact and at most countable spectrum, with at most
one limit point zero. The sequence (µn) of non-zero eigenvectors of A∗A is either
finite or tends to zero as n tends to infinity and we have the following discrete spectral
resolution:

Au =

∞∑
n=1

√
µn 〈u, un〉vn ∀u ∈ H1,

for some orthonormal subsets (un) (consisting of eigenvectors of A∗A) in H1 and (vn)

in H2. If A has finite rank N this sum is finite and we have Au =
∑N
n=1

√
µn 〈u, un〉vn ∀u ∈

H1.
The numbers (λn) := (

√
µn) are called the singular values of A.

Proof 28 The proof uses the spectral decomposition of the self-adjoint compact op-
erator A∗A:

A∗Au =

∞∑
n=1

µn 〈u, un〉un ∀u ∈ H,

where (µn) is the sequence of (non-negative) eigenvalues of A∗A and (un) the associ-
ated sequence of eigenvectors. Using this spectral resolution we define the square root√
A∗A by:

√
A∗Au :=

∞∑
n=1

√
µn 〈u, un〉un ∀u ∈ H.

Notice that (vn) :=
(
Aun√
µn

)
is an orthonormal set in H2; we define the ”phase opera-

tor” U such that A = U ‖A| = U
√
A∗A by

Uv :=

∞∑
n=1

〈v, un〉 vn ∀v ∈ H2. (15)
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With this notation we have (vn) = (Uun). Since Au = U
√
A∗Au ∀u ∈ H1, applying

(15) to v =
√
A∗Au yields

Au =

∞∑
n=1

√
µn 〈u, un〉 vn ∀u ∈ H1.

Corollary 5 A bounded operator A : H1 → H2 is compact whenever it is the limit
of a sequence (possibly finite) of finite rank operators.

Proof 29 We know that a limit (in the operator norm of bounded operators) of a
sequence of finite rank operators is compact since the set of compact operators is
closed in the set of bounded operators.
Conversely, it follows from Corollary 4 (and with the notation of the corollary) that
any compact operator A ∈ K(H1,H2) can be written as the limit A = limN→∞AN of
a sequence of finite rank operators AN defined by

AN u =
N∑
n=1

√
µn 〈u, un〉 vn ∀u ∈ H1.

The density of finite rank operators in the set of compact operators actually extends
to a Banach setting.

Theorem 10 Let E and F be two Banach spaces. Any finite rank operator A ∈
B(E,F) is compact and any compact operator in A ∈ B(E,F) is a limit in the bounded
operator norm, of finite rank operators.

Proof 30 We give an alternative proof to the one using the discrete spectral reso-
lution, which holds in the Banach setting. Let A be a compact operator; the closure
A (B(0, 1)) of the range A (B(0, 1)) of the unit ball is compact. Given ε > 0, it can
therefore be covered by a finite number of balls B(hi,

ε
2 ) centered at hi with given

radius ε in such a way that A (B(0, 1)) ⊂ ∪Ni=1B(hi,
ε
2 ). Let F denote the subspace

generated by hi, i = 1, · · · , N and let PF denote the orthogonal projection onto F .
Then Aε ≡ PFA has finite rank. Let us check that ‖|Aε − A‖| ≤ ε. For h in B(0, 1)
there is some i0 ∈ {1, · · · , N} such that ‖Ah − hi0‖ < ε

2 . Since ‖PF ‖ ≤ 1, this
implies that ‖PFAh − PF hi0‖ < ε

2 and hence ‖PFAh − hi0‖ < ε
2 . It follows that

‖PFAh − Ah‖ < ε for any h ∈ B(0, 1) and hence ‖|Aε − A‖| < ε, which shows that
the compact operator A could be approximated by finite rank ones Aε.

Here again, an example can be found on l2 sequences.

Example 21 To a sequence (αn) of real numbers converging to 0, we can associate
a compact operator

A : l2 → l2

(un) 7→ (αnun).

It is compact as the limit in B(l2) of operators of finite rank Ak defined by

Ak((un)) = (α0u0, · · · , αkuk, 0, · · · , 0).
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7.3 Fredholm operators

Useful references are [Gi], [LM], [N], [RS].

If V is a finite dimensional space, a linear map A : V → V is either non-injective
or it is bijective and the equation Au = v, v ∈ V has unique solution. We want to
generalise this ”alternative” to operators of the type K − λI with K compact by
means of the concept of Fredholm operators.

Definition 63 Given two Banach spaces E and F, an operator A ∈ B(E,F) is Fred-
holm whenever it is invertible “up to a compact operator”, i.e. whenever there are
operators B ∈ B(F,E) and C ∈ B(F,E) such that BA− IE et AC − IF are compact.

Remark 15 In Definition 63 one can equivalently require that BA−IE and AC−IF
have finite rank.

An invertible operator is clearly Fredholm. Any operator I − A with A compact, is
also Fredholm.
Here is an instructive example of Fredholm operator.

Example 22 Composing the right shift and left shift operator L : l2 → l2 introduced
in Example 12 yields RL((un)) = (0, u1, u2, · · · , un, . . .) so that RL = I − π0 where
π0 is the projection onto the one-dimensional subspace (u0, 0, · · · , 0, · · ·) ∈ l2 whereas
LR = I. Since π0 has finite rank and hence is compact, the operators L and R are
Fredholm.

If A ∈ B(E,F) is Fredholm so is A+K for any compact operator K ∈ B(E,F). Indeed,
the existence of operators B ∈ B(F,E) and C ∈ B(F,E) such that AB−I and C A−I
are compact implies that (A+K)B−I = AB−I+KB and C(A+K)−I = CA−I+K
are compact since compact operators form an ideal in the bounded operators.
If E and F are Hilbert spaces, since the adjoint of a compact operator is compact,
the adjoint of a Fredholm operator is Fredholm.

Proposition 20 Let H1 and H2 be two Hilbert spaces and let A ∈ B(H1,H2). The
following conditions are equivalent:

i) A is Fredholm

ii) KerA and KerA∗ are finite dimensional and R(A) et R(A∗) are closed.

iii) The kernels KerA et KerA∗ are finite dimensional and

H1 = Ker(A)⊕ R(A∗),

H2 = Ker(A∗)⊕ R(A)

where the sums are orthogonal.

Remark 16 In ii) it is sufficient to require that KerA and KerA∗ are finite dimen-
sional since the closedness of the ranges R(A) and R(A∗) then follows (see e.g. [Sh]
Lemma 8.1 in [Sh] or Lemma 35.22 in [Dr]).
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Proof 31 (i) ⇒ (ii): We show that Ker(A) is finite dimensional by proving that
its unit ball is compact. Let (un) be a sequence in the unit sphere of Ker(A)
so that ‖un‖ = 1. By assumption A admits a left inverse B modulo a compact
so I − BA is compact, and from un = (I − BA)un and since, we can extract
a convergent subsequence, which proves that the unit ball of Ker(A) is compact
and hence that KerA is finite dimensional.

Let us now check that the range of A is closed under the assumption that A
admits a left inverse B modulo a compact. Let (un) be a sequence in H1 and
let us assume that vn := Aun → v. We want to show the existence of u in H1

such that v = Au. Without any restriction, we can also assume that (un) lies
in the orthogonal complement Ker⊥A to KerA.
Let us first assume that (un) is bounded. Since un = B vn + (I − BA)un,
I − BA being compact, we can extract a convergent subsequence (uφ(n)) such
that (I − BA)(uφ(n)) converges to some w. B being bounded, the sequence
(B vn) converges to Bv so that that (uφ(n)) converges to some u := B v + w.
Thus v = limn vφ(n) = limnAuφ(n) = Au lies in the range of A so that R(A) is
closed.
If now the sequence (un) is unbounded, then ‖un‖ tends to +∞ when n→ +∞.
Applying the result obtained in the bounded case to u′n ≡ un

‖un‖ yields a subse-

quence (u′φ(n)) ∈ Ker⊥A that converges to u′ such that ‖u′‖ = 1 and Au′ =

limn
Aun
‖un‖ = limn

vn
‖un‖ = 0. Since A is closed KerA is also closed and u′ ∈

KerA which leads to a contradiction. Since the adjoint of a Fredholm operator
is Fredholm, KerA∗, resp. R(A∗) are finite dimensional, resp. closed.

(ii) ⇒ (iii): Given a closed operator A and densely defined on H1, we know that

KerA∗ + R(A) = H2 (16)

and
KerA∗∗ + R(A∗) = H1 (17)

Since R(A) and R(A∗) are closed it follows that

KerA∗ + R(A) = H2

and
KerA+ R(A∗) = H1.

(iii) ⇒ (i): A is bijective from Ker⊥A = R(A∗) onto R(A) = Ker⊥(A∗), so we
can find two operators C defined on R(A) and D defined on R(A∗) such that
C A = I/Ker⊥A and AD = I/Ker⊥A∗. Let us denote by the same symbols
C resp. the extension of C by 0 on KerA∗, resp. of D by 0 on KerA. They
are bounded operators by the closed graph theorem and by construction we have
I−C A = πKerA and I−AD = πKerA∗ where πH2

is the orthogonal projection
on the vector space H2. Since these two projections have finite rank, it follows
that A is Fredholm.

Example 23 The left shift operator L : `2 → `2 introduced in Example 12 has one
dimensional kernel Ker L = {(un) ∈ `2, un = 0 ∀n 6= 0} and range `2. Its adjoint
R = L∗ (see Example 13) has kernel Ker R = {0} and range {(un) ∈ `2, u0 = 0}.
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We end this paragraph by the Fredholm alternative which generalises the finite
dimensional alternative quoted at the beginning of the section. Let K ∈ K(H), then
A := K − λI is a Fredholm operator. If moreover K is self-adjoint, then either λ is
an eigenvalue of K or otherwise Ker (A) = {0} so that R(A) = H and the equation
Ku − λu = v has a unique solution u = (K − λu)−1v for any v ∈ H. By the closed
graph theorem the operator (K − λu)−1 is then bounded, in which case λ lies in the
resolvent ρ(K) := C − σ(K). This is another way to see that the spectrum of a
self-adjoint compact operator is purely discrete.

7.4 The index of a Fredholm operator

Given a Fredholm operator A : H1 → H2, the index of A is the positive integer given
by

ind(A) := dim Ker(A)− dim Ker(A∗)

= dim Ker(A)− codim R(A) (18)

since the range of A and the kernel of A∗ are topological complements in H2.
An invertible operator has vanishing index since both its kernel and cokernel have
dimension zero. Since ind(A∗) = −ind(A), a self-adjoint operator also has vanishing
index.

Remark 17 A useful even if elementary observation is the implication

ind(A) 6= 0 =⇒ (Ker(A) 6= {0} or Ker(A∗) 6= {0}) .

The index is additive on products.

Proposition 21 Given two Fredholm operators A and B then their product AB is
Fredholm and

ind(AB) = ind(A) + ind(B).

Proof 32 (Partial) Let us show the index relation, leaving the proof of the Fredholm
property of the product as an exercise. We write

Ker(AB) = Ker(B)⊕B−1 (R(B) ∩Ker(A)) |Ker⊥(B)

Ker(B∗A∗) = Ker(A∗)⊕ (A∗)−1 (R(A∗) ∩Ker(B∗))Ker⊥(A∗)

= Ker(A∗)⊕ (A∗)−1
(

Ker⊥(A) ∩ R⊥(B)
)

Ker⊥(A∗)
.

Hence

ind(AB) = dim Ker(AB)− dim Ker(B∗A∗)

= dim Ker(B) + dim (R(B) ∩Ker(A))

− dim Ker(A∗)− dim
(

Ker⊥(A) ∩ R⊥(B)
)

= dim Ker(B) + dim Ker(A) since R⊥(B) = Ker(B∗)

− dim (Ker(B∗) ∩Ker(A))

− dim Ker(A∗)− dim
(

Ker(B∗) ∩Ker⊥(A)
)

= dim Ker (A) + dim Ker(B)− dim Ker(A∗)− dim Ker(B∗)

= ind(A) + ind(B)
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A fundamental property of the index is that it is locally constant.

Theorem 11 Given two Hilbert spaces H1 and H2,

1. The set F(H1,H2) of Fredholm operators in B(H1,H2) is an open subset.

2. The index map ind : F(H1,H2) → ZZ is continuous and locally constant on
F(H1,H2).

Proof 33 Let A : H1 → H2 be a fixed Fredholm operator then H1 = Ker(A)⊕R(A∗)

and H2 = Ker(A∗) ⊕ R(A). Let us consider the spaces H̃1 := Ker(A∗) ⊕ H1 and

H̃2 = Ker(A)⊕H2 together with the map

Hom(H1,H2) −→ Hom(H̃1, H̃2)

A Ã, Ã(u, h) := πKer(A)h⊕ u⊕Ah.

If h = h0 ⊕ h′ ∈ Ker(A)⊕R(A?) then

Ã(u, h) = h0 ⊕ u⊕Ah′ (19)

so that Ã lies in the set Iso
(
H̃1, H̃2

)
of isomorphisms of the Hilbert spaces H̃1 and

H̃2.
Using (19) we can express the Fredholm operator A in terms of the invertible operator

Ã. Let i1(A) : H1 → H̃1 be the natural inclusion and π1(A) : H̃1,→ H1, be the natural
projection. We have π1(A) ◦ i1(A) = IH1 and i1(A) ◦ π1(A) = IH̃1,

− πKerA∗ so that

i1(A) and π1(A) are Fredholm. The same holds for i2(A) and π2(A). It follows from
(19) that

A = π2(A) Ã i1(A).

Given another operator B ∈ B(H1,H2) we set

B̃ := π2(A) B̃ i1(A). (20)

By (19) we have ‖|B̃− Ã|‖ = ‖|B−A|‖ so that a small perturbation B of of A in the
space B(H1,H2) induces a small perturbation B̃ of Ã. Since Ã is an isomorphism and

since Iso(H̃1, H̃2) is open in Hom(H̃1, H̃2), so is B̃ an isomorphism. The operator
B̃ being invertible and hence Fredholm, using the additivity of the index on products
it follows from (20) and the Fredholm property of π2(A) and i1(A), that B is also
Fredholm; thus F(H1,H2) is open in B(H1H2). Since ind(B̃) = 0, by (21) we have

ind(B) = ind(i1(A)) + ind(B̃) + ind(π2(A))

= ind(i1(A)) + ind(π2(A))

= dim(Ker(A))− dim(Ker(A∗))

= ind(A),

which shows that the index is locally constant.

The notion of index is illustrated by Example 23 at the beginning of this chapter.

Example 24 The operator L has index 1. It is easy to check that the index of Ln is
n and the index of Rn is −n, which shows that the index is surjective onto ZZ.
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Corollary 6 Given an operator A ∈ F(H1,H2) and K ∈ K(A,B) then A + K ∈
K(A,B) and we have

ind(A+K) = ind(A).

Proof 34 The fact that A + K is Fredholm was observed previously. The family
At := A+ tK, t > 0 defines a continuous family in F(H1,H2); hence the map f(t) :=
ind(At) is locally constant and we have ind(A+K) = f(1) = f(0) = ind(A).
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, anoperatorA∈ B(H) is self-adjoint if A = A∗.
Here is another characterisation (14) of the norm of a bounded operator when the
operator is self-adjoint.

Lemma 13 Let H be a Hilbert space equipped with a scalar product 〈·, ·〉 and A ∈
B(H) a self-adjoint operator then

|‖A‖| = sup‖u‖=‖v‖=1|〈u,Av〉| = sup‖u‖=1|〈u,Au〉|.

Proof 35 Taking v = u in (14) we infer that

|‖A‖| = sup‖u‖=‖v‖=1|〈u,Av〉| ≥ sup‖u‖=1|〈u,Au〉|.

Conversely, let C := sup‖u‖=1|〈u,Au〉| and let us assume that A is self-adjoint. We
want to show that sup‖u‖=‖v‖=1|〈u,Av〉| ≤ C. From

〈u+ v,A(u+ v)〉 − 〈u− v,A(u− v)〉 = 4 Re〈u,Av〉

we infer that

‖u‖ = ‖v‖ = 1 =⇒ |Re〈u,Av〉| ≤ C

4

(
‖u+ v‖2 + ‖u− v‖2

)
≤ C

2

(
‖u‖2 + ‖v‖2

)
= C.

Choosing θ such that the image Rθu of u under the rotation of angle θ gives rise to a
real number 〈Rθu,Av〉, and applying the above inequality to Rθu instead of u we get

‖u‖ = ‖v‖ = 1 =⇒ |〈u,Av〉| ≤ C

and consequently the identity

|‖A‖| = sup‖u‖=‖v‖=1|〈u,Av〉| = sup‖u‖=1|〈u,Au〉|.

Here are a few useful spectral properties of self-adjoint operators.

Lemma 14 Let H be a Hilbert space and A ∈ B(H) be a self-adjoint operator. The
following properties hold:

1. The eigenvalues of A are real.

2. The eigenspaces of A associated to different eigenvalues are orthogonal.

3. Any non-zero vector u such that

|〈Au, u〉|
‖u‖2

= |‖A‖|

is an eigenvector of A with eigenvalue in {−|‖A‖|, |‖A‖|}.

Proof 36 1. Let λ ∈ C be an eigenvalue of A and u an associated eigenvector,
then < Au, u >= λ < u, u >=< u,Au >= λ̄ < u, u >. But since ‖u‖ 6= 0, it
follows that λ̄ = λ and λ ∈ IR.

2. Given two eigenvalues λi, i = 1, 2, we have

λ1 6= λ2 ⇒ Ker(A− λ1I) ⊥ Ker(A− λ2I).

Indeed, if λ1 6= λ2 are two eigenvalues associated with the eigenvectors u1 and
u2, then < Au1, u2 >= λ1 < u1, u2 >=< u1, Au2 >= λ2 < u1, u2 >, from
which it follows that < u1, u2 >= 0.
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3. By the Cauchy-Schwartz inequality, we have

|‖A‖| = |〈Au, u〉|
‖u‖2

≤ ‖Au‖ ‖u‖
‖u‖2

≤ |‖A‖|

and in particular
|〈Au, u〉| = ‖Au‖ ‖u‖.

This leads to the existence of a complex constant λ such that Au = λu and
|λ| = |‖A‖|. The fact that this eigenvalue of A is real then follows from the first
item so that λ ∈ {−|‖A‖|, |‖A‖|}.

Proposition 22 Given a Hilbert space H, the algebra B(H) equipped with the adjoint
map A 7→ A∗ is a C∗-algebra.

Proof 37 We shall take for granted the fact that B(H) defines a Banach space for
the topology induced by the operator norm.

1. The product of two operators A,B in B(H) satisfies the inequality

|‖BA‖| ≤ |‖A‖| |‖B‖|.

2. The product of two bounded operators is bounded as a consequence of the above
inequality and B(H) is a unital algebra since it contains the identity operator.

3. Since

|‖A‖| = sup‖u‖1=‖v‖2=1|〈Au, v〉2|
= sup‖u‖1=‖v‖2=1|〈u,A∗v〉2|
= sup‖u‖1=‖v‖2=1|〈A∗v, u〉2|
= |‖A∗‖|,

the map A 7−→ A∗ preserves the boundedness and defines an involution on
B(H).

4. Using Lemma ??, we have

|‖A∗A‖| = sup‖u‖=1|〈A∗Au, u〉|
= sup‖u‖=1|〈Au,Au〉|
= |‖A‖|2.

The Gelfand-Naimark theorem says that every abstract C∗-algebra with identity is
isometrically ∗-isomorphic to a C∗-algebra of operators. To prove that result, one
uses the Gelfand-Naimark-Segal or GNS construction which produces a representation
from a state. To a state ρ on a C∗-algebra A, i.e. a positive linear functional
ρ : A → C (ρ(a∗a ≥ 0∀a ∈ A), one can associate a positive semi-definite bilinear
form 〈a, b〉 = ρ(b∗a) with kernel Nρ = {a ∈ A, ρ(a∗a) = 0} which is a subvector space
of A and a left ideal in A. This bilinear form therefore induces a positive definite
form 〈·, ·〉 on A/Nρ and hence a pre-Hilbert space structure on that quotient space,
which by completion gives rise to a Hilbert space Hρ. The left regular representation

πρ : A → B(Hρ)
b 7→ (a 7→ ba)

is cyclic with cyclic vector xρ := 1A +Nρ and ρ(a) = 〈πρ(a)xρ, xρ〉 for any a ∈ A.
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7.5 Closed graph theorem

Useful references are [Br], [Ru].

The operators one comes across in geometry or in physics usually are unbounded
and only defined on a dense domain of the Banach space.

Definition 64 Let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be two Banach space. The graph of an
operator

A : D(A) ⊂ E → F

defined on a domain D(A) is the set:

Gr(A) := {(u,Au) ∈ E × F, u ∈ D(A)}.

It can be equipped with the (graph) norm

‖(u, v)‖ := ‖u‖E + ‖v‖F .

Notice that whenever A is invertible and its inverse bounded, then the graph of A−1

is the symmetric of the graph of A w.r.to the diagonal axis.

Definition 65 The operator A is closed whenever its graph is closed for the graph
norm.

When E and F are separable, there is another characterisation for closed operators.

Lemma 15 An operator A : D(A) ⊂ E → F is closed if, given any sequence (un)
converging to u ∈ E such that Aun converges in F , then the limit u lies in the domain
D(A) and Aun → Au.

Proof 38 The graph of A is closed whenever for a sequence (un, Aun) in Gr(A)
which converges in E × F to (u, v) we have that u ∈ D(A) and v = Au i.e. Aun
converges to v = Au, which corresponds to the characterisation in the lemma.

We shall henceforth assume that the Banach spaces under consideration are separable.

Lemma 16 Any bounded linear operator defined on a closed domain is closed.
Furthermore, a closed linear operator A : D(A) ⊂ E→ F defined on a dense domain
D(A) of E extends in an unique way to a bounded operator on E whenever there is a
constant C > 0 such that ‖Au‖F ≤ C‖u‖E,∀u ∈ D(A).

Example 25 Let F = C([0, 1]) equipped with the norm ‖f‖∞ = supx∈[0,1]|f(x)| and

E = C1([0, 1]) equipped with the norm ‖f‖∞,1 := ‖f‖∞ + ‖f ′‖∞. The operator A :
f 7→ f ′ is defined on D(A) = C∞([0, 1] which is dense in E and we have ‖A(f)‖∞ ≤
‖f‖∞,1 for any f ∈ D(A). This yields back the well-known fact that A extends to a
bounded linear operator A : E→ F.

Proof 39 • Let A be a bounded linear operator on a closed domain D(A). A
sequence (un, Aun) in Gr(A) which converges in E × F, therefore converges to
(u, v) ∈ D(A)×F. It follows from the continuity of A that v = limAun so that
the sequence (un, Aun) converges in Gr(A).
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• To prove the second one, all we need is to define the image of any element
u ∈ E by an extension of A. Since D(A) is dense in E, u can be seen as a
limit u = limn→∞ un of a sequence (un) in D(A). Since (un) is convergent it
is a Cauchy sequence, and hence so is the sequence (Aun) a Cauchy sequence
so that it converges to some v ∈ F since F is complete. The operator A being
closed, this implies that u lies in the domain D(A) and Au = v. This extended
operator (also denoted by A) is clearly a bounded operator.
Moreover this extension does not depend on the choice of the sequence. For
if (u′n) is another sequence tending to u, from the inequality ‖Aun − Au′n‖ ≤
C‖un − u′n‖, it follows that Au′n → Au.

Proposition 23 (Open mapping Theorem) A surjective bounded linear operator
A : E → F between two Banach spaces is open i.e., it sends open subsets to open
subsets.
Consequently, if it is invertible, its inverse is continuous.

Proof 40 It relies on the following result which we take for granted. Under the
assumptions of the proposition, the image A(BE(0, r)) of an open non void ball in E
contains a non void ball BF(0, ε) in F.
Assuming this, we want to show that the range A(U) of an open subset U in E is
open i.e., that any y = A(x) in A(U) is the center of a ball BF(y, ε) in A(U).
The subset U − x of E is open and contains 0 so it contains an open non void
ball BE(0, r). Thus, A(U − x) = A(U) − y which contains A(BE(0, r)) contains
a non void ball BF(0, ε). This implies that A(U) contains the non void open ball
BF(y, ε) = BF(0, ε) + y.

We have shown that a bounded linear operator is closed; the closed graph theorem
provides a converse statement.

Theorem 12 (Closed graph Theorem) Let E and F be two Banach spaces. A
closed linear operator A : E → F with closed domain D(A) is bounded. In particular,
a closed linear operator with domain E is bounded.

Proof 41 • Since E and E are complete, the cartesian product E×E is complete.
Since D(A) is closed, its graph Gr(A) = is closed in E×E and hence complete.

• The map P : Gr(A) → D(A) defined as P (u, v) = u is linear and bounded
since ‖u‖E ≤ ‖(u,Au)‖Gr(A). It is a bijection with inverse u 7−→ (u,Au).
The open mapping theorem implies that its inverse is continuous and hence
‖u‖E +‖Au‖F = ‖P−1(u)‖Gr(A) ≤ C ‖u‖E for some positive constant C (chosen
large enough). Thus ‖Au‖F ≤ (C − 1) ‖u‖E and A is bounded.

In the following, we assume the operators are closed and defined on a dense domain
D(A).

Proposition 24 The inverse of a bijective linear operator A : D(A) ⊂ E → F is a
bounded operator A−1 : F→ E.

Proof 42 Since the graph of A is closed so is the graph of A−1 and the result follows
from the closed graph theorem.

81



Definition 66 The resolvent of A is the set

ρ(A) := {λ ∈ C,A− λI is bijective }
= {λ ∈ C,A− λI is bijective and (A− λI)−1 ∈ B(H)}.

The spectrum σ(A) of A is the complement of the resolvent:

σ(A) := C/ρ(A).

The point spectrum σp(A) is the set

σp(A) := {λ ∈ C,Ker(A− λI) 6= {0}}.

In finite dimensions, σp(A) = σ(A), which is not generally the case in infinite dimen-
sions.

Example 26 Letting H = l2 be the space of l2 convergent sequences and let A : l2 →
l2 be the operator sending a sequence (un) to a sequence (vn) with v0 = 0, vi = ui−1.
0 does not belong to σp(A) but 0 ∈ σ(A).

7.6 Adjoint of an (unbounded) operator

Useful references are [Br], [RS].

Let H1 and H2 be Hilbert spaces equipped with the Hermitian products 〈·, ·〉1 and
〈·, ·〉2 respectively. We extend here the notion of adjoint of an operator to unbounded
operators.

Definition 67 The adjoint of an operator A : D(A) ⊂ H1 → H2 defined on a dense
domain D(A) is an operator A∗ defined on

D(A∗) := {v ∈ H2,∃C(v) > 0, | < Au, v >2 | ≤ C(v)‖u‖1 ∀u ∈ D(A)}

by < Au, v >2=< u,A∗v >1 ∀u ∈ D(A), v ∈ D(A∗).

This defines A∗ in an unique way. For if v∗1 et v∗2 are elements in H1 such that
< Au, v >2=< u, v∗i >1, i = 1, 2 for any u ∈ D(A), then 0 =< u, v∗1 − v∗2 >1 for any
u ∈ D(A) dense in E, which implies v∗1 = v∗2 .

Remark 18 Provided R(A) ⊂ D(A∗) we have Ker(A∗A) = Ker(A). Indeed, clearly
the inclusion Ker(A) ⊂ Ker(A∗A) holds. Conversely we have

A∗Au = 0 =⇒ 〈A∗Au, u〉 = 0 =⇒ ‖Au‖ = 0 =⇒ Au = 0,

so that Ker(A∗A) ⊂ Ker(A).

Whenever E = F = H is a Hilbert space equipped with the inner product 〈·, ·〉 :=
〈·, ·〉E = 〈·, ·〉F , we say A is self-adjoint if A = A∗, i.e

D(A) = D(A∗) and < Au, v >=< u,Av > ∀u ∈ D(A).

The graph of the adjoint A∗ of an operator A is given by

(Gr′(−A∗))⊥ = Gr(A)

82



where “prime” means the symmetric set w.r.to the diagonal axis. This is an easy
consequence of the fact that

< (u,Au), (−A∗v, v) >=< u,−A∗v > + < Au, v >= 0

for u ∈ D(A), v ∈ D(A∗).

Proposition 25 The domain D(A∗) of the adjoint A∗ of a densely defined closed
operator A : D(A) ⊂ H1 → H2 is dense in H1, and the adjoint is also closed.

Proof 43 Let us assume that the domain of A∗ is not dense in H2. Then there
exists a non zero vector u ∈ H2 such that < u, v >2= 0 for any v ∈ D(A∗). Using
the closedness of A, this would imply that

< u, v >2= 0 ⇔ < u, v >2 + < 0,−A∗v >1= 0

⇔ (0, u) ∈ (Gr′(−A∗))⊥ = Gr(A)

and hence A(0) = u 6= 0 which contradicts the linearity of A.
Let us check that A∗ is closed. Let (vn, A

∗vn) be a Cauchy sequence in D(A∗) × H1

converging to (y, x) ∈ H2 ×H1. For any u ∈ D(A), we have

< Au, y >2= lim
n→∞

< Au, vn >2= lim
n→∞

< u,A∗vn >1=< u, x >1

so that | < Au, y >2 | ≤ ‖x‖1 · ‖u‖1 for any v ∈ D(A), which implies y ∈ D(A∗) and
A∗y = x.

Let A : D(A) ⊂ H → H. When the space Hp(A) spanned by the eigenvectors of
A coincides with the total Hilbert space H, letting {en, n ∈ IN} be an orthonormal
basis of eigenvectors of H, the operator has the following discrete resolution:

Au =
∑
n

λn < u, en > ∀u ∈ D(A).

Given a map f : σp(A) ⊂ C → C, using this spectral representation of A we can
define the map f(A) on the domain:

D(f(A)) := {u ∈ H,
∑
n

f(λn)2 < u, en >
2<∞}

by

f(A)u =
∑
n

f(λn) < u, en > en for u ∈ D(f(A)).

Example 27 When A has a discrete resolution with purely discrete spectrum and
positive eigenvalues outside a discrete set of eigenvalues, the function f(x) = e−tx de-
fines a bounded operator e−tA called the heat-operator associated to A. Heat-operators
will be investigated more thoroughly in the sequel.

Let A : D(A) ⊂ H1 → H2 be a closed operator defined on a dense domain D(A) of a
Hilbert space (H1, 〈·, ·〉1) with values in (H2, 〈·, ·〉2), then the domain D(A∗) is dense
in H2 and we can define the adjoint A∗∗ of A∗ which coincides with A.

Let us first check that A ⊂ A∗∗. Given x ∈ D(A), | < x,A∗y > | = | < Ax, y > | ≤
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‖Ax‖‖y‖ for any y ∈ D(A∗) and hence x ∈ D(A∗∗). Since < x,A∗y >=< Ax, y >
the operators A and A∗∗ coincide on D(A). Since A∗∗ is closed as the adjoint of a
closed operator, so is its graph and we have Gr((A∗)

∗
) = (Gr′(−A∗))⊥ = Gr(A), for

Gr(A) is closed. This ends the proof of the identity A∗∗ = A.

A useful property for A : D(A) ⊂ H1 → H2 is

R⊥(A) = Ker(A∗). (21)

Indeed, we have R⊥(A) ⊂ KerA∗. For if < y,Ax >= 0 ∀x ∈ D(A) then y ∈ D(A∗)
and < A∗y, x >= 0 ∀x ∈ D(A). But D(A) is dense in H so it follows that y ∈ KerA∗.
Let us now check the other inclusion. Given x ∈ KerA∗, we have < A∗x, y >= 0 for
any y ∈ D(A) and hence < x,A∗∗y >=< x,Ay >= 0 for any y ∈ D(A) which shows
that x ∈ R(A)⊥.
It follows from (21) that

Ker(A∗)⊕R(A) = H2,

which applied to A∗ yields:
R⊥(A∗) = Ker(A)

and hence
Ker(A)⊕R(A∗) = H1.

The non-zero eigenvalues λn and the eigenvectors un are built recursively using
the previous proposition. Assuming that A 6= 0, let λ1 ∈ {−|‖A‖|, |‖A‖|} and u1 an
associated eigenvector as in the above proposition. Let H1 = 〈u1〉 be the subspace
spanned by u1, then A(H1) ⊂ H1. We easily check that A(H⊥1 ) ⊂ H⊥1 and we can
therefore restrict A to H⊥1 : let A1 denote this restriction. If A1 is identically zero, the
statement holds. Otherwise A1 is a compact operator so that as above, from A1 we
build an operator A2 defined as the restriction of A1 to the orthogonal complement of
the space H2 := 〈u1, u2〉 where u2 ∈ H⊥1 with norm 1 is such that A1u2 = Au2 = λ2u2

for some λ2 ∈ {−|‖A1‖|, |‖A1‖|} . We continue this procedure until we reach an
operator Ai which vanishes identically, or otherwise we pursue indefinitely. This way,
we build a sequence (λn) of eigenvalues and orthonormal associated eigenvectors
(un) such that defined on the subspace h2 := {(un)n∈IN ,

∑∞
n=0 n

2|un|2 < ∞} of
l2-sequences.

8 Differential and pseudo-differential operators

8.1 Differential operators

Useful references are [BGV], [F], [H], [LM], [R].

We need some notations:
For a multi index α := (α1, · · · , αn) ∈ INn, let us set |α| :=

∑n
k=1 αk and for

ξ ∈ IRn, ξα := ξα1
1 · · · ξαnn . We also set Dα

x := (−i)|α| ∂
|α|

∂xα with ∂|α|

∂xα := ∂|α|

∂x
α1
1 ···∂x

αn
n
.

With these notations we have F (Dαf) (ξ) = ξαf̂(ξ) for any Schwartz function

f ∈ S(IRn) where F also denoted by ˆ denotes the Fourier transform f̂(ξ) :=

(2π)
−n2
∫
e−i〈x,ξ〉f(x)dx.

In what follows, K := IR or K := C.
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A differential operator of non-negative integer order m on an open subset U of
IRn is a linear map

A : Ck(U,Kp)→ Ck−m(U,Kq)

of the form
A =

∑
|α|≤m

aα(x)Dα
x (22)

where aα(x) is a (q, p) matrix of smooth K-valued functions with aα 6= 0 for some α
and such that |α| :=

∑n
i=1 αi = m (i.e. A differentiates m times).

Example 28 The Laplacian ∆ := −
∑n
i=1

∂2

∂x2
i

on U := IRn provides an example of

differential operator of order 2.

A change of coordinates x̃ = x̃(x) on U gives for any j ∈ {1, · · · , n}:

∂

∂xj
=

n∑
k=1

∂x̃k
∂xj

∂

∂x̃k
.

As a consequence, in the new coordinates, the operator A reads

A =
∑
|α|≤m

ãα(x̃)D̃α
x

for some other (q, p) matrix ãα of smooth -valued functions on U , which shows that
the operator can be described in a similar way in these new coordinates. If we have
aα(x) = 0 for all |α| = m, then ãβ(x̃) = 0 for all |β| = m so that the order is con-
served under a change of coordinates.

Given a smooth manifold M of dimension n, it therefore makes sense to define a
differential operator A : C∞(M, IR) → C∞(M, IR) of order m as a linear operator
which has the above description (22) in any local chart of M since another local chart
would give the same type of local description via a change of coordinates.

Let GLr() be the group of invertible K-valued r × r matrices. Given two maps
τ1 : U → GLp() and τ2 : U → GLq(K), τ2Aτ1 defines another differential operator or
order m on U since

τ2Aτ1 =
∑
|α|≤m

τ2aα(x)τ1
∂|α|

∂xα
,

is of the same type as (22). Letting πE : E → M and πF : F → M be two vector
bundles based on M of rank p, q respectively, this shows that the shape of the opera-
tor described in (22) is invariant under a change of trivialization τE : U → GLp() on
E and τF : U → GLq() on F .

It therefore makes sense to set the following

Definition 68 A differential operator of order m on a smooth manifold M is a linear
map A : C∞(E) → C∞(F ), where E,F are two vector bundles based on M of rank
p, q over K respectively, such that each point x of M has a neighborhood U with
coordinates (x1, · · · , xn) over which there is a local trivialization E|U ' U×p and
F|U ' U×q in which the operator A reads

A =
∑
|α|≤m

aα(x)Dα
x .
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Example 29 (The Laplace-Beltrami operator) Let (M, g) be a Riemannian
manifold with Riemannian metric g. Here we take E = F = M × C. In a local
chart, the metric reads g(x) = gij(x)dxidxj; let (gij) denotes the inverse matrix of
(gij) and detg the determinant of (gij). The Laplace-Beltrami operator is defined by

∆g := − 1√
detg

n∑
i,j=1

∂

∂xi

√
detg gij

∂

∂xj

= −
n∑

i,j=1

gij
∂2

∂xi∂xj
+ terms of lower order.

Setting gij = δij , the Kronecker symbol of {i, j} yields back the local expression of
the Laplacian on IRn introduced in Example 28.

The Fourier transform description of differential operators, called the momentum
space description, is often useful in physics. Given a point x ∈ M and a local triv-
ialization on a subset U containing x, we identify T ∗xM with IRn, x with a point in
IRn, and write a local section u of the trivialized bundle E over U :

u(x) =
1

(2π)
n
2

∫
IRn

ei〈x,ξ〉û(ξ)dξ

where 〈x, ξ〉 is the inner product on IRn induced by the Riemannian metric at point
x ∈ X. Given a differential operator A : C∞(E) → C∞(F ) and u ∈ C∞(E) with
compact support in some trivialising neighborhood U of a point x ∈M , the Fourier
transform of Au reads:

Au(x) =
1

(2π)
n
2

∫
IRn

ei〈x,ξ〉 σ(A)(x, ξ) û(ξ)dξ =
1

(2π)
n
2

∫
IRn

ei〈x−y,ξ〉 σ(x, ξ)u(y) dξ dy,

where
σ(A)(x, ξ) :=

∑
|α|≤m

aα(x)ξα

is the total symbol of A, which is only defined locally in a neighborhood of the point
x. Using Fourier transforms, one can check that the symbol of the product of two
differential operators A : C∞(F )→ C∞(G) and B : C∞(E)→ C∞(F ), where E, F
and G are three vector bundles over a closed manifold M is given by the star-product
of the two symbols σ(A) and σ(B):

σ(A) ? σ(B) =
∑
γ

(−i)|γ|

γ!
∂γξ σ(A)(x, ξ) · ∂γxσ(B)(x, ξ), (23)

where · stands for the multiplication of matrices. This is a finite sum since σ(A) is
polynomial in ξ.
In contrast the leading part of the symbol of an operator is globally defined. Indeed,
let x and x̃ = x̃(x) be two systems of coordinates on U . The Schwartz property by
which one can exchange partial differentiations yields for |α| = m:

∂|α|

∂xα
=
∑
|β|=m

[
∂x̃

∂x

]α
β

∂|β|

∂x̃β
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where
[
∂x̃
∂x

]
is the symmetrization of the m-th tensor product of the matrix

(
∂x̃
∂x

)
.

Hence for any |α| = m, the matrices aα(x) transforms to:

ãα(x̃) =
∑
|β|=m

aβ(x)

[
∂x̃

∂x

]α
β

.

Thus the expression
∑
|α|=m aα(x)∂

|α|

∂xα extends to a section of ⊗msymTM⊗Hom(E,F ).

Identifying the symmetrised tensor product Sm(V ) := ⊗msymV for some finite dimen-
sional vector space V (via the evaluation map) with the space Sm(V ∗) of homogeneous
polynomials of degree m on V ∗, we identify this expression with the leading symbol
of A:

σL(A)(x, ξ) :=
∑
|α|=m

aα(x)ξα.

Example 30 The leading symbol of the Laplace-Beltrami operator reads σL(∆g)(x, ξ) =∑n
i,j=1 g

ijξiξj := ‖ξ‖2.

For fixed x ∈M , it is a homogeneous polynomial of degree m in the variable ξ ∈ T ∗xM .
It follows from (23) that the leading symbol behaves multiplicatively:

σL(AB) = σL(A)σL(B) (24)

for two differential operators A : C∞(F ) → C∞(G) and B : C∞(E) → C∞(F ),
where E, F and G are three vector bundles over a closed manifold M . Whenever the
manifold M is Riemannian and the bundle E is Hermitian, for a differential operator
A : C∞(E)→ C∞(E) we have

σL(A∗) = σL(A)∗.

In particular, σL(A∗A)(x, ξ) = (σL(A)(x, ξ))
∗

(σL(A)(x, ξ)) is a non-negative matrix
for any (x, ξ) ∈ T ∗xM .

Given an invertible differential operator, its inverse is not differential any longer
hence the need to enlarge the class of differential operators to pseudo-differential
ones.

8.2 Pseudo-differential operators on manifolds

Useful references are [LM], [Sh], [T].

In what follows we shall only briefly sketch the definitions and properties which
can be of use to us later on.

A pseudo-differential operator on a closed smooth manifold M is a linear opera-
tor A : C∞(E) → C∞(F ) where E,F are two vector bundles based on M of rank
p, q respectively, such that each point x of M has a neighborhood U with coordinates
(x1, · · · , xn) over which there are local trivialisations E|U ' U×Cp and F|U ' U×Cq
in which for any section u of E with compact support in U , we have:

Âu(ξ) = σ(x, ξ)û(x)
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for some p × q-matrix valued function σ(x, ξ) (called the symbol of A) obeying the
following growth condition. There is a real constant r such that for any multiindices
α, β there is a constant Cα,β satisfying the following requirement:

|Dα
xD

β
ξ σ(x, ξ)| ≤ Cα,β(1 + ‖ξ‖)r−|β| ∀(x, ξ) ∈ T ∗X.

Let Symr
p,q denote the set of functions satisfying this requirement (for convenience,

we shall often drop the subscripts (p, q)).

Remark 19 A pseudo-differential operator A : C∞(E)→ C∞(F ) has a distribution
kernel K(x, y) with values in Fx ⊗ E∗y where Fx, resp. Ey is the fibre of F above x,
resp. of E above y:

Au(x) =

∫
M

K(x, y)u(y) dy ∀u ∈ C∞(E)

which is smooth outside the diagonal. Its singularities are concentrated on the diag-
onal M ×M .

The product formula (23) for differential operators extends to properly supported
pseudo-differential operators.

Definition 69 Given two open subsets U, V of IRn,

1. a distribution K ∈ D′(U × V ) is properly supported if the two canonical
projection maps U × V ⊃ Supp(K)→ U and U × V ⊃ Supp(K)→ V mapping
(x, y) to x and y respectively are proper maps (i.e., the preimage of a compact
set is compact);

2. an operator A:D(U)→ C∞(U) is properly supported if its Schwartz kernel
is.

Example 31 Differential operators are properly supported since their kernel has sup-
port contained in the diagonal.

Remark 20 [Sh, Proposition 3.1] A properly supported operator maps D(U) to D(U)
as a consequence of (??). It moreover extends to a a continuous map E ′(U) −→
E ′(U).

Example 32 If A is a pseudodifferential operator on U , then for any χ ∈ D(U) and
χ̃ ∈ D∞(U) the operator χA χ̃ is properly supported and its kernel χ(x)K(x, y) χ̃(y)
where K is the kernel of A, has compact support in U × U .

Example 33 If A is a pseudodifferential operator on U , then for any χ ∈ D(U) and
χ̃ ∈ D∞(U) the operator χA χ̃ is properly supported and its kernel χ(x)K(x, y) χ̃(y)
where K is the kernel of A, has compact support in U × U .

The formula for the symbol of a composition of properly supported pseudodifferential
operators, is derived from that proved for differential operators by replacing the
equality sign by an asymptotic expansion of the following type. For symbols σ and
σj , j ∈ IN of decreasing order mj , we set

σ ∼
∞∑
j=1

σj ,
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if for each integerm there exists some integerK for which σ−
∑K
j=1 σj ∈ Sym−m ∀k ≥

K. The symbol of the product of two pseudo-differential operators A : C∞(F ) →
C∞(G) and B : C∞(E)→ C∞(F ), where E, F and G are three vector bundles over
a closed manifold M is given by the star-product of the two symbols σ(A) and σ(B):

σ(A) ? σ(B) ∼
∑
γ

(−i)|γ|

γ!
∂γξ σ(A)(x, ξ) · ∂γxσ(B)(x, ξ). (25)

We single out a subclass of pseudo-differential operators, namely those whose symbol
is poly-homogeneous.

Definition 70 A symbol σ on an open subset U of IRn is classical or poly-homogeneous
of order a ∈ C 3 whenever

σ ∼
∞∑
j=1

σa−j

with σa−j positively homogeneous of degree a− j in ξ i.e.,

σa−j(x, tξ) = ta−jσa−j(x, ξ) ∀t > 0 ∀(x, ξ) ∈ T ∗xU.

The polyhomogeneous property is preserved under a change of local trivialisation so
that we can set the following definition.

Definition 71 A pseudo-differential operator whose symbol in a given chart is clas-
sical, is called a classical pseudo-differential operator.

Example 34 1. Differential operators or order m are classical pseudo-differential
operators of order m.

2. The inverse of a differential operator of order m is a classical pseudo-differential
operator of order −m.

The leading symbol of a classical pseudo-differential operator of order a is given by

σL(x, ξ) := σa(x, ξ) ∀(x, ξ) ∈ T ∗xM.

It is globally defined and multiplicative as a consequence of (25) so that formula (24)
extends to pseudo-differential operators.
A pseudo-differential operator A whose order is smaller than any negative integer is
called a smoothing operator.

Example 35 1. A finite rank pseudo-differential operator is smoothing.

2. A pseudo-differential operator whose kernel is smooth is a smoothing operator.

Let M be a closed Riemannian manifold and E be a Hermitian vector bundle over
M and let as before Hs(E) denote the Hs-Sobolev closure of the space C∞(E) of
smooth sections of some vector bundle E over M . We have the following fundamental
result.

Proposition 26 Let E → M and F → M be two vector bundles over a closed
manifold M . A pseudo-differential operator A : C∞(E) → C∞(F ) of real order a
extends to a bounded operator

A : Hs(E)→ Hs−a(F ).
3The symbol σ lies in Symr where r is the real part of a.
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Proof 44 (see e.g. [Gi, Lemma 1.3.5 ], [LM, Proposition 3.2, chapter III ]).
We need to prove that

|〈Au, v〉| ≤ C ‖u‖s ‖v‖s−a ∀u ∈ Hs(E), v ∈ Hs−a(F ).

Using a partition of unity on the base manifold M and localising the operator via
a local trivialisation, one can reduce the proof to the case of a pseudo-differential
operator A : C∞c (IRn) → C∞c (IRn) whose symbol σ(x, ξ) has compact support in x
where n is the dimension of M . We first observe that

Âu(η) =

∫
IRn

(∫
IRn

ei〈x,ξ−η〉σ(x, ξ) û(ξ)dξ

)
dx =

∫
IRn

τ(η − ξ, ξ) û(ξ) dξ

where we have set τ(η, ξ) :=
∫
IRn

ei〈x,η〉σ(x, ξ)dx. Using the Plancherel formula, for
u, v in C∞c (IRn) we write

〈Au, v〉 =

∫
IRn

Âu(η)v̂(η)dη

=

∫
IRn

∫
IRn

τ(η − ξ, ξ) û(ξ)v̂(η)dξdη.

We set
Ψ(ξ, η) := τ(η − ξ, ξ)(1 + |ξ|)−s(1 + |η|)s−a,

U(ξ) := û(ξ)(1 + |ξ|)s and V (η) = v̂(η)(1 + |η|)a−s. The Cauchy-Schwartz inequality
yields

|〈Au, v〉| ≤
∫ ∫

|Ψ(ξ, η)U(ξ)V (η)|dξdη

≤
(∫

IRn

(∫
IRn
|Ψ(ξ, η)|dη

)
|U |2(ξ)dξ

) 1
2
(∫

IRn

(∫
IRn
|Ψ(ξ, η)|dξ

)
|V |2(η)dη

) 1
2

≤ C‖u‖s ‖v‖s−a,

for some positive constant C, provided
∫
IRn
|Ψ(ξ, η)|dη and

∫
IRn
|Ψ(ξ, η)|dξ are finite.

Since |σ(x, ξ)| ≤ C ′‖ξ‖a for some constant C ′ and since the symbol σ has compact
support in x, for any multiple index γ we have

|ηγ τ(η, ξ)| ≤
∫
IRn
|Dγ

xσ(x, ξ)|dx ≤ C ′γ(1 + ‖ξ‖)a

for some constant C ′γ . Thus for any positive integer k, there is a positive constant

Ck such that |τ(η, ξ)| ≤ Ck (1 + ‖ξ‖)a (1 + ‖η‖)−k from which it follows that

|Ψ(η, ξ)| ≤ Ck(1 + ‖η − ξ‖)−k (1 + ‖ξ‖)a−s (1 + ‖η‖)s−a.

The triangle inequality yields (1 + ‖ξ‖)r ≤ (1 + ‖η‖)r (1 + ‖η − ξ‖)|r| for any real
number r. When applied to r = a− s this gives

|Ψ(η, ξ)| ≤ Ck(1 + ‖η − ξ‖)|a−s|−k

which is L1 in each of the variables for large enough k.

90



Corollary 7 A pseudo-differential operator A : C∞(E)→ C∞(F ) of negative order
extends to a compact operator

A : Hs(E)→ Hs(F )

for any s ∈ IR. In particular, any smoothing operator is compact.

Proof 45 The assertion follows from the compactness of the inclusion i : Ht(F ) →
Hs(F ) for t > s. Indeed, t := s − a with a the order of A is larger than s, hence
A : Hs(E) → Hs−a(F ) composed with the inclusion i is compact as the composition
of a bounded and a compact operator, which yields the compactness of A : Hs(E)→
Hs(F ). The rest of the proposition easily follows.

This has straightforward consequences which yield a hint towards more general prop-
erties. Coupled with the spectral theorem for compact operators Corollary 7 yields
a discrete spectral decomposition for a class of pseudo-differential operators, namely
inverses of differential operators.

Corollary 8 Let E be a finite rank Hermitian vector bundle over a closed Rie-
mannian manifold M . An invertible pseudo-differential operator with positive order
A : C∞(E)→ C∞(E), which is essentially self-adjoint:

〈Au, v〉 = 〈u,Av〉 ∀u, v ∈ C∞(E),

has an infinite set of (non-zero) real eigenvalues {λn, n ∈ IN} such that |λn| tends to
infinity as n tends to infinity. It has the following discrete spectral resolution:

Au =

∞∑
n=1

λn 〈un, u〉un ∀u ∈ C∞(E)., (26)

with a smooth orthonormal set {un, n ∈ IN} of eigenvectors.

Remark 21 Invertibility is not necessary; ellipticity is sufficient. However, we only
give the proof in the invertible case, which is rather straightforward.

Proof 46 Let a be the positive order of A. By Corollary 7 its inverse, which has
negative order −a is a compact operator B := A−1 ∈ K

(
L2(E)

)
(here we have

set s = 0). It is self-adjoint as the bounded inverse of an essentially self-adjoint
operator. By Theorem 9 the sequence (µn) of eigenvalues (which do not vanish in
view of the invertibility) of B tends to zero as n goes to infinity and the corresponding
orthonormal sequence of eigenvectors (un) ∈ L2(E) satisfies

A−1v =

∞∑
n=1

µn 〈un, v〉un ∀v ∈ L2(E). (27)

Recall that A−1 : Hs(E) → Hs+a(E) is bounded for any real number s. Applied
to s = 0 this yields that un lies in Ha(E) since A−1un = µnun. When iteratively
applied to s = ka with k ∈ IN , this procedure yields that un ∈ Hka(E) for any positive
integer k so that un finally lies in C∞(E). Equation (27) applied to v = Au yields
u =

∑∞
n=1〈v, un〉un for any u in C∞(E) and hence, by continuity of A on C∞(E)

Au =

∞∑
n=1

λn 〈v, un〉un ∀u ∈ C∞(E).

Hence the discrete spectral resolution of A.

91



8.3 Elliptic operators, their index and associated heat-operators

The ”discrete spectral resolution” proven above when assuming invertibility of the
whole operator also holds under the weaker assumption that the leading symbol
be invertible. As we shall see, the leading symbol governs many properties of the
operator.

Definition 72 Let E and F be two finite rank bundles over a closed manifold M . A
pseudo-differential operator A : C∞(E)→ C∞(F ), whose leading symbol σL(A)(x, ξ)
is an invertible matrix for any ξ 6= 0 and any x ∈M is called elliptic.

Example 36 1. The Laplace-Beltrami operator ∆g on a Riemannian manifold
(M, g) is elliptic for its leading symbol is σL(∆g)(x, ξ) = ‖ξ‖2 is invertible for
any ξ 6= 0.

2. Any invertible pseudo-differential operator is elliptic for if A is invertible so is
σL(A) by the multiplicativity property (24) of the leading symbol.

From the properties of the leading symbol, it follows that if A is elliptic then so is
A∗, and hence so is A∗A.

Remark 22 In fact the injectivity of the leading symbol of A is enough to have the el-
lipticity of A∗A since σL(A)(x, ξ) injective implies that σL(A∗)(x, ξ) = (σL(A)(x, ξ))

∗

is onto and hence that σL(A∗A) = (σL(A))
∗

(σL(A)) is bijective.

There are at least two ways to build a pseudo-differential operator whose leading
symbol is a given homogeneous symbol p ∈ C∞ (T ∗M ⊗Hom(E,F )); both use an
inverse Fourier transform. The first one uses a partition of unity patching up localised
pseudo-differential operators whose Fourier transform is p (see [Gi] par. 1.3.3), the
second one uses a Riemannian metric on the base manifold and a connection on the
bundle building the associated parallel transport into the inverse Fourier transform
(see [LM] formula (3.19)) of p. Let us denote by Op(σ) the corresponding pseudo-
differential operator, where we have left out the explicit dependence on the various
choices, whether a partition of unity or a metric and connection; different choices
lead to operators which differ by a smoothing operator.
Such a construction yields an ”inverse up to a smoothing operator” Op(σL(A)−1)
(called parametrix) of an elliptic operator A under the mere invertibility of the leading
symbol, which is clearly a weaker assumption than the invertibility of the operators
since the latter implies the former:

Proposition 27 ([LM] Theorem 4.3, [Gi] Lemma 1.4.5) Let E and F be two Her-
mitian vector bundles over a closed Riemannian manifold M . Any elliptic pseudo-
differential operator A : C∞(E) → C∞(F ) has a parametrix, i.e. an inverse map
up to a smoothing (and hence compact) operator. In other words, there is a pseudo-
differential operator B : C∞(F ) → C∞(E) such that AB and BA differ from the
identity map on C∞(E), resp. C∞(F ) by a smoothing operator.
If it is of real order a, it extends to a Fredholm operator (denoted here by the same
letter A):

A : Hs(E)→ Hs−a(F ).

More precisely,

• Ker A and KerA∗ are finite dimensional vector subspaces of C∞(E) and C∞(F )
respectively.
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• Decomposition theorem

Hs(E) = Ker(A)⊕ R(A∗) ∀s ∈ IR,

Hs(F ) = Ker(A∗)⊕ R(A) ∀s ∈ IR,

where the sums are orthogonal w.r.to the Hs-inner product,

C∞(E) = Ker(A)⊕ R(A∗),

C∞(F ) = Ker(A∗)⊕ R(A)

where the sums are orthogonal w.r.to the L2-inner product.

In view of property (18) we can define the index of an elliptic pseudo-differential
operator A : C∞(E) → C∞(F ), where E → M and F → M are two finite rank
Hermitian vector bundles over a closed closed manifold M :

ind(A) = dimKer(A)− dimR(A). (28)

Given two operators A0 and A1 with the same leading symbol as A, their convex sum
A(ε) := εA1 + (1 − ε)A0 has the same leading symbol for any ε ∈ [0, 1] and defines
a continuous one-parameter family of elliptic operators. Since the index is locally
constant, ind(A0) = ind(A1) so that the index only depends on the leading symbol.

Similar arguments to the one used in Corollary 8 further yield a discrete spectral
resolution, under the weaker ellipticity assumption. The inverstibility of the opera-
tor assumed in Corollary 8 is replaced hre by the inverstibility of its leading symbol.

Theorem 13 [Gi] (Lemma 1.6.3 and Lemma 1.12.6) Let E → M be a Hermitian
vector bundle over a closed Riemannian manifold M . Any essentially self-adjoint
elliptic differential operator A : C∞(E)→ C∞(F ) of positive order ord(A) admits a
discrete spectral resolution

Au =
∞∑
n=1

λn 〈u, un〉un ∀u ∈ C∞(E),

where (λn) is the sequence of eigenvalues, which tends to infinity as n tends to in-
finity, and (un) is an orthonormal set in C∞(E) for the L2 product induced by the
Riemannian metric on M and the Hermitian product on E.
Ordering the eigenvalues such that |λ1| ≤ |λ2| ≤ · · · we have

|λn| ∼ Cn
ord(A)
dimM .

Let E → M be a Hermitian vector bundle over a closed Riemannian manifold M .
A (formally) self-adjoint elliptic differential operator A : C∞(E) → C∞(E) with
positive leading symbol satisfies the following condition ([Gi] Lemma 1.6.4)

∃C > 0, 〈Au, u〉 ≥ −C|u|2 ∀u ∈ C∞(E).

Thus, the positivity of the leading symbol implies the existence of a lower bound of
the whole operator, and hence of its spectrum.
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Since the spectrum is purely discrete, it only contains a finite number of non-positive
eigenvalues, in which case we have the following asymptotic behaviour:

λn ∼ Cn
ord(A)
dimM .

The heat equation, associated with a (formally) self-adjoint elliptic differential oper-
ator A : C∞(E)→ C∞(F ) of positive order ord(A) with positive leading symbol is a
system of equations:

(∂t +A)u(x, t) = 0 (evolution equation)

lim
t→0

u(x, t) = u(x) (initial condition). (29)

Remark 23 When A = ∆g is the laplace-Beltrami operator on a Riemannian man-
ifold, this equation allegedly governs the diffusion of heat from an initial distribution
u(x) = u(0, x) on the manifold under consideration.

The spectral resolution of a self-adjoint differential operator given by Theorem 13
yields the existence and uniqueness of the solution.

Proposition 28 Let E and F be two Hermitian vector bundles over a closed Rieman-
nian manifold M . The heat-equation (29) associated with a (formally) self-adjoint
elliptic differential operator A : C∞(E) → C∞(F ) of positive order ord(A) with
positive leading symbol admits a unique solution:

(
e−tAu

)
(x, t) =

∞∑
n=1

e−tλn〈u, un〉un =

∫
M

Kt(x, y)u(y) dy

where Au =
∑∞
n=1 λn 〈un, u〉un ∀u ∈ C∞(E) is the discrete resolution of A and

where

Kt(x, y) :=

∞∑
n=1

e−tλn un(x)⊗ u∗n(y) ∈ Fx ⊗ E∗y ,

is a smooth kernel function for t > 0, called the heat-kernel of A.

Proof 47 We refer the reader to [Gi] Lemma 1.6.5; we nevertheless observe that
since the eigenvalues are positive up to a finite number, the smoothness of the heat-
kernel follows from the convergence of

∑∞
n=1 λ

k
n e
−λn for any non-negative integer

k.

Example 37 The Laplacian ∆S1 on the unit circle S1 associated with the canonical
metric on S1 induced from that on IR and acting on

C∞(S1) = {f ∈ C∞ ([0, 2π]) , f (k)(0) = f (k)(2π) ∀n ∈ ZZ≥0}

has purely discrete spectrum {n2, n ∈ ZZ} and the solution to the associated heat-
operator equation reads:

u(t, θ) =
∑
n∈ZZ

e−n
2t〈u, ei nθ〉 einθ

with the scalar product given by 〈u, v〉 := 1
2π

∫ 2π

0
u(θ) v(θ) dθ.
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The heat-operator associated with an essentially self-adjoint elliptic differential op-
erator A has a well-defined trace

tr
(
e−tA

)
=

∞∑
n=1

e−tλn

with the above notations. In particular the trace of the heat operator e−t∆g associated
with the Laplace-Beltrami on a manifold equipped with a Riemannian metric g played
an important historical role insofar that its asymptotic expansion as t tends to zero
contains information on the manifold.

Example 38 In the case of the Laplacian on the circle we have [R] Theorem 1.12,
a result which dates back to Jacobi (ca. 1870):

tr
(
e−t∆S1

)
=
∑
n∈ZZ

e−n
2t ∼t→0

2π√
4πt

,

where the numerator 2π is to be interpreted as the length of the unit circle.

This one-dimensional example generalises to the Laplace-Beltrami operator ∆g on a
closed n-dimensional Riemannian manifold (M, g) for which we have

tr
(
e−t∆g

)
∼t→0 Vol(M) t−

n
2 . (30)

The issue as to how much geometric information on the manifold one can get from
the spectral information contained in this asymptotic expansion has been nicely for-
mulated in the title ”Can you hear the shape of a drum?” of a famous article by Kac
[Kac].

Remark 24 (see e.g. [R] Corollary 3.25) In particular, isospectral closed Rieman-
nian manifolds i.e., such that the associated Laplace-Beltrami operators have the same
eigenvalues counted with multiplicity, have the same dimension n and the same vol-
ume Vol(M).

8.4 From heat-kernel expansions to zeta functions

The Mellin transform relates complex powers to exponentials. The Gamma function

Γ(s) =

∫ ∞
0

ts−1 e−t dt ,

is holomorphic on the half-plane Re(s) > 0 and extends to a meromorphic function
on the plane with simple poles at negative integers. A change of variable t := λu
yields the Mellin transform

λ−s =
1

Γ(s)

∫ ∞
0

ts−1 e−tλ dt ∀λ > 0. (31)

With the same notations as (26) we define the complex power (A′)
−s

of the restriction
A′ of the operator A to the orthogonal subspace to its (finite dimensional) kernel, via
its spectral resolution by:

(A′)
−s
u =

∞∑
n=1,λn 6=0

λ−sn 〈un, u〉un ∀u ∈ C∞(E), (32)
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where for negative eigenvalues, we use some determination of the logarithmic which
we omit to explicit here. Since the eigenvalues λn of A behave asymptotically as
λn ∼ Cn

a
n the complex power (A′)

−s
of the operator ζ-function has a well-defined

trace on the half-plane Re(s) > n
a called the ζ-function associated with A.

ζA(s) := tr
(

(A′)
−s
)

:=
∑

n∈IN,λn 6=0

λ−sn . (33)

Replacing e−tλ in (31) by tr
(
e−tA

′
)

=
∑
n∈IN,λn 6=0 e

−tλn we get

ζA(s) =
1

Γ(s)

∫ ∞
0

ts−1 tr
(
e−tA

′
)
dt. (34)

The asymptotic behaviour (30) of the heat-operator for the Laplace-Beltrami oper-
ator generalises to any self-adjoint elliptic differential operator with positive lead-
ing symbol A acting on a space of smooth sections of a hermitian vector bun-
dle E over a closed Riemannian manifold M . Indeed, there are some constants
αj =

∫
M
αj(x) dx, j ∈ ZZ≥0 such that (see [Gi] Lemma 1.8.2)

tr
(
e−tA

)
=

J∑
j=0

αj t
j−n
a + o(t

J−n
a ), ∀J ∈ IN, (35)

where n is the dimension of the manifold M and a the order of A, which we assume
to be positive.

Proposition 29 Let A be a self-adjoint elliptic differential operator with positive
leading symbol A acting on a space of smooth sections of a hermitian vector bundle E
over a closed Riemannian manifold M . Its ζ-function –which is holomorphic on the
half-plane Re(s) > n

a– extends to a meromorphic function on the plane with simple
poles which is holomorphic at zero and we have

1. Γ(s) ζA(s) =
∑
j<J

αj
s−n+j

a

− dimKer(A)
s +RJ(s), where RJ is a holomorphic map

on Re(s) > n−J
a ,

2.
ζA(0) = fpt=0tr

(
e−tA

)
= αn. (36)

Proof 48 We split Γ(s) ζA(s) in a holomorphic part
∫∞

1
ts−1 tr

(
e−tA

′
)
dt and a

meromorphic part
∫ 1

0
ts−1 tr

(
e−tA

′
)
dt in which we insert the asymptotic expansion

of tr
(
e−tA

′
)

= tr
(
e−tA

)
− dimKer(A) induced by (35). The result then follows from

the asymptotic expansion Γ(s) ∼0 s
−1.
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9 A brief incursion into index theory

Let f : E → F be a linear map between two finite dimensional vector spaces E and
F . Then

dimKer(f)− dimCoker(f) = dim(E)− dim(F )

since f induces an isomorphism under any complementary subspace of Ker(f) to a
Im(f). Although the dimensions of the kernel and the range of f depend on f , this
formula shows that their difference does not.
If now A : C∞(E) → C∞(F ) is an elliptic operator acting on smooth sections of a
Hermitian vector bundle E over a closed Riemannian manifold M to smooth sections
of a Hermitian vector bundle F over M , by Proposition 27 it has finite dimensional
kernel and cokernel so that

ind(A) = dimKer(A)− dimCoker(A)

is well-defined in spite of the infinite dimensionality of the source and the target
spaces of A. Both the the dimensions of the kernel and the cokernel of A depend
on A but by Theorem 11, their difference is insensitive to ”small” (i.e. compact)
variations of A. The index problem for elliptic differential operators was posed by
Israel Gel’fand [Ge] in 1960; in view of the homotopy invariance of the index he asked
for a formula involving topological invariants.

9.1 From the Gauss-Bonnet to the Atiyah-Singer theorem

The answer to Gelfands question was announced by M.F. Atiyah and I.M. Singer
(1963) and later proved together with various generalisations in a series of papers by
the two authors.
Let M be an even dimensional spin manifold and let E = S⊗W be the tensor product
of the spinor bundle S of M and some exterior bundle W . Since S = S+ ⊕ S− is
ZZ2-graded, so is E = E+⊕E−. Let D+ : C∞(E+)→ C∞(E−) be the corresponding
Dirac operator. The Atiyah-Singer index theorem (see e.g. [BGV], [LM]) expresses
the index of D+ in terms of topological invariants, namely as the integral over the
base manifold of some Chern-Weil forms, namely the Â-genus on M and the Chern
character on W described at the end of chapter 2:

ind(D+) =
1

(2iπ)
n
2

∫
M

Â(∇) ∧ ch(∇W ).

There have since then been various proofs of the Atiyah-Singer theorem, among
which one by E. Getzler (1985) which is a purely analytic proof (based on ideas of E.
Witten and Alvarez-Gaume) involving the asymptotic expansion of the heat-kernel of
the square of the Dirac operator combined with a clever algebraic calculation of the
top order of the asymptotic expansion since then called ”Getzler rescaling” [BGV].
A proof of the Atiyah-Singer index theorem using K-theory combined with the heat-
kernel asymptotic expansion can be found in [Gi].
An important ingredient in the various proofs is the Mac-Kean and Singer formula.
Given a graded hermitian vector bundle E = E+ ⊕ E− on a closed Riemannian
manifold M . An elliptic operator D+ : C∞(E+) → C∞(E−) together with its

(formal) adjoint D− give rise to a self-adjoint operator D =

(
0 ∆−

D+ 0

)
, whose
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square reads ∆ = ∆+ ⊕∆− := D−D+ ⊕D+D−. The operator D being self-adjoint
and elliptic has a discrete resolution and it is easy to check that

Spec(∆+) \ {0} = Spec(∆+) \ {0}. (37)

On the other hand, from the asymptotic behaviour of the eigenvalues {λ+
n , n ∈ IN}

of ∆+ and of the eigenvalues {λ−n , n ∈ IN} of ∆−, we know that for any positive ε

str
(
e−ε∆

)
:= tr

(
e−ε∆

+
)
− tr

(
e−ε∆

−
)

:=
∑
n∈IN

e−ε λ
+
n −

∑
n∈IN

e−ε λ
−
n

By (37) the terms involving non-zero eigenvalues cancel and we have the Mac-Kean
Singer equation:

str
(
e−ε∆

)
= ind(D+). (38)

Combined with (39) this yields

ind(D+) = fpε=0str
(
e−ε∆

)
= sζ∆(0), (39)

where sζ∆ := ζ∆+ − ζ∆− .

Index theorems go back to Gauss. Let S be an oriented smooth surface embedded in
IR3. We consider the corresponding Gauss map

N : S → S2

x 7→ Nx

that takes a point on the surface to the unit normal vector Nx at point x pointing
outwards. The end point of the vector Nx, which is identified with the vector, lies
on the 2-dimensional unit sphere S2. Since ‖Nx‖2 = 1, the tangent vector TxNx at
the end point Nx is orthogonal to Nx so that the tangent spaces TNxS

2 and TxS
are isomorphic. We can therefore consider the tangent map TxN : TxS → TN(x)S

2

to the Gauss map as an endomorphism of TxS. The Gaussian curvature K(x) at a
point x in S – which measures the deformation of an infinitesimal area on S around
x under the Gauss map (see e.g. [R] Chapter 2, paragraph 2.1) – corresponds to its
determinant:

K(x) := det(Nx). (40)

Example 39 The curvature of the standard 2-sphere of radius r is given by r−2.

As shown by Gauss in his famous Theorema Egregium, in spite of its apparent de-
pendence on the embedding of S in IRd, the Gaussian curvature K can be defined
intrinsically in terms of the Christoffel symbols. As the following theorem shows, the
Gaussian curvature has an influence on the topology of the surfacec.

Theorem 14 (Gauss-Bonnet theorem) For a closed oriented surface S of genus
p in IR3

χ(M) =

∫
S

K dA (41)

where χ(S) := 2 − 2p is the Euler characteristic of S and dA the infinitesimal area
element induced by the metric on IR3.
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In view of higher dimensional generalisations, it is useful to recognise (49) as an
index theorem; for this we interpret the topological invariant given by the Euler
chracteristic in terms of the index of a Dirac-type operator of forms. We shall then
very modestly state two index theorems for Dirac-type operators on forms, leaving
out the proofs which would lead us out of the scope of these notes.

9.2 Generalised Laplacians and generalised Dirac operators

Generalised Laplacians and generalised Dirac operators are useful examples of elliptic
operators.

Definition 73 A generalised Laplacian on a vector bundle E over a closed Rieman-
nian manifold M is a second order differential operator A such that σL(A)(x, ξ) =
‖ξ‖2, where ‖ · ‖ is the norm induced by the metric.

Example 40 The Laplace-Beltrami operator on a Riemannian manifold is a gener-
alised Laplacian.

A generalised Laplacian A is elliptic since σL(A)(x, ξ) = ‖ξ‖2 is invertible whenever
ξ 6= 0.

Let E → M be a vector bundle based on a Riemannian manifold M and let E
be equipped with a connection ∇E . The Levi-Civita connection ∇ on M yields
a connection ∇T∗M on T ∗M which, when combined with ∇E , yields a connection
∇T∗M⊗E = ∇T∗M ⊗ 1 + 1 ⊗ ∇E on T ∗M ⊗ E. Composed with ∇E , this yields
an operator ∇T∗M⊗E∇E : C∞(E) → C∞(T ∗M ⊗ T ∗M ⊗ E). Using the metric on
C∞(TM ⊗ TM), by contraction, one can build its trace to obtain a second-order
differential operator

∆E := −tr(∇T
∗M⊗E∇E),

which defines a generalised Laplacian on C∞(E).

Example 41 When E := M ×K, and ∇E = ∇, the Levi-Civita connection on M ,
it yields back the Laplace-Beltrami operator and we have:

∆g = −div ◦ ∇ = ∇∗∇,

where div denotes the divergence defined by:

−〈divU, f〉 = 〈U,∇f〉 ∀f ∈ C∞(M), U ∈ C∞(TM),

and where ∇∗ stands for the adjoint (in the operator sense) of the connection ∇. In-
deed, in local coordinates the divergence reads divU = 1√

g
∂
∂xj

(U j
√
g), which combined

with the local formula (∇f)
j

=
∑n
i,j=1 g

ij∂if yields the first identity.

Example 42 More generally, take E = ΛT ∗M equipped with the connection ∇E
induced by the Levi-Civita connection on M , then

∆ΛT∗M = −tr(∇T
∗M⊗ΛT∗M∇ΛT∗M ) = ∇∗∇

where we have set for short ∇ = ∇ΛT∗M and ∇∗ its adjoint.
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The operator ∆E is non-negative in the following sense:

〈∆Eu, u〉 = 〈∇Eu,∇Ev〉 ≥ 0 ∀u, v ∈ C∞(E).

Following Dirac, we now look for a differential operator DE whose square is a Lapla-
cian ∆E . When E is the trivial bundle E = IRn × C, ∆E is the ordinary Laplacian

∆ = −
∑n
i=1

∂2

∂2xi
on IRn. Looking for an operator D =

∑n
i=1 ci

∂
∂xi

such that D2 = ∆
leads to the Clifford relations of section 3.5, namely:

cicj + cjci = −2δij .

D =
∑n
i=1 ci

∂
∂xi

then yields a first order differential operator which provides a square
root of the Laplacian.
This extends to manifolds and bundles up to the fact that one does not generally
get an exact identification of the square of the Dirac operator with the canonical
Laplacian anymore due to extra terms involving the geometry of the manifold and
the bundle. However such an identification still holds ”up to lower order operators”
i.e., on the level of leading symbols, hence the following definition.

Definition 74 A generalised Dirac operator is a first order differential operator D
whose square is a generalised Laplacian i.e., whose leading symbol σ(D)(x, ξ) satisfies

σL(D2)(x, ξ) = ‖ξ‖2 ∀(x, ξ) ∈ T ∗xM.

Remark 25 Locally, a solution of the equation (σ(D)(x, ξ))
2

= ‖ξ‖2 ∀(x, ξ) ∈
T ∗xM is given by σ(D)(x, ξ) =

∑n
i=1 ci ξi where the ci satisfy the Clifford relations.

Extending Dirac’s construction to build a ”square root” of a Laplacian ∆E ”up to
lower order terms” acting on sections of a vector bundle E, requires the use of a
Clifford connection. We use here the notations of section 3.5.
Let M be a Riemannian manifold and let E → M be a Clifford module based on
M . A connection ∇E on E is called a Clifford connection if it commutes with the
Clifford multiplication on E:

[∇E , c(a)] = c(∇a) ∀a ∈ C∞(C(M)),

where C(M) is the bundle of Clifford algebras on M . Here ∇ is the Levi-Civita
connection on M .

Example 43 • The exterior power of the cotangent bundle: Let E =
ΛT ∗M be equipped with the connection ∇E induced by the Levi-Civita connec-
tion on M . Then ∇E is a Clifford connection for the Clifford action c(v) =
ε(v)− i(v) ∀v ∈ C∞(TM) on ΛT ∗M seen as a Clifford module.

• Spinor bundles: Let E = S ⊗W where S is the spinor bundle on M . The
Clifford module acts on E via a Clifford multiplication c. Since Spin(V ) is a
finite covering of SO(V ), we can lift the Levi-Civita connection on SO(TM) to
a connection on the spinor bundle S. Combined with a connection ∇W on W ,
it yields a Clifford connection ∇S⊗W on S ⊗W .

• Spinc bundles: Let M be a Spinc-manifold, so that the orthonormal frame
bundle SO(TM) → M lifts to some Spinc(V )-bundle where V is the model
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space for M . Since Spinc(V ) → SO(V ) is not a finite covering, the Levi-
Civita connection on M does not automatically lift to a connection on Spinc(V ).
We need additional information, namely a connection on the SO(V ) × S1-
bundle obtained from the quotient of Spinc(V ) by +

−, which lifts to a connection

on Spinc(V ). This connection ∇̃ is obtained from combining the Levi-Civita
connection on M with a connection on the U(1) bundle obtained from Spinc(V )
by dividing out by Spin(V ).

Using a Clifford connection ∇E we consider a first order differential operator

DE :=

n∑
i=1

c(ei)∇Eei

called a Dirac operator.

Example 44 • A Dirac operator associated to the de Rham operator:
By Proposition 10 c := ε − i defines a Clifford multiplication on Ω(M) =
C∞(ΛT ∗M) and by means of the Levi-Civita connection ∇, the operator d+d∗

can be interpreted as a Dirac operator acting on sections of the Clifford module
ΛT ∗M (compare with (6):

DT∗M :=

n∑
i=1

c(ei)∇Eei = d+ d∗. (42)

• The twisted Dirac operator: When M is a spin manifold, S the spinor
bundle and W an exterior vector bundle based on M with connection ∇W , the
operator

DS⊗W :=

n∑
i=1

c(ei)∇S⊗Wei

is called a twisted Dirac operator. In the absence of exterior bundle W , i.e.
when E = S, it is often denoted by D and simply called the Dirac operator
on M . When the dimension of M is odd, DS⊗W is an essentially self-adjoint
Dirac operator (on the adequate domain), when the dimension is even, E =
E+⊕E− = S+⊗W ⊕S−⊗W is ZZ2-graded and D is odd for this grading, i.e.

DS⊗W =

(
0

(
DS⊗W )−(

DS⊗W )+ 0

)
.

• Dirac operators for Spinc-structures: To a connection ∇̃ on a Spinc-
bundle, there is also an associated Dirac operator :

D̃ =

n∑
i=1

c(ei)∇̃ei .

9.3 The Bochner-Weitzenböck and Lichnerowicz formulae

In general, the square of a Dirac operator DE only coincides with the Laplacian ∆E

up to a zero-order differential operator as we shall see from the Lichnerowicz and
Bochner-Weitzenböck formulae below.
The square of DΛT∗M gives rise to the Hodge Laplacian

∆ = d∗d+ dd∗
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acting on forms on a smooth manifold M . Here d is the exterior differential on forms
and d∗ its adjoint for the natural L2-product on form.s This operator relates to the
Bochner Laplacian ∆ΛT∗M by a Bochner-Weizenböck relation:

Proposition 30

(d+ d∗)2 = ∆ΛT∗M +
∑
i<j

c(dxi)c(dxj)Ω(ei, ej)

where Ω(u, v) := [∇u,∇v] − ∇[u,v] is the curvature tensor on ΛT ∗M equipped with
the connection induced by the Levi-Civita connection.

Proof 49 Since the operators involved in the equality to be proven are differential
operators and since the curvature operator is tensorial, the proof can be carried out
choosing an orthornormal tangent frames (e1(x), · · · , en(x)) at a given point x and
does not depend on the way we extend it to a field of orthonormal frames in a neigh-
borhood of x. We choose to extend it to a field of orthonormal frames (e1, · · · , en)
such that (∇ej)x = 0 at point x ∈M .

(d+ d∗)2α =

n∑
i,j=1

c(dxi)∇i(c(dxj)∇jα)

=

n∑
i,j=1

c(dxi)c(dxj)∇i(∇jα)

= −∇i
n∑
i=1

∇i∇jα+

n∑
i<j

c(dxi)c(dxj) (∇i∇j −∇j∇i)α

= ∆ΛT∗Mα−
∑
i<j

c(dxi)c(dxj)Ω(ei, ej)α.

In order to relate the square of the twisted Dirac operator DS⊗W on a spin manifold
with ∆S⊗W we need the notion of twisting curvature. Let us set E = S ⊗ W
equipped with the Clifford connection ∇E := ∇S ⊗ 1⊕ 1⊗∇W which combines the
spin-connection ∇S induced by the Riemannian connection on M and the connection
∇W on the exterior bundle.
We first observe that the curvature ΩE of ∇E decomposes under the isomorphism
End(E) ' C(M)⊗ EndC(M)(E) as follows

(∇E)
2

= R+ FE/S

where R is a C(M)- valued 2-form M given by the formula

R(ei, ej) =
1

4

n∑
k,l=1

〈Ω(ei, ej)ek, el)c(e
k)c(el)〉

where Ω is the Riemannian curvature on M and ei, i = 1, · · · , n is an orthonormal
frame of the tangent bundle TM and ei, i = 1, · · · , n the dual frame. The remaining
two form FE/S is called the twisting curvature, which in this case coincides with the
curvature ΩW on the exterior bundle W .
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The square of a Dirac operator DE differs from the Laplacian ∆E by a term involv-
ing the scalar curvature of M and the twisting curvature of the Clifford connection
∇E as can be seen from the Lichnerowicz formula (see e.g. Theorem 3.52 of [BGV])
or equivalently the general Bochner identity (see Theorem 8.2 of [LM]), which re-

lates the square (DE)
2

of the twisted Dirac operator DE :=
∑n
i=1 c(ei)∇Eei with the

Laplace-Beltrami operator

∆E = tr
(
∇T

∗M⊗E∇E
)

= −
n∑
i=1

(
∇T

∗M⊗E∇E
)
ei,ei

= −
n∑
i=1

(
∇Eei∇

E
ei −∇

E
∇Eeiei

)
(43)

associated with the superconnection ∇E on E, where ∇T∗M⊗E is the connection
induced on the tensor product bundle T ∗M ⊗E by the Levi-Civita connection on M
and the connection ∇E on E. Here {ei, i = 1, · · · , n} is a local orthonormal tangent
frame.

Proposition 31 (
DE
)2

= ∆E +RE = ∆E +RW +
s

4
, (44)

where rM stands for the scalar curvature on M and

RE :=
∑
i<j

c(ei) c(ej)
(
∇E
)2

(ei, ej); RW :=
∑
i<j

c(ei) c(ej)
(
∇W

)2
(ei, ej). (45)

In particular, for a flat auxillary bundle we have:

D2
W = ∆M +

s

4
,

where ∆M is the Laplace-Beltrami operator on the Riemannian manifold M .

Proof 50 We choose a local orthonormal tangent frame {ei, i = 1, · · · , n} at point
x ∈ M such that

(
∇Eei
)
x

= 0 for all i ∈ {1, · · · , n}. Since DE =
∑n
i=1 c(ei)∇Eei , at

that point x we have:

(
DE
)2

=

n∑
i,j=1

c(ei)∇Eei c(ej)∇
E
ej

=

n∑
i,j=1

c(ei) c(ej)
[(
∇E
)2

(ei, ej) +∇E∇eiej
]

= −
n∑
i=1

(
∇E
)2

(ei, ei) +
∑
i<j

c(ei) c(ej)
[(
∇E
)2

(ei, ej)−
(
∇E
)2

(ej , ei)
]

= ∆E +
∑
i<j

c(ei) c(ej)
(
∇E
)2

(ei, ej)

= ∆E +RE .
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The curvature term
(
∇E
)2 ∈ Ω2(End(E)) decomposes as

(
∇E
)2

=
(
∇S
)2 ⊗ 1 + 1⊗(

∇W
)2

so that RE =
∑
i<j c(ei) c(ej)

(
∇S
)2

(ei, ej)+RW . A careful computation (see

e.g. the proof of Theorem 3.52 in [BGV]) shows that
∑
i<j c(ei) c(ej)

(
∇S
)2

(ei, ej) =
s
4 .

9.4 The Hodge de Rham decomposition theorem

From the Bochner-Weitzenböck formula, we know that the Hodge Laplacian ∆ =
(d+ d∗)

2
differs from the Laplacian ∆ΛT∗M by a zeroth-order differential operator.

They therefore have the same leading symbol; since we know that ∆ΛT∗M is elliptic,
so is ∆. As a consequence of Proposition 27 applied to the restriction ∆p of ∆ to
p-forms, the space of p-harmonic forms given by:

Hp(M) := {α ∈ Ωp(M),∆pα = 0}

is finite dimensional. Its dimension is called the p-th Betti number and is denoted by

βp(M). Since Ker(∆p) = Ker
(
d|Ωp(M)

)
we have

βp(M) = dim(Hp(M)).

On the other hand, the decomposition theorem for Fredholm operators yields a Hodge
decomposition theorem:

Ωp(M) = Hp(M)⊕R(d+ d∗)|Ωp(M)
= Hp(M)⊕R

(
d|Ωp−1(M)

)
⊕R

(
d∗|Ωp+1(M)

)
,

the direct sums corresponding to orthogonal sums w.r.to the inner product on forms.
As a consequence, we have:

βp(M) = dim (Hp(M)) .

The Hodge star isomorphism between p-forms and n−p-forms yields the isomorphism:

Hp(M) ' Hn−p(M)

and hence
βp(M) = βn−p(M).

The Euler characteristic which is given by the alternating sum of the Betti numbers
defines a topological invariant of the manifold:

ξ(M) =

n∑
p=0

βp(M). (46)

There is another possible interpretation of the Euler characteristic as the index of
the zero section in the tangent bundle TM . Let f : M → N be a smooth map
from a closed oriented smooth m-dimensional manifold M to another closed oriented
smooth n-submanifold N of an oriented manifold W of dimension m + n such that
f is transverse to N . A point x ∈ f−1(N) has positive or negative type according to
whether the composition:

Mx →Wf(x) →Wf(x)/Nf(x)
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preserves or reverses orientation. Here the first map is the tangent map Txf to f at
point x. Accordingly we set ix(f,N) = 1 or ix(f,N) = −1. The intersection number
of (f,N) is the integer:

i(f,N) :=
∑

x∈f−1(N)

ix(f,N).

It is invariant under homotopies of the map f .

Now if s0 : M → TM is the zero section of the tangent bundle of M , we have:

ξ(M) = i(s0,M).

As a consequence, since any section s of the tangent bundle is homotopic to the zero
section by the map (t, x) 7→ ts(x), if the tangent bundle to M has a section which is
nowhere zero then ξ(M) = 0. Since ξ(S2n) = 2, every vector field on S2n vanishes
somewhere. In other words, a ”hairy ball cannot be combed”.

We shall also need so split the space of harmonic forms as the sum

Hp(M) = Hp,sd(M)⊕Hp,asd(M)

of the space of self-dual harmonic p-forms

Hp,sd(M) := {α ∈ Hp(M), ?α = α}

and of the space of anti self-dual harmonic p-forms

Hp,asd(M) := {α ∈ Hp(M), ?α = −α}

which are both trivially finite dimensional since the space of harmonic p-forms is. We
set

β+
p (M) := dim

(
Hp,sd(M)

)
, β−p (M) := dim

(
Hp,asd(M)

)
.

Clearly we have:
βp(M) = β+

p (M) + β−p (M).

9.5 Three index theorems on forms

To give a flavour of index theory, we state here (without proof) three index theorems
of forms.
We saw that the operator D = d+d∗ gives rise to a Dirac operator D acting on forms
on a closed manifold M . Two different gradings on Ω(M) give rise to two different
chiral Dirac operators.

9.6 The Chern-Gauss-Bonnet index theorem on forms

Let us first equip Ω(M) with the ZZ2-grading given by the parity of the form

Ω(M) = Ωev(M)⊕ Ωodd(M)

where Ωev(M) = Ker(I − P ) is the algebra of forms of even degree and Ωodd =
Ker(I + P ) the space of forms of odd degree. Here P denotes the parity operator
which is 1 on even forms and −1 on odd forms. The index of the Dirac operator
D+
P := (d+ d∗)|Ker(I−P )

can be expressed in terms of the Euler characteristic defined
in (46):
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Lemma 17
ind(D+

P ) = χ(M).

Proof.

ind(D+
P ) = dimKer(D+

P )− dimKer(D−P )

= dimKer((1− P )D)− dimKer((1 + P )D)

=
∑
p

dimKer(D|Ω2p(M)
)−

∑
p

dimKer(D|Ω2p+1(M)
)

=

n∑
p=0

(−1)pdimKer(D|Ωp(M)
)

=

n∑
p=0

(−1)pdimHp(M)

=

n∑
p=0

(−1)pβp(M)

= χ(M).

The Chern-Gauss-Bonnet index theorem (which we do not prove here) provides a
local expression of the index:

Theorem 15

ind(D+
P ) = χ(M) = (2π)−

n
2

∫
M

e(∇)

where ∇ is the Levi-Civita connection on M , e(∇) the Euler class of M equipped with
∇ introduced in (9).

9.7 The Hirzebruch signature index theorem

Let us now introduce another ZZ2-grading on Ω(M) using the chirality operator de-
fined on p forms by:

Γ = (−1)pn+
p(p−1)

2 +lik(n)?

where ? is the Hodge star defined in formula (3). We have set k(n) := n
2 if n is even

and k(n) := n+1
2 if n is odd. Since Γ2 = I , the space of forms splits:

Ω(M) = Ω+(M)⊕ Ω−(M)

where we have set Ω+(M) = Ker(Γ− I) and Ω−(M) := Ker(Γ + I). If the dimension
n is even, then D = d + d∗ anti-commutes with Γ, i.e. ΓD = −DΓ, so that the
operator D+

Γ := (d+ d∗)|Ker(I−Γ)
acts from the space Ω+(M) to the space Ω−(M).

We henceforth specialise to the case n = 2k = 4l is a multiple of 4, for which Γ
coincides with the Hodge star operator on k-forms. In particular we have:

Hk,sd(M) = {α ∈ Ωk(M),Γα = α}

and
Hk,asd(M) = {α ∈ Ωk(M),Γα = −α}

that are finite dimensional spaces with dimensions β+
k (M) and β−k (M) respectively.
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Proposition 32 In dimension n = 2k = 4l, the bilinear form

σ : Ωk(M)× Ωk(M) → IR

(α, β) → σ(α, β) :=

∫
M

α ∧ β

induces a non degenerate symmetric bilinear form on Hk(M). Its signature, called
the signature of M , is given by

σ(M) := sign(σ) = β+
k (M)− β−k (M).

Proof 51 We saw previously that
∫
M
α∧β = (−1)k

∫
M
β∧α on k-forms so that if k

is even, it yields a symmetric bilinear form. Given two closed forms α and β, σ(α, β)
only depends on the cohomology class of α and β; indeed∫

M

(α+ dγ) ∧ β =

∫
M

α ∧ β +

∫
M

dγ ∧ β

=

∫
M

α ∧ β +

∫
M

d(γ ∧ β)−
∫
M

γ ∧ dβ

=

∫
M

α ∧ β,

where we have used Stokes’ theorem to set the middle integral to zero and the fact
that β is closed to set the last integral to zero.

The form σ is non degenerate; indeed, let us assume that
∫
M
α∧β = 0 for any closed

k-form β and let us show that α = 0. Pick a harmonic k-form α as representative of
a cohomology class in Hk(M). Then

(d+ d∗)α = 0⇒ dα = d∗α = 0⇒ d(?α) = 0.

Hence ?α is also a closed k-form and we can take β = ?α. This yields α ∧ ?α =
‖α‖2 = 0 so that α = 0 which ends the proof of the non degeneracy.

Let us now compute this bilinear form in different cases. For α ∈ Hk,sd(M), β ∈
Hk,sd(M), we have

σ(α, β) =

∫
M

α ∧ β =

∫
M

α ∧ ?β = 〈α, β〉,

if α ∈ Hk,asd(M), β ∈ Hk,asd(M)

σ(α, β) =

∫
M

α ∧ β =

∫
M

α ∧ ?β = −〈α, β〉

and if α ∈ Hk,sd(M), β ∈ Hk,asd(M)

σ(α, β) =

∫
M

?α ∧ β = (−1)k
∫
M

β ∧ ?α = 〈α, β〉 =

∫
M

?α ∧ ?β = −σ(α, β) = 0.

As a consequence, σ is diagonal on Hk,sd(M) ⊕Hk,asd(M) with eigenvalues +1,−1
with multiplicity β+

k (M) and β−k (M). The bilinear form σ therefore has signature

sign(σ) = dimHk,sd(M)− dimHk,asd(M) = β+
k (M)− β−k (M).
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The following Lemma relates the index of D+
Γ to the signature of the manifold:

Lemma 18
ind(D+

Γ ) = σ(M).

Proof 52 We first observe that if αi, i = 1, · · · , βj(M) is an orthonormal basis of
Hj(M) with j < k then α+

i = αi + ?αi, α
−
i = αi − ?αi, i = 1, · · · , βj(M) yield an

orthonormal basis of Hj⊕Hn−j, where ? is the Hodge star operator. Since the α+
i are

self-dual and the α−i are anti self-dual, they yield an orthonormal basis respectively
of Hj,sd(M)⊕Hn−j,sd(M) and Hj,asd(M)⊕Hn−j,asd(M). As a consequence,

β+
j (M) + β+

n−j(M) = dim
(
Hj,sd(M)⊕Hn−j,sd(M)

)
= dim

(
Hj,asd(M)⊕Hn−j,asd(M)

)
= β−j (M) + β−n−j(M).

Hence we have,

ind(D+
Γ ) = dimKer(D+

Γ )− dimKer(D−Γ )

= dimKer(D|
Ωsd(M)

)− dimKer(D|
Ωasd(M)

)

=

n∑
j=0

dim
(
Hj,sd(M)

)
−

n∑
j=0

dim
(
Hj,asd(M)

)
=

n∑
j=0

β+
j (M)−

n∑
j=0

β−j (M)

=

k−1∑
j=0

(
β+
j (M) + β+

n−j(M)
)
−
k−1∑
j=0

(
β−j (M) + β−n−j(M)

)
+ β+

k (M)− b−k (M)

= β+
k (M)− b−k (M)

= σ(M).

The Hirzebruch signature index theorem (which we do not prove here) gives a local
expression of the index as an integral of the L-genus introduced in (10):

Theorem 16 Let M be an oriented closed n = 4l Riemannian dimensional manifold.

ind(D+
Γ ) =

(−1)l

π2l

∫
M

L(∇)

where as before, ∇ is the Levi-Civita connection.

9.8 The Riemann-Roch theorem

Let M be a Hermitian almost-complex manifold. Following a similar procedure as
for the de Rham operator, we first recognise ∂ + ∂

∗
as a Dirac operator on complex

forms.
The Clifford map c = ε− ι on the vector bundle of differential forms described above
induces a Clifford action on the vector bundle of anti-holomorphic differential forms
Λ
(
T 0,1M

)∗
in the following way:

α = α1,0 + α0,1 ∈ Ω1(M) =⇒ c(α) =
√

2
(
ε(α1,0)− ι(α0,1)

)
.
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Since α1,0 = α0,1, the operator c(α) is skew-adjoint

(c(α))
∗

= ε∗(α1,0)− ι∗(α0,1) = ι(α0,1)− ε(α1,0) = −c(α).

If the manifold is Kähler, we saw that ∇ J = 0, hence ∇ preserves the holomorphic
and anti-holomorphic tangent bundles. Since the Levi-Civita ∇ commutes with ε− ι,
it therefore follows that ∇ commutes with the above Clifford connection.
We further saw that d = ε ◦ ∇, hence for a local frame (ei)i=1,...,n of

(
T 1,0M

)∗
dual

to the tangent frame (ei)i=1,···,n we have

d = ε(ei)∇ei + ε(ei)∇ei =⇒ ∂ = ε(ei)∇ei .

A computation of the adjoint shows that

∂
∗

= −ι(ei)∇ei .

Hence
∂ + ∂

∗
= (ε− ι) (ei)∇ei = c ◦ ∇

corresponds to a Dirac operator on complex forms.
Similarly to the Lichnerowicz formula, the Bochner-Kodaira formula relates (∂+∂

∗
)2

to the generalized Laplacian ∆0,• := −
∑
i

(
∇Zi∇Zi −∇ZiZi

)
up to curvature terms.

In particular, the operator ∂ + ∂
∗

seen as a differential operator acting on anti-
holomorphic differential forms is elliptic.
We equip Λ

(
T 0,1M

)∗
with the ZZ2-grading induced by the natural ZZ-grading on

forms so as to split D = ∂+∂
∗

into two odd differential operators D+ and D− acting
respectively on even and odd anti-holomorphic differential forms. Since D is elliptic,
the operator D+ has a well-defined index which coincides with the alternating sum
of the Hodge numbers:

ind
(
D+
)

=
∑
i

(−1)idimCH
0,i(M) =

∑
i

(−1)ih0,i

called the arithmetic genus of M . The Riemann-Roch theorem (which do not prove
here) states that

ind
(
D+
)

=
1

(2iπ)n/2

∫
M

Td(M).
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10 Configuration and moduli spaces

This chapter offers an illustration of how the various tools from geometry and operator
theory presented in the previous chapters can come into play in quantum field theory.
A short description of spaces of (inequivalent) configurations arising in Yang-Mills,
Seiberg-Witten and string theory is given here.

10.1 The geometric setting

A classical field theory with symmetries typically leads to the following geometric
setting. A gauge group G (a group of symmetries) acts on an (infinite dimensional)
space of configurations X, and one is interested in the moduli space of inequivalent
configurations M := X/G.

The space of inequivalent configurations can play a role to study solutions of the
classical field equations –namely the Euler-Lagrange equations minimizing the clas-
sical action– (Yang-Mills equation in Yang-Mills theory and the Seiberg -Witten
equations in Seiberg-Witten theory) or to investigate the quantized theory from a
path integration point of view (in string theory). In both cases the non-compactness
of the moduli space can come into the way; Seiberg-Witten theory offers the advan-
tage over Yang-Mills theory that the moduli space of classical solutions is compact
and Seiberg-Witten invariants are built up from integrals on the moduli space of in-
equivalent solutions to the Seiberg-Witten equations. In the path integral approach
to quantization, when the moduli space is a finite dimensional manifold (for string
theory, the Teichmüller space of inequivalent conformal structures on a Riemann
surfaces is a smooth finite dimensional manifold), one can reduce path integrals on
infinite dimensional configuration spaces to ordinary integrals on the moduli space.

If the action is not free, the moduli space might not be a Hausdorff space; to cure
this problem, one can either reduce the group of gauge transformations or reduce the
configuration space in order to get a free action and a manifold structure on the quo-
tient space. For this reason, in Yang-Mills and Seiberg-Witten theory one restricts
to irreducible configurations, whereas in string theory, one restricts the gauge group,
considering only the connected component of the identity of the group of diffeomor-
phisms of a surface.

Recall from the (slice) theorem of section 3.2, that given a Hilbert Lie group G, act-
ing L2-isometrically on a smooth Hilbert manifold X via a smooth, free and proper
action, provided the tangent map τx := Deθx (see notations of section 3.2) has a
closed range, then the quotient space X/G is a smooth Hilbert manifold. In practice,
one typically comes across the following situation:

- G is modelled on some space Hs+k(E) of Sobolev sections of some vector bundle
E based on a closed manifold M of dimension n (k > 0, s is usually chosen
large enough s > n

2 so that Sobolev sections are continuous),

- X is modelled on some spaceHs(F ) of Sobolev sections of another vector bundle
F based on M ,

- for x ∈ X, τx : C∞(E)→ C∞(F ) is a differential operator of order k > 0 with
injective symbol.
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The last proposition in section 4.8 then tells us that if τx were elliptic, it would extend
to a Fredholm operator τx : Hs+k(E) → Hs(F ) and hence have a closed range (see
section 3). Yet the mere injectivity of the symbol of τx which implies that τ∗xτx is
elliptic, which is sufficient since it yields the closedness of the range of τx and as a
consequence, the L2- orthogonal splitting:

R(τx)⊕Ker(τ∗x ) = C∞(F ).

Remark 26 The stronger assumption that τx be elliptic would require that its leading
symbol be an isomorphism for non vanishing ξ, but this in turn implies that E and F
should have the same rank, which is not always the case in practice. However, under
the weaker requirement that the leading symbol be injective for non vanishing ξ This
splitting actually holds in the Hs topology.

We have:

Theorem 17 Let G be a Hilbert Lie group modelled on some space Hs+k(E) of
Sobolev sections of some Hermitian vector bundle E based on a closed manifold M
of dimension n (with s > n

2 , k > 0) acting on a Hilbert manifold X modelled on
some space Hs(F ) of Sobolev sections of another Hermitian vector bundle F based
on M . We assume that the action is L2-isometric for the L2 Riemannian metric on
X built from inner products on the model space obtained by integrating along M the
inner products on the fibres. If the action is free, proper and smooth and if moreover,
for any x ∈ X, τx : C∞(E) → C∞(F ) is a differential operator of order k > 0 with
injective symbol, then the moduli space X/G is a smooth manifold.

In applications, an additional difficulty occurs; because one restricts oneself to some
Sobolev setting, the differential operator τx may have non smooth coefficients lying in
some Sobolev space so that one then needs to adapt the classical results on differen-
tial operators with smooth coefficients (notice that a differential operator of order a
with Hk-coefficients takes smooth sections to Hk−a sections unlike an operator with
smooth coefficients which takes smooth sections to smooth sections). We shall elude
this difficulty here, referring the reader to [KRo, Theorem 3.1.10] for a discussion on
this point.

10.2 Inverse limit of Hilbert manifolds

We want to extend the slice theorem beyond Hilbert spaces, to spaces of smooth
sections C∞(M,E) of some bundle E on a closed manifold M , which are Fréchet
spaces and intersections C∞(M,E) = ∩k∈INHk(M,E) of Hilbert spaces Hk(M,E)
of Hk sections of E. The group Diff(M), should it be equipped with a suitable Lie
group structure, its Lie algebra is expected to be the space C∞(M,TM) of smooth
of the tangent bundle TM . This calls for the set up of inverse limits of Hilbert
manifolds.

If {Xn, n ∈ IN} is a countable family of topological spaces with continuous in-
clusions Xn−1 ↪→ Xn then the intersection X :=

⋂
nXn can be endowed with the

projective topology which corresponds to the weakest topology on X that makes the
inclusions X ↪→ Xn continuous. We denote the resulting topological space, called the
inverse limit of the Xn by (X;Xn, n ∈ IN).
If for every n ∈ IN , the space Xn is a linear Hilbert space and the inclusion maps are
linear, the resulting inverse limit (X;Xn, n ∈ IN) is a linear space called an inverse
limit of Hilbert spaces or an I.L.H. vector space for short.

111



Definition 75 A Ck- I.L.H. manifold (resp. C∞- I.L.H. manifold) modelled on an
I.L.H. linear space (E;En, n ∈ IN) is an I.L.H. topological space (X;Xn, n ∈ IN)
such that

- Xn is a Ck-Banach manifold (resp. C∞-Banach manifold) modelled on En,

- For each x ∈ X, for any n ∈ IN , there is an open neighborhood Un(x) of x in
Xn and homeomorphisms:

Φn : Un(x)→ Vn ⊂ En

which yield Ck (resp. C∞) coordinate systems around x ∈ Xn and satisfy:

Un+1(x) ⊂ Un(x) and Φn|Un+1(x)
= Φn+1,

- U(x) :=
⋂
n Un(x) is an open neighborhood of x in (X;Xn, n ∈ IN).

We have included the last condition in the definition of an I.L.H. manifold which
makes it a strong I.L.H. manifold according to the usual convention, so that I.L.H.
manifolds considered here are in fact strong I.L.H. manifolds.

Definition 76 A map φ : X → Y between two Ck-I.L.H. manifolds is Ck-I.L.H.
differentiable if it is the inductive limit of Ck-differentiable maps φn : Xm(n) → Yn
for some m(n) such that φn|Xm(n+1)

= φm(n+1). It is smooth if it is Ck for all k ∈ IN .

Remark 27 There are examples for which one can choose m(n) = n (e.g. the
multiplication in the Weyl group, see below), but allowing m(n) 6= n is necessary
if we want to put an I.L.H. Lie group structure on the group of diffeomorphisms we
need in the context of string theory.

Definition 77 An I.L.H. topological group is called an I.L.H. Lie group if it is a
smooth I.L.H. manifold with the group operations given by smooth I.L.H. maps.

Example 45 The group of smooth diffeomorphisms on a closed manifold can be
equipped with an I.L.H. Lie group structure [O], [AM] even though the group of dif-
feomorphisms of a fixed Sobolev class is not a Banach Lie group (due to the lack of
smoothness of the left multiplication), hence the relevence of the concept of I.L.H.
space.

10.3 A slice theorem in the Fréchet setting

The results of this paragraph are based on [KRo]. Let P , B be smooth I.L.H. mani-
folds, π : P → B a smooth I.L.H. map and G an I.L.H. Lie group. Then (P,B,G, π)
is an I.L.H. principal bundle if and only if the transition maps are smooth I.L.H. maps.

We are now ready to state an extension of the above slice theorem to an I.L.H.
manifold modelled on a space of smooth sections. The notion of properness extends
to the I.L.H. setting in a straightforward way.

Theorem 18 Let G be an I.L.H. Lie group acting transitively on the right on a
smooth I.L.H. manifold X:

Θ : G ×X → X

(g, x) 7→ x · g.
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Let us assume that the I.L.H. manifolds X, resp. G are modelled on the I.L.H. spaces
C∞(M,E) = ∩k∈INHk(M,E), resp. C∞(M,F ) = ∩k∈INHk(M,F ) where E → M
and F → M are two Hermitian vector bundles based on some closed Riemannian
manifold M . The manifold X is equipped with a (weak) L2 Riemannian structure
built from inner products on their model spaces obtained by integrating along M the
inner product on the fibres.
Under the following assumptions:

- The action of G on X is smooth I.L.H., L2-isometric, free and proper,

- Setting θx := Θ(·, x) for any x ∈ X, the map:

τx : g → TxX

u 7→ Deθx(u)

is an injective differential operator with injective symbol (so that τ∗xτx is ellip-
tic),

then the quotient is a smooth I.L.H. manifold equipped with the induced L2-structure
and the canonical projection π : X → X/G yields an I.L.H. principal fibre bundle.

Remark 28 This can be compared with [H, Theorem 2.5.1] established in the tame
Fréchet setup. Tame Fréchet spaces are special classes of graded Fréchet spaces, where
by graded we mean a Fréchet space equipped with a fixed collection of seminorms
{‖ · ‖n, n ∈ IN} increasing in strength, | · ‖0 ≤ | · ‖1 ≤ · · · ≤ | · ‖n ≤ · · · and which
induce the locally convex topology on the space. The space C∞(M,E) of smooth
sections of a vector bundle E →M over a closed manifold is a tame Fréchet space.

Let us now turn to three examples in quantum field theory; Yang-Mills, Seiberg-
Witten and string theory which use the above theorem.

10.4 Configurations in Yang-Mills gauge theory

Useful references are [CT], [FU], [KRo], [MM], [N], [Ts].

G denotes a fixed compact connected Lie group.

Let P be be a smooth principal bundle based on a closed manifold M with structure
group G. Let adP := P ×GLie(G) be the the vector bundle based on M with typical
fibre given by the Lie algebra Lie(G) of G associated to the adjoint action of G on
Lie(G). Let us set E := adP and F := T ∗M ⊗ adP , a vector bundle the sections of
which are 1-forms on M with values in adP .

The space of configurations: Let C(P ) (resp. Cs(P )) denote the space of smooth
(resp. Hs) connections on P . Since a connection on P is a G-equivariant Lie(G)-
valued one form ω on P such that ω(X̃) = X ∀X ∈ Lie(G) (X̃ is the canonical
vector field generated by X), two connections differ by a horizontal one form on P
and hence an adP valued one form on M . C(P ) (resp. Cs(P )) is an affine I.L.H.
(resp. Hilbert) space with tangent vector space C∞(F ) (resp. Hs(E)).

The gauge group: Let EG := P ×G G where G acts on itself by the adjoint ac-
tion, then the set C∞(EG) (resp. Hs(EG)) of smooth (resp. Hs-Sobolev) sections
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of EG is an I.L.H. (resp. Hilbert) Lie group modelled on C∞(E) (resp. Hs(E)). It
corresponds to the group of automorphisms of P that cover the identity map on M .

The space of irreducible configurations: A connection A on P induces a covariant
derivation ∇A on adP from which one can define a differential operator of order 1:

dA : Ω0(M,E) = C∞(E) → Ω1(M,E) = C∞(F )

σ 7→
(
X → ∇AX(σ)

)
which extends to the exterior differential dA : Ω∗(M,E) → Ω∗+1(M,E). The oper-
ator dA is generally not injective so that we need to restrict ourselves to irreducible
connections, namely those for which dA is one to one. Notice that when A is re-
ducible, an element u ∈ KerdA generates gauge transformations gt := etu that leaves
A fixed. The space C̄(P ) (resp. C̄s(P )) of irreducible smooth (resp. Hs) connections
on P ) is also an I.L.H. (resp. Hilbert) manifold modelled on C∞(F ) (resp. Hs(F )).

An L2-structure on the configuration space: SinceG is compact, its Lie algebra Lie(G)
can be equipped with a positive definite inner product which is invariant under the
adjoint action. The bundle E = adP thus inherits an inner product which, combined
with the Riemannian metric on M yields an inner product on F = T ∗M ⊗ adP .
Hence, the configuration space C(P ) which is modelled on C∞(F ) can be equipped
with an L2-metric obtained by integrating along M the inner product on F . This
metric is invariant under the action Θ.

The gauge group action: The I.L.H. Lie group C∞(EG) acts smoothly on the I.L.H.
space C(P ) of smooth connections on P :

Θ : C∞(EG)× C(P ) → C(P )

(g,A) 7→ A · g := A+ g−1dAg.

The action Θ is L2-isometric and it induces a smooth, free and proper action on the
I.L.H. space of irreducible configurations:

Θ̄ : C∞(EG)/Z × C̄(P ) → C̄(P )

(g,A) 7→ a · g := A+ g−1dAg.

Here Z is the center of C∞(EG) and corresponds to C∞(P ×G Z(G)) where Z(G) is
the center of G.

The tangent operator τx: It is the tangent operator at identity to θA := Θ(·, A) and
therefore corresponds to the first order differential operator dA : C∞(E) → C∞(F )
which has injective symbol.

The moduli space of inequivalent connections: Applying the slice theorem to the
I.L.H. gauge group quotiented by its center G := C∞(EG)/Z acting on the I.L.H.
manifolds of irreducible configurations X := C̄(P ) shows that the moduli space X/G
of inequivalent irreducible connections on P is a smooth I.L.H. manifold.
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10.5 Configurations in Seiberg-Witten theory

Classical references are [Ma], [Mo].

The setting is similar in spirit to the Yang-Mills setting. Here M is a closed 4-
dimensional Spinc manifold and P̃ the lift of the orthonormal frame bundle SO(TM)
to a principal Spinc bundle based on M . Let E := M×IR and F := T ∗M⊗IR⊕S+(P̃ )
where S+(P̃ ) is the spinor bundle associated to the Spinc structure on M .

The space of configurations: Let C(L) (resp. Cs(L)) be the I.L.H. (resp. Hilbert)
space of U(1) smooth (resp. Hs ) connections on L, the determinant line bundle L
associated to P̃ . The space of smooth (resp. Hs) configurations is given by:

C(P̃ ) := C(L)× C∞(S+(P̃ ))

resp.
Cs(P̃ ) := Cs(L)×Hs(S+(P̃ )).

It is a smooth I.L.H. (resp. Hilbert) manifold.

The gauge group: The group of smooth (resp. Hs) automorphisms of P̃ that cover
the identity on the frame bundle of M is an I.L.H. (resp. Hilbert) Lie group which
coincides with the group of smooth (resp. Hs) maps C∞(M,S1) (resp. Hs(M,S1)).

The gauge group action: An element g of C∞(M,S1) induces a bundle map detg
on the determinant bundle L and a bundle map S+(g) on the spinor bundle S+(P̃ ).
It acts on the space of configurations by:

Θ : C∞(M,S1)× C(P̃ ) → C(P̃ )

(g, (A,ψ)) 7→ (A,ψ) · g := (detg∗A,S+(g−1)ψ).

Irreducible configurations: Let C̄(P̃ ) := {(A,ψ) ∈ C(P̃ ), ψ 6= 0} (resp. (C̄s(P̃ ) :=
{(A,ψ) ∈ Cs(P̃ ), ψ 6= 0}) denote the space of irreducible configurations. It is a sub-
manifold of C(P̃ ) (resp. C̄s(P̃ )) as an open subset of that I.L.H. (Hilbert ) manifold.
The above action is free when restricted to irreducible configurations:

Θ̄ : C∞(M,S1)× C̄(P̃ ) → C̄(P̃ )

(g, (A,ψ)) 7→ (A,ψ) · g := (detg∗A,S+(g−1)ψ).

The action ΘA is smooth, free and proper.

An L2-isometric action: The Riemannian metric on M induces a Hermitian product
on the spinor bundle S+(P̃ ) and hence one on the bundle F . Integrating this inner
product on M , yields an L2-metric on C̄s(P̃ ) which is invariant under the Θ action.

The tangent operator τx: The tangent operator at Id to the map θ(A,ψ) := Θ̃(·, (A,ψ))
is the first order differential operator

τ(A,ψ) : C∞(E) → C∞(F )

f 7→ (2df,−f · ψ)

which has injective symbol.
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The moduli space of irreducible configurations: We can apply the slice theorem to
the gauge group G := C∞(M,S1), the space of irreducible configurations X := C̄(P̃ )
and conclude that the moduli space X/G of inequivalent irreducible configurations is
a smooth I.L.H. manifold.

10.6 The Teichmüller space in string theory

The geometric setting for string theory is also that of Teichmüller theory. Useful
references are [AJPS], [D], [DHP], [Tr] and many references therein.

Here M is a closed Riemann surface of genus p (which we shall assume here is larger
than 1), E := IR ⊕ TM and F := T ∗M ⊗s T ∗M the symmetrized product of the
cotangent bundle, where ⊗s denotes the symmetrized tensor product.
In what follows, s will be assumed large enough for the sections of the different bun-
dles to be continuous.

The configuration space: Let M(M) := {g ∈ C∞(T ∗M ⊗s T ∗M),detg > 0} (resp.
Ms(M) := {g ∈ Hs(T ∗M ⊗s T ∗M),detg > 0}) be the space of smooth (resp. Hs)
Riemannian metrics on M ; it is an I.L.H. (resp. Hilbert) manifold modelled on
C∞(T ∗M ⊗s T ∗M) (resp. Hs(T ∗M ⊗s T ∗M)).

The gauge group: Let W(M) := {eφ, φ ∈ C∞(M, IR)} (resp. Ws(M) := {eφ, φ ∈
Hs(M, IR)}) be the group of smooth (resp. Hs) Weyl transformations, D(M) :=
{f ∈ C∞(M,M), f−1 ∈ C∞(M,M)} (resp. Ds(M) := {f ∈ Hs(M,M), f−1 ∈
Hs(M,M)}) the group of smooth (resp. Hs) diffeomorphisms of M . W(M), D(M)
are I.L.H. Lie groups modelled on C∞(M, IR), C∞(TM) respectively. For fixed large
enough s, Ws(M) is a Hilbert Lie group, but Ds(M) is not; it is a Hilbert manifold
modelled on Hs(TM) which is only a topological group. The I.L.H. setting is there-
fore useful to put a Lie group structure on diffeomorphisms.

Let D0(M) denote the connected component of the identity map in D(M) and let

G := D0(M)�W(M)

where � stands for the semi-direct product, namely the product with a twisted prod-
uct law (f, φ)� (f ′, φ′) := (f ◦ f ′, φ ◦ f ′ + φ).

Group actions: The Weyl group W(M) acts on the configuration space M(M) by
pointwise multiplication:

W(M)×M(M) → M(M)

(φ, g) 7→ eφg

and this I.L.H. action is smooth, free and proper. The set

Conf(M) :=
{

[g] := {eφ · g, eφ ∈ W(M)}, g ∈M(M)
}

is an I.L.H. manifold, the manifold of conformal structures. It is diffeomorphic to the
I.L.H. manifold

J (M) := {J ∈ C∞(TM ⊗ T ∗M), J preserves orientation and J2 = −I}
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of smooth almost complex structures on M .

Because the genus is assumed to be larger than 1, in each conformal class [g] of
g ∈ Ms(M), there is an smooth metric with curvature −1. Let us set M−1(M) :=
{g ∈M(M), sg = −1} where sg is the scalar curvature of g.
There is a diffeomorphism of I.L.H. manifolds [Tr]:

M−1(M) ' J (M) ' Conf(M).

The gauge group G of interest to us acts on M(M) by:

D0(M)�W(M)×M(M) → M(M)

((f, φ), g) 7→ f∗eφg

and the action is smooth, free and proper (using here again the fact that the manifold
has genus larger than 1).

An L2-metric on the configuration space: In order to understand the quotient space,
we use a splitting of the tangent space to the manifold of metrics. It is isomorphic
to the space of covariant two tensors and splits into pure trace and traceless two
covariant tensors:

TgM(M) ' C∞(T ∗M ⊗s T ∗M) = C∞(M, IR) · g ⊕ C∞0,g(T ∗M ⊗s T ∗M)

where C∞0,g(T
∗M⊗sT ∗M) := {h ∈ C∞(T ∗M⊗sT ∗M), trg(h) := gabhab = 0}. This

splitting is orthogonal w.r.to the inner product induced by the metric g on M on the
space of smooth covariant two tensors. This inner product on TgM(M) induces an
L2-metric onM(M) which is only invariant under D(M) but not underW(M). As we
saw above, the action of the Weyl group onM(M) being a straightforward pointwise
multiplication, the fact that it is not L2- isometric is not a major obstruction to
apply the slice theorem when taking the quotient. It is however a serious obstacle
from the path integration point of view and this non invariance of the metric under
Weyl transformations is a source of conformal anomaly.

10.7 Conformal covariant operators

We view the Laplace-Beltrami operator ∆g associated with a Riemannian metric g
as an example of a more general class of conformally covariant operators.
Given a vector bundle E over a closed n-dimensional manifold M , let us consider
maps

Met(M) → Cl(M,E)

g 7→ Ag,

where Met(M) denotes the space of Riemannian metrics on M .

Definition 78 The operator Ag ∈ Cl(M,E) associated to a Riemannian metric g
is conformally covariant of bidegree (a, b) if the pointwise scaling of the metric
ḡ = e2fg, for f ∈ C∞(M) yields

Aḡ = e−bfAge
af = e(a−b)f A′g, for A′g := e−af Ag e

af , (47)

for constants a, b ∈ IR.
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Remark 29 If Ag is of bidegree (a, b), then its (formal)adjoint A∗g is of bidegree
(−b,−a).

Here are some known conformally covariant differential operators; more details
are in Chang [?].
Differential operators of order 1. (Hitchin [Hit]) For M spin, the Dirac operator
Dg := γi · ∇gi is a conformally covariant operator of bidegree

(
n−1

2 , n+1
2

)
.

Differential operators of order 2. If dim(M) = 2, the Laplace-Beltrami operator
∆g is conformally covariant of bidegree (0, 2). It is well known that in dimension two

Rḡ = e−2f (Rg + 2∆gf) , (48)

where Rg is the scalar curvature, and by the Gauss-Bonnet theorem (compare with
Theorem 14) ∫

M

Rg dAg = 2πχ(M), (49)

with the Euler characteristic χ(M) a topological and hence a conformal invariant.
Here dAg is the area element (intrinsically) defined by the metric g.

On a Riemannian manifold of dimension n, the Yamabe operator, also called the
conformal Laplacian,

Lg := ∆g + cnRg,

is a conformally covariant operator of bidegree
(
n−2

2 , n+2
2

)
, where cn := n−2

4(n−1) .

For u ∈ C∞(TM),

Pgu := ∇gu−
1

2
trg(∇gu) · g,

corresponds to the traceless part of ∇gu. The operator P ∗g Pg is a generalised Lapla-
cian on vector fields, which is conformally covariant of bidegree (−2, 2).

10.8 Conformal anomalies

This subsection based on [?] and [AJPS] derives the conformal anomaly of the zeta
determinant of a conformally covariant operator.
LetM be a closed Riemannian manifold andMet(M) denote the space of Riemannian
metrics on M . The space Met(M) is trivially a Fréchet manifold as the open cone
of positive definite symmetric (covariant) two-tensors inside the Fréchet space

C∞(T ∗M ⊗s T ∗M) := {h ∈ C∞(T ∗M ⊗ T ∗M) : hab = hba}

of all smooth symmetric two-tensors. The Weyl group W(M) := {ef : f ∈ C∞(M)}
acts smoothly on Met(M) by Weyl transformations

W (g, f) = ḡ := e2fg,

and given a reference metric g inMet(M), a functional F :Met(M)→ C induces a
map

Fg = F ◦W (g, ·) : C∞(M) → C,

f 7→ F(e2fg).
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Definition 79 A functional F on Met(M) is conformally invariant for a reference
metric g if Fg is constant on a conformal class, i.e.

F(e2fg) = F(g) ∀f ∈ C∞(M).

A functional F on Met(M) is conformally invariant if it is conformally invariant
for all reference metrics. A functional F :Met(M) ×M → C is called a pointwise
conformal covariant of weight w if

F(e2fg, x) = w · f(x)F(g, x) ∀f ∈ C∞(M), ∀x ∈M.

A functional F :Met(M)→ C which is Fréchet differentiable has a differential

dF(g) : TgMet(M) = C∞(T ∗M ⊗s T ∗M)→ C,

dF(g).h :=
d

dt

∣∣∣
t=0

F(g + th)−F(g)

t
.

For such a functional F , the differentiability of the Weyl map implies that the compo-
sition Fg : C∞(M)→ C is differentiable at 0 with differential dFg(0) : T0C

∞(M) =
C∞(M)→ C.

Definition 80 The conformal anomaly for the reference metric g of a differ-
entiable functional F on Met(M) is dFg(0). In physics notation, the conformal
anomaly in the direction f ∈ C∞(M) is

δfFg := dFg(0).f = dF(g).2f g

= lim
t=0

F(g + 2tfg)−F(g)

t
=

d

dt

∣∣∣
t=0
F(e2tfg).

Remark 30 F is conformally invariant if and only if dFg(0).f = 0 for all g ∈
Met(M), f ∈ C∞(M).

For a fixed Riemannian metric g = (gab), we equip C∞(M) with the L2 metric

(f, f̃)g =

∫
M

f(x)f̃(x)dvolg(x).

We define an L2 metric on Met(M) by

〈h, k〉g :=

∫
M

gac(x)gbd(x)hab(x) kcd(x) dvolg(x) =

∫
M

hcd(x) kcd(x) dvolg(x) (50)

with (gab) = (gab)
−1 and hab(x) := gac(x)gbd(x)hcd(x). The L2 metric induces a

weak L2-topology onMet(M), and L2(T ∗M⊗sT ∗M), the L2-closure of C∞(T ∗M⊗s
T ∗M) with respect to 〈 , 〉g, is independent of the choice of g modulo Hilbert space
isomorphism. The choice of a reference metric yields the inner product (50) on the
tangent space TgMet(M) = C∞(T ∗M ⊗s T ∗M), giving the weak L2 Riemannian
metric on Met(M), and forming the completion of each tangent space.

The various inner products are related as follows:

Lemma 19 For g inMet(M), h in C∞(T ∗M⊗sT ∗M) and f in C∞(M), show that

〈h, f g〉g = (trg(h), f)g

where we have set: trg(h) := hbb = gabhab.
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Definition 81 If the differential dF(g) : C∞(T ∗M ⊗s T ∗M) → C extends to a
continuous functional dF(g) : L2(T ∗M ⊗s T ∗M) → C, then by Riesz’s lemma there
is a unique two-tensor Tg(F) with

dF(g) · h = 〈h, Tg(F)〉g, ∀h ∈ L2(T ∗M ⊗s T ∗M).

Tg(F) is precisely the L2 gradient of F at g.

Proposition 33 Let F be a functional on Met(M) which is differentiable at the
metric g and whose differential dF(g) extends to a continuous functional dF(g) :
L2(T ∗M ⊗s T ∗M) → C. Then the differential dFg(0) also extends to a continuous

functional dFg(0) : L2(M) → C. Identifying the conformal anomaly at g with a
function in L2(M), we have

dFg(0) = 2 trg (Tg(F)) .

In particular, the functional F is conformally invariant iff trg (Tg(F)) = 0 for all
metrics g.

Proof 53 The differential d(Fg)0 extends to a continuous functional because

dFg(0) · f = dF(g)(2fg) =⇒ dFg(0) · f = dF(g)(2fg)

By Exercise ??,

dFg(0) · f = dF(g) · (2fg) = 〈Tg(F), 2f g〉g = 2 (trg(Tg(F)), f)g ,

as desired.

Definition 82 Under the assumptions of the Proposition, the function

x 7→ δxFg := 2trg (Tg(F)) (x)

is called the local anomaly of the functional F at the reference metric g.

This is taken from bosonic string theory.
Let (M, g) be a closed Riemann surface and X : M → IRd a smooth map. Let

∆g := − 1√
detg

∂i
√

detg gij∂j

(where as before det g stands for the determinant of the metric matrix (gij) and (gij)
its inverse) denote the Laplace-Beltrami operator on M . The classical Polyakov
action [?] (see also [AJPS] and references therein for a review) for bosonic string
reads

A(X, g) := 〈∆gX,X〉g. (51)

1. Show that it yields a conformal invariant action depending on X.
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2. For any h ∈ C∞(M,T ∗M ⊗s T ∗M), show that

dA(X, ·)(g) · h = 〈h, Tg(x)〉g

where Tg is the two-covariant tensor Tij := ∂iX
µ ∂jX

µ − 1
2 trg(∂iX

µ∂jX
µ) g

called the energy-momentum tensor.

3. Check that trg(Tg) = 0 as a consequence of the conformal invariance of A(X, ·).

The Teichmüller space: Up to the fact that the action is isometric only for D0(M),
a discrepancy we argued is only a minor difficulty when applying the above theorem
because the action of the Weyl group is rather straightforward, we can apply the slice
theorem. The quotient space, called the Teichmüller space

T (M) :=M(M)/G(M)

is a smooth finite dimensional manifold (its dimension over IR is 6p− 6) and we have
the following diffeomorphisms of finite dimensional manifolds [AJPS], [Tr]:

T (M) ' J (M)/D0(M) ' Conf(M)/D0(M).
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Hodge, Panoramas et Synthèses, N. ß, Soc.Math.France 1996

[Br] G.E. Bredon, Introduction to compact transformation groups, Academic Press
1972
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