

From combinatorial species to spaces of generalized independences

Yannic VARGAS

Algebraic, analytic and geometric structures emerging from quantum field theory π , Chengdu, 2024

If $n \in \mathbb{N}$, let $[n] := \{1, 2, ..., n\}$.

Let I be a finite set.

A composition of I is a sequence

$$
F=(F_1,\ldots,F_k)=F_1|\cdots|F_k
$$

of disjoint non-empty sets such that their reunion is I. We write $F \models I$.

For example,

 $2|569|3|1478 \vDash [10].$

Let $\Sigma[I]$ the vector space generated by all compositions of I and let \mathfrak{S}_I be the group of permutations on I.

Let $\Sigma[I]$ the vector space generated by all compositions of I and let \mathfrak{S}_I be the group of permutations on I.

The vector space $\Sigma[I]$ is a right \mathfrak{S}_{I} -module, where the action permutes the elements of I.

Let $\Sigma[I]$ the vector space generated by all compositions of I and let \mathfrak{S}_{I} be the group of permutations on I.

The vector space $\Sigma[I]$ is a right \mathfrak{S}_{I} -module, where the action permutes the elements of I.

This action extends to a (covariant) functor

 Σ : FinSet \rightarrow Vect,

where

 $I \mapsto \Sigma[I]$: $(I \xrightarrow{\sigma} J) \mapsto (\Sigma[I] \xrightarrow{\Sigma[\sigma]} \Sigma[J]).$

Let $\Sigma[I]$ the vector space generated by all compositions of I and let \mathfrak{S}_I be the group of permutations on I.

The vector space $\Sigma[I]$ is a right \mathfrak{S}_{I} -module, where the action permutes the elements of I.

This action extends to a (covariant) functor

 Σ : FinSet \rightarrow Vect,

where

 $I \mapsto \Sigma[I]$: $(I \xrightarrow{\sigma} J) \mapsto (\Sigma[I] \xrightarrow{\Sigma[\sigma]} \Sigma[J]).$

The construction Σ is an example of a vector species.

Species

André Joyal, Alain Connes, Olivia Caramello and Laurent Lafforgue, IHES (2015)

The theory of combinatorial species was introduced by André Joyal in 1980. Species can be seen as a categorification of generating functions. It provides a categorical foundation for enumerative combinatorics.

Species

A vector species is a functor

 $p :$ FinSet \rightarrow Vect.

Species

A vector species is a functor

 $p :$ FinSet \rightarrow Vect.

By functoriality,

$$
I \xrightarrow{\alpha} J \xrightarrow{\beta} K \Longrightarrow p[\beta \circ \alpha] = p[\beta] \circ p[\alpha],
$$

$$
I \xrightarrow{id_I} I \Longrightarrow p[\text{id}_I] = \text{id}_{p[I]}.
$$

In particular, $p[\sigma]^{-1} = p[\sigma^{-1}]$ for every $I \xrightarrow{\sigma} J$.
For every $n \in \mathbb{N}$, \mathfrak{S}_n acts on $p[n]$ via $\sigma \cdot x := p[\sigma](x)$. Therefore,

species $p \longleftrightarrow V = (V_n)_{n>0}, V_n$ is a \mathfrak{S}_n -module.

Examples of species

 \blacksquare Species \blacksquare of sets:

$$
\mathsf{E}[I] := \mathbb{K}\{H_I\}.
$$

Species E_n of n-sets:

$$
\mathsf{E}_n[I] := \begin{cases} \mathbb{K}\{H_I\}, & \text{ if } |I| = n; \\ (0), & \text{ if } |I| \neq n. \end{cases}
$$

Species $X := E_1$ of sets of one element.

Species $1 := E_0$.

 \blacksquare Species G of graphs:

 $G[I] := \mathbb{K} \{ H_G : G$ is a finite graphs with vertices in I.

Examples of species

- Species Π of partitions.
- Species L of linear orders.
- Species Σ of set compositions.
- \blacksquare Species B of binary trees.
- \blacksquare Species $\mathfrak S$ of permutations.
- Species Braid of braid hyperplane arrangements.

. . . nLab: "A (combinatorial) species is a presheaf (or a higher categorical presheaf) on the groupoid core(FinSet)" (the "permutation groupoid").

Many variants are obtained by modifying the input category FinSet (replace by total orders, posets, permutations, . . .) and/or the output category Vec (replace by sets, modules, algebras, species, . . .).

Species is a categorical tool to understand generating functions and their interactions, combinatorially.

Generating functions: *ordinary*, exponential, Dirichlet, Lambert, ...

Operations on species

Sum of species $(p+q)[I] := p[I] \oplus q[I].$ **Product of species (Cauchy product)**

$$
(p\cdot q)[I]:=\bigoplus_{I=S\sqcup T}p[S]\otimes q[T].
$$

Operations on species

Composition of species

Generating function of a species

To every species p it is associated its exponential generating function:

$$
p(x):=\sum_{n\geq 0}dim_{\mathbb{K}}p[n]\frac{x^n}{n!}.
$$

We have:

$$
(p+q)(x) = p(x) + q(x),
$$

\n
$$
(p \cdot q)(x) = p(x) \cdot q(x),
$$

\n
$$
(p \circ q)(x) = p(x) \circ q(x).
$$

For the last identity, $q[\emptyset] := (0)$.

Enumerative application

A plane labelled binary tree is:

 \blacksquare empty;

a a couple of labelled complete binary trees, and the labelled root.

This translates as,

 $B = 1 + X \cdot B^2$,

which implies:

$$
B(x) = 1 + xB(x)^2.
$$

Therefore,

$$
\mathsf{B}(x)=\frac{1-\sqrt{1-4x}}{2x}=\sum_{n\geq 0}n!\left(\frac{1}{n+1}\binom{2n}{n}\right)\frac{x^n}{n!}.
$$

Recall that the Cauchy product of two species p and q is given by

$$
(p\cdot q)[I]=\bigoplus_{I=S\sqcup T}p[S]\otimes q[T].
$$

Recall that the Cauchy product of two species p and q is given by

$$
(\mathsf{p} \cdot \mathsf{q})[I] = \bigoplus_{I = S \sqcup T} \mathsf{p}[S] \otimes \mathsf{q}[T].
$$

Endowed with this operation, the category of species Sp is symmetric monoidal: we can speak of monoids $(\mu : p \cdot p \rightarrow p)$, comonoids $(\Delta : p \rightarrow p \cdot p)$, ..., in species.

$$
p[S] \otimes p[T] \xrightarrow{\mu_{S,T}} p[I] \qquad p[I] \xrightarrow{\Delta_{S,T}} p[S] \otimes p[T].
$$

Hopf monoids refine Hopf algebras. There are a bit more abstract but better suited for many combinatorial purposes.

There is a Fock functor

Hopf monoids \rightarrow Hopf algebras

Many (combinatorial) phenomena in combinatorial Hopf algebras comes from phenomena in Hopf monoids.

Hopf monoids

A bimonoid (h, μ, Δ) consist of:

- for each finite set I, a vector space $h[1]$;
- for each partition $I = S \sqcup T$, maps

satisfying associativity, coassociativity, unitality, counitality, compatibility and naturality.

(Bimonoidal object in the braided monoidal category of vector species)

Hopf monoids

A Hopf monoid (h, μ, Δ) consist of:

- for each finite set I, a vector space $h[1]$;
- for each partition $I = S \sqcup T$, maps

■ for each finite set I and for each $x \in h[I]$, there exists a formal linear combination

 $s_I(x) \in h[I]$

$$
\sum_{S \sqcup T = I} s_S(x|_S) \cdot x/_S = \sum_{S \sqcup T = I} x|_S \cdot s_T(x/_S) = \begin{cases} 1 & \text{ if } I = \emptyset, \\ 0 & \text{ otherwise.} \end{cases}
$$

Hopf monoids

A Hopf monoid (h, μ, Δ) consist of:

- for each finite set I, a vector space $h[1]$;
- for each partition $I = S \sqcup T$, maps

product $\mu_{S,T} : h[S] \otimes h[T] \rightarrow h[I]$ coproduct $\Delta_{S,T} : h[I] \to h[S] \otimes h[T]$

 \blacksquare Takeuchi's formula: if h is connected, then

$$
s_I=\sum_{F\vdash I}(-1)^{\ell(F)}\mu_F\Delta_F,
$$

for any non-empty set I.

Example: Hopf monoid of "ripping and sewing" of graphs

 $G[1]:=K{H_q : g is a graph (with half edges) on vertex set I}$ **Product**: $H_{g_1} \cdot H_{g_2} = H_{g_1} \sqcup H_{g_2}$ (disjoint union) Coproduct: $\Delta_{S,T}(H_q) = H_{q|S} \otimes H_{q/S}$, where $g|s =$ keep everything incident to S g/s = remove everything incident to S

Example: Hopf monoid of graphs

 $G[I] := \mathbb{K} \{H_G : G \text{ is a graph (with half edges) on vertex set } I\}$

$$
g = \stackrel{b}{\underset{\sim}{\bigwedge}} \stackrel{a}{\underset{\sim}{\longrightarrow}} \stackrel{c}{\underset{\sim}{\bigtriangleup}} \in G[\{a, b, c\}].
$$

$$
\Delta_{a, bc}(H_g) = \stackrel{H}{\underset{\sim}{\longrightarrow}} \stackrel{a}{\underset{\sim}{\bigtriangleup}} \otimes \stackrel{H}{\underset{\sim}{\bigtriangleup}} \stackrel{b}{\underset{\sim}{\longrightarrow}} c
$$

$$
\Delta_{bc, a}(H_g) = \stackrel{H}{\underset{\sim}{\bigtriangleup}} \stackrel{b}{\underset{\sim}{\searrow}} \otimes \stackrel{H}{\underset{a}{\bigtriangleup}}
$$

There are many other examples...

- **graphs G**
- posets P
- \blacksquare trees \top
- matroids M
- **I**linear orders L
- set partitions Π
- set compositions Σ
- paths A
- simplicial complexes SC
- **hypergraphs HG**
- **building sets BS**

Character group of a Hopf monoid

Let I a finite set and $I = S \sqcup T$.

A character ζ of a Hopf monoid h is a species map

$$
\zeta: h \to \mathbf{E}, \quad \zeta = (\zeta_I), \quad \zeta_I: h[I] \to \mathbb{K}
$$

such that

$$
\zeta_I(x\cdot y)=\zeta_S(x)\cdot\zeta_T(y)\qquad,\qquad \zeta_\emptyset(\varepsilon)=1.
$$

Character group of a Hopf monoid

The characters of h form a group $\mathbb{X}(h)$ under convolution product:

$$
(\zeta\xi)_I(x)=\sum_{I=S\sqcup T}\zeta_S(x|_S)\xi(x/_S).
$$

The unit of $\mathbb{X}(\mathsf{h})$ is $u_1(x) := \delta_{x,\varepsilon}$; the inverse of $\zeta \in \mathbb{X}(\mathsf{h})$ is

$$
\zeta_I^{-1}=\zeta_I\circ s_I.
$$

Example: $\mathbb{X}(L) \cong (\mathbb{K}, +)$.

Standard Permutahedron

Let I be a non-empty finite set.

Let \mathbb{R}^I be the real vector space of functions $x : I \to \mathbb{R}$. A vector x has coordinates $\{x_i\}_{i\in I}$, where x_i is the value of x at i.

Let $\mathfrak{n} = |\mathrm{I}|$. The *standard permutahedron* π_{I} *i*s the polytope in \mathbb{R}^{I} whose vertices consist of all the permutations of the point $(1, 2, \ldots, n)$.

Standard Permutahedron

For example, $\pi_{\{a,\,b,\,c\}}$ is a regular hexagon lying on the plane $x_a + x_b + x_c = 6$, and $\pi_{\{a,b,c,d\}}$ lies on the hyperplane $x_a + x_b + x_c + x_d = 10$. We have dim $\pi_I = n - 1$.

Images from "Hopf monoids and polynomial invariants of combinatorial structures", ECCO course - Marcelo Aguiar and Jose Bastidas.

Standard Permutahedron

For $\mathfrak{i}\in \mathrm{I},$ let $e_\mathfrak{i}\in \mathbb{R}^{\mathrm{I}}$ denote the *standard vector*

$$
e_i=(0,\ldots,1,\ldots,0),
$$

with j-th coordinate equal to $\delta(i, j)$. The set $\{e_i\}_{i \in I}$ is the standard basis of \mathbb{R}^{I} . For any nonempty subset $\text{S} \subseteq \text{I}$, let

$$
e_S = \sum_{i \in S} e_i.
$$

Given two vectors v and w, let $[v, w]$ denote the line segment joining their endpoints:

$$
[\nu,w]=\{\lambda\nu+(1-\lambda)w\mid 0\leq\lambda\leq 1\}.
$$

The standard permutahedron coincides with the following Minkowski sum:

$$
\pi_I=e_I+\sum_{\{i,j\}\in \binom{I}{2}}[e_i,e_j].
$$

The set of $(n - k)$ -dimensional faces of π_I is in bijection with the set of compositions of I into k parts.

The closed normal cone of the face π_F is

$$
\mathcal{N}_{\pi_1}(\pi_F)=\{\alpha_1e_{S_1}+\cdots+\alpha_ke_{S_k}\in\mathbb{R}^I\mid \alpha_1\geq\cdots\geq\alpha_k\}.
$$

A fan F refines a fan G if every cone of G is a union of cones of F.

Image from "Hopf monoids and polynomial invariants of combinatorial structures", ECCO course - Marcelo Aguiar and Jose Bastidas.

Generalized Permutahedra

A *generalized permutahedron* $\mathfrak{p} \subseteq \mathbb{R}^I$ is a polytope such that its normal fan is coarser than that of the standard permutahedron.

 $\mathsf{GP}[\mathrm{I}] := \{$ generalized permutahedra $\mathfrak{p} \subseteq \mathbb{R}^I\}.$

There is a (commutative) Hopf monoid structure on GP:

- **Product:** cartesian product;
- Goproduct: if \mathfrak{p}_S denote the face of p maximized by the functional $x \mapsto \sum_{i \in S} x_i$, then

$$
\mathfrak{p}_S=\mathfrak{p}|_S\times\mathfrak{p}/_S.
$$

Antipode (Aguiar, Ardila):

$$
s_I(\mathfrak{p})=(-1)^{|I|}\sum_{\mathfrak{q}\leq \mathfrak{p}}(-1)^{\dim(\mathfrak{q})}\mathfrak{q}.
$$

Generalized permutahedra: Posets, graphs, matroids

There is a long tradition of modeling combinatorics geometrically. Stanley (73): graphic zonotope Z(G) associated to a graph G

$$
Z(G)=\sum_{ij\in G}(e_i-e_j)
$$

Geissinger (81): poset cone C_G associated to a poset P $C_P = \text{cone}\lbrace e_i - e_i : i \leq_P i \rbrace$

Edmonds (70): matroid polytope P_M associated to a matroid P $C_{\mathsf{P}} = \mathsf{conv}\{e_{\mathfrak{i}_1} + \cdots e_{\mathfrak{i}_k} : \{\mathfrak{i}_1, \ldots, \mathfrak{i}_k\} \text{ is a basis of M}\}$

Aguiar-Ardila: all the examples of Hopf monoids can be realized as sub-Hopf monoids of GP.

Geometrical application

Consider formal power series

$$
A(t)=t+\sum_{n\geq 2}a_{n-1}t^n\qquad\text{and}\qquad B(t)=t+\sum_{n\geq 2}b_{n-1}t^n,
$$

such that $A(B(t)) = t$. Then

$$
b_1 = -a_1
$$

\n
$$
b_2 = -a_2 + 2a_1^2
$$

\n
$$
b_3 = -a_3 + 5a_2a_1 - 5a_1^3
$$

\n
$$
b_4 = -a_4 + 6a_3a_1 + 3a_2^2 - 21a_2a_1^2 + 14a_1^4.
$$
Geometrical application

Consider formal power series

$$
A(t)=t+\sum_{n\geq 2}a_{n-1}t^n\qquad\text{and}\qquad B(t)=t+\sum_{n\geq 2}b_{n-1}t^n,
$$

such that $A(B(t)) = t$. Then

$$
b_1 = -a_1
$$

\n
$$
b_2 = -a_2 + 2a_1^2
$$

\n
$$
b_3 = -a_3 + 5a_2a_1 - 5a_1^3
$$

\n
$$
b_4 = -a_4 + 6a_3a_1 + 3a_2^2 - 21a_2a_1^2 + 14a_1^4.
$$

What do these numbers count? Look at the associahedra!

Counting with the associahedra

Face structure of associahedra

 $b_4 = -a_4 + 6a_3a_1 + 3a_2^2 - 21a_2a_1^2 + 14a_1^4$

1 three-dimensional associahedron 6 pentagons and 3 squares 21 segments 14 points

A "mythical polytope"

Some realizations of the associahedron

- **Tamari (1951): defines the associahedron combinatorially. (lattice).**
- Stasheff (1963): realizes the associahedron as a cell complex (polytope).
- Loday, Ronco (2001): relates the associahedron to a Hopf algebra of binary trees.

Associahedron

Some realizations of the associahedron

- Tamari (1951): defines the associahedron combinatorially. (lattice).
- Stasheff (1963): realizes the associahedron as a cell complex (polytope).
- Loday, Ronco (2001): relates the associahedron to a **Hopf algebra of** binary trees.

Tamari order

Tamari order

 $\mathcal{Y}_n :=$ planar binary trees with $n + 1$ leaves.

Covering relation:

 $s \lessdot t$,

if t is obtained after moving one child node of s, from left to right, across their parent.

(Weak) Bruhat order

(Weak) Bruhat order on \mathfrak{S}_n

Covering relation:

 $u \leqslant (i i + 1)u$

if the letter i appears before $i + 1$ inside u.

Permutohedron

Some realizations of the permutohedron

- Schoute (1911): studies on regular polytopes.
- Guilbaud, Rosenstiehl (1963): derives the permutohedron as a lattice,
- Loday, Ronco (2001): relates the permutohedron to GSym.

Permutohedron

Some realizations of the permutohedron

- Schoute (1911): studies on regular polytopes.
- Guilbaud, Rosenstiehl (1963): derive the permutohedron as a lattice,
- Loday, Ronco (2001): relate the permutohedron to a Hopf algebra of permutations (Malvenuto-Reutenauer).

Permutohedron (3D), in arts

Some realizations of the permutohedron

- Da Vinci (1509): illustration from Luca Pacioli's 1509 book "The $\mathcal{L}_{\mathcal{A}}$ Divine Proportion".
- Hirschvogel (1543): Hirschvogel's book "Geometria".

Permutohedron (3D), in nature

Tectosilicates: internal structure based on a three dimensional framework of silicate tetrahedra

Permutohedron, in mathematics

Consider formal power series

$$
A(t)=1+\sum_{n\geq 1} \alpha_n \frac{t^n}{n!} \qquad \text{and} \qquad B(t)=1+\sum_{n\geq 1} b_n \frac{t^n}{n!},
$$

such that $A(t)B(t) = 1$. Then

$$
b_1 = -a_1
$$

\n
$$
b_2 = -a_2 + 2a_1^2
$$

\n
$$
b_3 = -a_3 + 6a_2a_1 - 6a_1^3
$$

\n
$$
b_4 = -a_4 + 8a_3a_1 + 6a_2^2 - 36a_2a_1^2 + 25a_1^4.
$$

Permutohedron, in mathematics

Consider formal power series

$$
A(t)=1+\sum_{n\geq 1} \alpha_n \frac{t^n}{n!} \qquad \text{and} \qquad B(t)=1+\sum_{n\geq 1} b_n \frac{t^n}{n!},
$$

such that $A(t)B(t) = 1$. Then

$$
b_1 = -a_1
$$

\n
$$
b_2 = -a_2 + 2a_1^2
$$

\n
$$
b_3 = -a_3 + 6a_2a_1 - 6a_1^3
$$

\n
$$
b_4 = -a_4 + 8a_3a_1 + 6a_2^2 - 36a_2a_1^2 + 25a_1^4.
$$

What do these numbers count? Look at the permutohedra!

Counting with the permutohedra

Face structure of permutohedra

 $b_4 = -a_4 + 8a_3a_1 + 6a_2^2 - 36a_2a_1^2 + 25a_1^4$

1 three-dimensional permutohedron 8 hexagons and 6 squares 36 segments 24 points

Associahedra "know" how to compute multiplicative inverses.

Permutohedra "know" how to compute compositional inverses.

This is one of the many consequences of a Hopf monoid structure on generalized permutahedra (Aguiar-Ardila).

Generalized Permutahedra: (standard) Permutahedra

If $n := |I|$, let $\mathfrak{p}_I := \mathsf{conv}\{(\mathfrak{a}_\mathfrak{i})_{\mathfrak{i}\in I}\in \mathbb{R} I : \{\mathfrak{a}_\mathfrak{i}\}_{\mathfrak{i}\in I} = [n]\}$ and $\mathfrak{p}_n := \mathfrak{p}_{[n]}.$ The value $a_n = \zeta(\mathfrak{p}_n)$ determine the character $\zeta \in \mathbb{X}(\overline{P})$. In the group of characters

 $\mathbb{X}(\overline{P}) \cong$ group of exponential formal power series, under multiplication

of the (standard) Permutahedra \overline{P} , the multiplicative inverse of $1+\mathfrak{a}_1\mathfrak{x}+\mathfrak{a}_2\frac{\mathfrak{x}^2}{2!}+\mathfrak{a}_3\frac{\mathfrak{x}^3}{3!}+\cdots\,$ is $1+\mathfrak{b}_1\mathfrak{x}+\mathfrak{b}_2\frac{\mathfrak{x}^2}{2!}+\mathfrak{b}_3\frac{\mathfrak{x}^3}{3!}+\cdots$, where

$$
b_n = (-1)^n \sum_{F \leq \mathfrak{p}_n} (-1)^{\dim F} \mathfrak{a}_F,
$$

with $a_F = a_{f_1}a_{f_2}\cdots a_{f_k}$, for each face $F \cong \mathfrak{p}_{f_1} \times \mathfrak{p}_{f_2} \times \cdots \mathfrak{p}_{f_k}$ of the permutahedron.

Generalized Permutahedra: (Loday's) Associahedra

$$
\text{Let } \mathfrak{a}_n := \sum\nolimits_{i,j \in [n]} \Delta_{[i,j]}.
$$

In the group of characters

 $\mathbb{X}(\overline{A}) \cong$ group of ordinary formal power series, under composition

of the (Loday's) **Associahedra** \overline{P} , the compositional inverse of $\alpha+\mathfrak{a}_1\mathfrak{x}^2+\mathfrak{a}_2\mathfrak{x}^3+\mathfrak{a}_3\mathfrak{x}^4\cdots$ is $\alpha+b_1\mathfrak{x}^2+b_2\mathfrak{x}^3+b_3\mathfrak{x}^4+\cdots$, where

$$
b_n=(-1)^n\sum_{F\leq \mathfrak{p}_n}(-1)^{\dim F}\mathfrak{a}_F,
$$

with $a_F = a_{f_1}a_{f_2}\cdots a_{f_k}$, for each face $F \cong a_{f_1}\times a_{f_2}\times \cdots a_{f_k}$ of the associahedron.

Non-commutative probability

- The field of *Free Probability* was created by Dan-Virgil Voiculescu in the 1980s.
- **Philosophy: investigate the** notion of "freeness" in analogy to the concept of "independence" from (classical) probability theory.
- A combinatorial theory of freeness was developed by Nica and Speicher in the 1990s.
- **Noiculescu discovered freeness** also asymptotically for many kinds of random matrices (1991).

Dan Voiculescu , 2015

Commutative vs non-commutative

Voiculescu: "'Free probability is a probability theory adapted to dealing with variables which have the highest degree of noncommutativity. Failure of commutativity may occur in many ways."

- Quantum mechanics' commutation relation: $XY YX = I$.
- \blacksquare Free product of groups.
- \blacksquare Independent random matrices tend to be asymptotically freely independent, under certain conditions.

Classical probability space

A probability space (Kolmogorov, 1930's) is given by the following data:

- a set Ω (sample space),
- **a** collection F (event space),
- $\mathbb{P}: \mathcal{F} \to [0,1]$ (probability function),

Andrey Kolmogorov

satisfying several axioms.

Expectation: for every bounded random variable $X \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$, let

$$
\mathbb{E}[X] := \int_\Omega X(\omega) \, d\mathbb{P}(\omega).
$$

Intuition: replace $(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E})$ by a more general pair (\mathcal{A}, ϕ) .

A non-commutative probability space is a pair (A, φ) such that

- \blacksquare A is a unital associative algebra over \mathbb{C} :
- $\bullet \varphi : A \to \mathbb{C}$ is a linear functional such that $\varphi(1_A) = 1$.

- A non-commutative probability space is a pair (A, φ) such that
	- \blacksquare A is a unital associative algebra over \mathbb{C} :
	- $\bullet \varphi : A \to \mathbb{C}$ is a linear functional such that $\varphi(1_A) = 1$.

Examples: $(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E})$, $(\mathsf{Mat}_n(\mathbb{C}), \frac{1}{n})$ $\frac{1}{n}$ Tr), (Mat_n (Ω) , φ).

A non-commutative probability space is a pair (A, φ) such that

- \blacksquare A is a unital associative algebra over \mathbb{C} :
- $\bullet \varphi : A \to \mathbb{C}$ is a linear functional such that $\varphi(1_A) = 1$.

Examples: $(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E})$, $(\mathsf{Mat}_n(\mathbb{C}), \frac{1}{n})$ $\frac{1}{n}$ Tr), (Mat_n (Ω) , φ).

$$
\phi(\mathfrak{a}) := \int_\Omega \mathsf{tr}(\mathfrak{a}(\omega)) \, d\mathbb{P}(\omega)
$$

Random variable: $a \in \mathcal{A}$ Moments: $(\varphi(a), \varphi(a^2), \varphi(a^3), \dots) \longleftrightarrow \mu : \mathbb{C}[x] \longrightarrow \mathbb{C}, \mu(t^i) := \varphi(a^i)$ Join distribution of (a_1, \ldots, a_k) : if $1 \leq i_1, \ldots, i_n \leq k$,

 $\mu: \mathbb{C}\langle t_1,\ldots,t_k\rangle \to \mathbb{C} \quad , \quad \mu(t_{i_1}\cdots t_{i_n}) := \varphi(a_{i_1}\cdots a_{i_n})$

A non-commutative probability space is a pair (\mathcal{A}, φ) such that

- \blacksquare A is a unital associative algebra over \mathbb{C} ;
- $\Box \varphi : A \to \mathbb{C}$ is a linear functional such that $\varphi(1_A) = 1$.

In a (classical) probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the notion of independence between two random variables $X, Y: \Omega \to \mathbb{C}$ implies

 $\mathbb{E}(X^m Y^n) = \mathbb{E}(X^m) \mathbb{E}(Y^n).$

Let (A, φ) be a non-commutative probability space.

Let (A, φ) be a non-commutative probability space.

Consider $\{A_i\}_{i\in I}$ unital subalgebras of A.

Let (A, φ) be a non-commutative probability space.

Consider $\{\mathcal{A}_i\}_{i\in I}$ unital subalgebras of \mathcal{A}_i .

The family $\{\mathcal{A}_i\}_{i\in I}$ of algebras is freely independent if for every $n \in \mathbb{N}$ and for every choice of $(\mathfrak{i}_1,\ldots,\mathfrak{i}_n)$ of "different neighbouring indices" (i.e., $i_{i-1} \neq i_i \neq i_{i+1}$), we have

$$
\varphi(\mathfrak{a}_1\cdots \mathfrak{a}_n)=0,
$$

whenever $\mathfrak{a_j}\in \mathcal{A}_{\mathfrak{i_j}}$ and $\mathfrak{\phi}(\mathfrak{a_j})=0$, for every $1\leq \mathfrak{j}\leq \mathfrak{n}$.

Let (A, φ) be a non-commutative probability space.

Consider $\{\mathcal{A}_i\}_{i\in I}$ unital subalgebras of \mathcal{A}_i .

The family $\{\mathcal{A}_i\}_{i\in I}$ of algebras is freely independent if for every $n \in \mathbb{N}$ and for every choice of $(\mathfrak{i}_1,\ldots,\mathfrak{i}_n)$ of "different neighbouring indices" (i.e., $i_{i-1} \neq i_i \neq i_{i+1}$), we have

$$
\phi(\mathfrak{a}_1\cdots \mathfrak{a}_n)=0,
$$

whenever $\mathfrak{a_j}\in \mathcal{A}_{\mathfrak{i_j}}$ and $\mathfrak{\phi}(\mathfrak{a_j})=0$, for every $1\leq \mathfrak{j}\leq \mathfrak{n}$.

A family $(a_i)_{i\in I}$ of non-commutative random variables is called free if the family of subalgebras $(\langle 1_A, \alpha_i \rangle)_{i \in I}$ is freely independent.

Let (A, φ) be a non-commutative probability space.

Consider $\{\mathcal{A}_i\}_{i\in I}$ unital subalgebras of \mathcal{A} .

The family $\{\mathcal{A}_i\}_{i\in I}$ of algebras is freely independent if for every $n \in \mathbb{N}$ and for every choice of $(\mathfrak{i}_1,\ldots,\mathfrak{i}_n)$ of "different neighbouring indices" (i.e., $i_{i-1} \neq i_i \neq i_{i+1}$), we have

$$
\phi(\mathfrak{a}_1\cdots \mathfrak{a}_n)=0,
$$

whenever $\mathfrak{a_j}\in \mathcal{A}_{\mathfrak{i_j}}$ and $\mathfrak{\phi}(\mathfrak{a_j})=0$, for every $1\leq \mathfrak{j}\leq \mathfrak{n}$.

A family $(a_i)_{i\in I}$ of non-commutative random variables is called free if the family of subalgebras $(\langle 1_A, \alpha_i \rangle)_{i \in I}$ is freely independent.

Sets of variables in (\mathcal{A}, φ) are free if the algebras they generate are free. It looks artificial...

Free independence provides a rule to compute mixed moments.

Free independence provides a rule to compute mixed moments.

Let (A, φ) be a n.c.p.s. and let $a, b \in A$ free n.c.r.v.

Free independence provides a rule to compute mixed moments. Let (A, φ) be a n.c.p.s. and let $a, b \in A$ free n.c.r.v.

What is $\varphi(ab)$?

Free independence provides a rule to compute mixed moments. Let (A, φ) be a n.c.p.s. and let $a, b \in A$ free n.c.r.v. What is $\varphi(ab)?$ $\varphi((a - \varphi(a)1_A)(b - \varphi(b)1_A)) = 0$, so

Free independence provides a rule to compute mixed moments.

Let (A, φ) be a n.c.p.s. and let $a, b \in A$ free n.c.r.v.

What is $\varphi(ab)?$ $\varphi((a - \varphi(a)1_A)(b - \varphi(b)1_A)) = 0$, so

$$
0 = \varphi((a - \varphi(a) \cdot 1_{\mathcal{A}})(b - \varphi(b) \cdot 1_{\mathcal{A}}))
$$

= $\varphi(ab) - \varphi(a \cdot 1_{\mathcal{A}})\varphi(b) - \varphi(a)\varphi(1_{\mathcal{A}} \cdot b) + \varphi(a)\varphi(b)\varphi(1_{\mathcal{A}})$
= $\varphi(ab) - \varphi(a)\varphi(b) - \varphi(a)\varphi(b) + \varphi(a)\varphi(b)$

Free independence provides a rule to compute mixed moments.

Let (A, φ) be a n.c.p.s. and let $a, b \in A$ free n.c.r.v.

What is $\varphi(ab)$? $\varphi((a - \varphi(a)1_A)(b - \varphi(b)1_A)) = 0$, so

$$
0 = \varphi((a - \varphi(a) \cdot 1_{\mathcal{A}})(b - \varphi(b) \cdot 1_{\mathcal{A}}))
$$

= $\varphi(ab) - \varphi(a \cdot 1_{\mathcal{A}})\varphi(b) - \varphi(a)\varphi(1_{\mathcal{A}} \cdot b) + \varphi(a)\varphi(b)\varphi(1_{\mathcal{A}})$
= $\varphi(ab) - \varphi(a)\varphi(b) - \varphi(a)\varphi(b) + \varphi(a)\varphi(b)$

Therefore, $\varphi(ab) = \varphi(a)\varphi(b)$.
Free independence provides a rule to compute mixed moments.

Let (\mathcal{A},ϕ) be a n.c.p.s. and let $\{a_1,a_2\},\{b\}\subseteq\mathcal{A}$ free n.c.r.v.

Free independence provides a rule to compute mixed moments. Let (\mathcal{A},ϕ) be a n.c.p.s. and let $\{a_1,a_2\},\{b\}\subseteq\mathcal{A}$ free n.c.r.v. What is $\varphi(a_1ba_2)$?

Free independence provides a rule to compute mixed moments. Let (\mathcal{A},ϕ) be a n.c.p.s. and let $\{a_1,a_2\},\{b\}\subseteq\mathcal{A}$ free n.c.r.v. What is φ (a_1ba_2)? From $\phi\Bigl((\mathfrak{a}_1 - \phi(\mathfrak{a}_1) \cdot 1_{\mathcal{A}}) (\mathfrak{b} - \phi(\mathfrak{b}) \cdot 1_{\mathcal{A}}) (\mathfrak{a}_2 - \phi(\mathfrak{a}_2) \cdot 1_{\mathcal{A}}) \Bigr) = 0,$

we obtains

$$
\phi(\mathfrak{a}_1 \mathfrak{b} \mathfrak{a}_2) = \phi(\mathfrak{a}_1 \mathfrak{a}_2) \phi(\mathfrak{b}).
$$

Free independence provides a rule to compute mixed moments. Let (\mathcal{A},ϕ) be a n.c.p.s. and let $\{a_1,a_2\},\{b\}\subseteq\mathcal{A}$ free n.c.r.v. What is φ (a_1 b a_2)? From

$$
\phi\Big((\mathfrak{a}_1-\phi(\mathfrak{a}_1)\cdot 1_{\mathcal{A}})(\mathfrak{b}-\phi(\mathfrak{b})\cdot 1_{\mathcal{A}})(\mathfrak{a}_2-\phi(\mathfrak{a}_2)\cdot 1_{\mathcal{A}})\Big)=0,
$$

we obtains

$$
\phi(a_1ba_2)=\phi(a_1a_2)\phi(b).
$$

If $\{\alpha_1, \alpha_2\}, \{b_1, b_2\} \subseteq \mathcal{A}$ free n.c.r.v,

 $\varphi(a_1b_1a_2b_2) = \varphi(a_1a_2)\varphi(b_1)\varphi(b_2) + \varphi(a_1)\varphi(a_2)\varphi(b_1b_2)$ $-\varphi(a_1)\varphi(a_2)\varphi(b_1)\varphi(b_2).$

Free independence provides a rule to compute mixed moments. Let (\mathcal{A},ϕ) be a n.c.p.s. and let $\{a_1,a_2\},\{b\}\subseteq\mathcal{A}$ free n.c.r.v. What is φ (α_1 b α_2)? From

$$
\phi\Big((\mathfrak{a}_1-\phi(\mathfrak{a}_1)\cdot 1_{\mathcal{A}})(\mathfrak{b}-\phi(\mathfrak{b})\cdot 1_{\mathcal{A}})(\mathfrak{a}_2-\phi(\mathfrak{a}_2)\cdot 1_{\mathcal{A}})\Big)=0,
$$

we obtains

$$
\phi(a_1ba_2)=\phi(a_1a_2)\phi(b).
$$

If $\{\alpha_1, \alpha_2\}, \{b_1, b_2\} \subseteq \mathcal{A}$ free n.c.r.v,

 $\varphi(a_1b_1a_2b_2) = \varphi(a_1a_2)\varphi(b_1)\varphi(b_2) + \varphi(a_1)\varphi(a_2)\varphi(b_1b_2)$ $-\varphi(\mathfrak{a}_1)\varphi(\mathfrak{a}_2)\varphi(\mathfrak{b}_1)\varphi(\mathfrak{b}_2).$

$$
\Rightarrow \varphi(abab) = \varphi(a^2)\varphi(b)^2 + \varphi(a)^2\varphi(b^2) - \varphi(a)^2\varphi(b)^2.
$$

Freeness from the free product

Voiculescu gave the definition of freeness in the context of von Neumann algebras of free products of groups.

$$
F(G):=\{\alpha:G\rightarrow \mathbb{C}\,:\, |\{g\in G\,|\, \alpha(g)\neq 0\}|<\infty\},\newline \hspace*{1.5em} (\alpha*\beta)(g):=\sum_{h\in G}\alpha(gh^{-1})\beta(h),
$$

$$
\phi_G:F(G)\to\mathbb{C}\qquad,\qquad \alpha\mapsto \alpha(e).
$$

 $F(G)$ is linearly generated by $\{\delta_{q} : g \in G\}$, where

$$
\delta_g(h)=\begin{cases} 1, & h=g\\ 0, & h\neq g\end{cases}
$$

Freeness from the free product

Theorem

If $\{G_i\}_{i\in I}$ subgroups of G are algebraically free, then $\{F(G_i)\}_{i\in I} \subset F(G)$ are freely independent in $(F(G), \varphi_G)$.

Sketch of the proof: Consider $(\mathfrak{i}_1,\ldots,\mathfrak{i}_n)\in\mathrm{I}^{\mathfrak{n}}$ such that $\mathfrak{i}_1\neq\mathfrak{i}_2\neq\cdots\neq\mathfrak{i}_n$, and $\alpha_k \in \mathsf{F}(\mathsf{G}_{\mathfrak{i}_k})$ such that $\alpha_k(e) = 0$, for $1 \leq k \leq n$.

Freeness from the free product

Theorem

If $\{G_i\}_{i\in I}$ subgroups of G are algebraically free, then $\{F(G_i)\}_{i\in I} \subset F(G)$ are freely independent in $(F(G), \varphi_G)$.

Sketch of the proof: Consider $(\mathfrak{i}_1,\ldots,\mathfrak{i}_n)\in\mathrm{I}^{\mathfrak{n}}$ such that $\mathfrak{i}_1\neq\mathfrak{i}_2\neq\cdots\neq\mathfrak{i}_n$, and $\alpha_k \in \mathsf{F}(\mathsf{G}_{\mathfrak{i}_k})$ such that $\alpha_k(e) = 0$, for $1 \leq k \leq n$.

$$
\varphi(\alpha_1 * \cdots * \alpha_n) = (\alpha_1 * \cdots * \alpha_n)(e)
$$

=
$$
\sum_{\substack{g_1, \ldots, g_n \in G \\ g_1 \cdots g_n = e}} \alpha_1(g_1) \cdots \alpha_n(g_n).
$$

Since ${\sf G}_{\mathfrak{i}_1},\ldots,{\sf G}_{\mathfrak{i}_n}$ are algebraically free. there exists $\sf k$ such that $\sf g_k=e$, leading to $\varphi(\alpha_1 * \cdots * \alpha_n)$.

Non-commutative independence

Let (A, φ) be a non-commutative probability space. Consider $\{A_i\}_{i\in I}$ unital subalgebras of $\mathcal{A}.$ Let $\mathfrak{a}_1\in\mathcal{A}_{\mathfrak{i}_1},\ldots,\mathfrak{a}_n\in\mathcal{A}_{\mathfrak{i}_n}$ such that $\mathfrak{i}_\mathfrak{j}\neq\mathfrak{i}_{\mathfrak{j}+1}.$

The family $\{\mathcal{A}_i\}_{i\in I}$ is

Fig. 1 freely independent if

 $\varphi(\mathfrak{a}_1 \cdots \mathfrak{a}_n) = 0,$

when $\varphi(\mathfrak{a}_i) = 0$, for all $1 \leq j \leq n$;

boolean independent if

$$
\phi(\mathfrak{a}_1\cdots \mathfrak{a}_n)=\phi(\mathfrak{a}_1)\cdots \phi(\mathfrak{a}_n);
$$

Other notions: monotone independence, conditional monotone, . . .

Back to the examples

$$
\varphi(ab) = \varphi(a)\varphi(b)
$$

\n
$$
\varphi(a_1ba_2) = \varphi(a_1a_2)\varphi(b)
$$

\n
$$
\varphi(a_1b_1a_2b_2) = \varphi(a_1a_2)\varphi(b_1)\varphi(b_2) + \varphi(a_1)\varphi(a_2)\varphi(b_1b_2)
$$

\n
$$
-\varphi(a_1)\varphi(a_2)\varphi(b_1)\varphi(b_2)
$$

\n
$$
\varphi(a_1b_1cb_2a_2da_3) = \varphi(a_1b_1cb_2a_2da_3)
$$

\n
$$
= \varphi(a_1a_2da_3)\varphi(b_1cb_2)
$$

\n
$$
= \varphi(a_1a_2a_3)\varphi(b_1b_2)\varphi(c)\varphi(d).
$$

"Non-crossing moments" factorize; "crossing moments" do not.

Back to (\mathcal{A}, φ)

Let $n \in \mathbb{N}$ and $a_1, a_2, \ldots, a_n \in \mathcal{A}$.

Consider ${f_n : \mathcal{A}^n \to \mathbb{C} \mid n > 0}$ a family of multilinear functionals.

Let $\pi = \{\mathtt{B}_1, \ldots, \mathtt{B_k}\} \in {\sf NC}(\mathfrak{n})$. We define $f_{\pi}(\alpha_1, ..., \alpha_n) := \prod_{\substack{B \mid b_1, b_2, ..., b_r}}$ $B \in \pi$ $B = \{b_1 < b_2 < \cdots < b_r\}$

Back to (\mathcal{A}, φ)

If $\pi = \{\{1\}, \{2, 3, 4, 5\}, \{6\}, \{7, 8, 9\}\}\$, then

 $f_{\pi}(\mathfrak{a}_1,\ldots,\mathfrak{a}_9)=f_1(\mathfrak{a}_1)\,f_4(\mathfrak{a}_2,\mathfrak{a}_3,\mathfrak{a}_4,\mathfrak{a}_5)\,f_1(\mathfrak{a}_6)\,f_3(\mathfrak{a}_7,\mathfrak{a}_8,\mathfrak{a}_9).$

Moment to cumulant relations in (\mathcal{A}, φ)

Consider the multilinear functionals

$$
\{r_n: \mathcal{A}^n \to \mathbb{C}\}_{n\geq 1} \qquad \{b_n: \mathcal{A}^n \to \mathbb{C}\}_{n\geq 1} \qquad \{h_n: \mathcal{A}^n \to \mathbb{C}\}_{n\geq 1}
$$
\n(Free cumulants)

\n' (Boolean cumulants)

\n' (Monotone cumulants)

defined by

$$
\varphi(a_1 \cdots a_n) = \sum_{\pi \in NC(n)} r_{\pi}(a_1, ..., a_n),
$$

$$
\varphi(a_1 \cdots a_n) = \sum_{\pi \in NC_{Int}(n)} b_{\pi}(a_1, ..., a_n),
$$

$$
\varphi(a_1 \cdots a_n) = \sum_{\pi \in NC(n)} \frac{1}{\tau(\pi)!} h_{\pi}(a_1, ..., a_n).
$$

Double tensor Hopf algebra

Double tensor Hopf algebra $T(T_{+}(V))$: non-commutative and non-cocommutative Hopf algebra, with graduation

$$
T(T_+(V))_n:=\bigoplus_{n_1+\cdots+n_k=n}V^{\otimes n_1}\otimes\cdots\otimes V^{\otimes n_k}.
$$

Elements in $T(T_{+}(V))_{n}$ are written as (linear combinations of) words with bars

 $|w_1| \cdots |w_{\rm k},$

where $w_{\mathfrak{i}}\in\mathsf{V}^{\otimes\mathfrak{n}_{\mathfrak{i}}}$ for some $\mathfrak{n}_1+\cdots+\mathfrak{n}_k=\mathfrak{n}$. We call this elements words on (non-empty) words.

Double tensor Hopf algebra

Let V be a K -vector space.

If $\mathrm{k}\geq0$, we write elementary tensors from $\mathrm{V}^{\otimes\mathrm{k}}$ as $\mathsf{words},\,\mathrm{u}_1\mathrm{u}_2\cdots\mathrm{u}_\mathrm{k},$ with $u_i \in V$. We called the K-vector spaces

$$
\mathsf{T}(V) := \bigoplus_{\mathsf{k} \,\geq\, 0} V^{\otimes \mathsf{k}} \quad,\quad \mathsf{T}_+(V) := \bigoplus_{\mathsf{k} \,\geq\, 1} V^{\otimes \mathsf{k}}
$$

the tensor module and reduced tensor module, respectively, generated by V.

Product rule: if $u \in T(T_{+}(V))_{n}$ and $v \in m$, then

$$
u|v:=u_1|\cdots|u_r|v_1|\cdots|v_s\in \mathsf{T}(\mathsf{T}_+(V))_{n+m}.
$$

Coproduct rule: given a word $u = u_1 \cdots u_n \in V^{\otimes n}$ and $A = \{a_1, \ldots, a_k\} \subset \mathbb{N}$, we write $u_A := u_{a_1} \cdots u_{a_k}$. Consider the map $\Delta: T_{+}(V) \to T(V) \otimes T(T_{+}(V))$ given by

$$
\Delta(\mathfrak{u}) : = \sum_{A \subseteq [n]} \mathfrak{u}_A \otimes \mathfrak{u}_{\mathsf{K}(A,[n])} \\ = \sum_{A \subseteq [n]} \mathfrak{u}_A \otimes \mathfrak{u}_{\mathsf{K}_1} | \cdots | \mathfrak{u}_{\mathsf{K}_r}.
$$

Finally, we extend the map Δ multiplicatively to all of $T(T_{+}(V))$, by setting

$$
\Delta(w_1|\cdots|w_k):=\Delta(w_1)\cdots\Delta(w_k).
$$

For example, we have

$$
\Delta(ab) = 1 \otimes ab + a \otimes b + b \otimes a + ab \otimes 1;
$$

$$
\Delta(a|b) = 1 \otimes a|b + a \otimes b + b \otimes a + a|b \otimes 1;
$$

 $\Delta(abc) = 1 \otimes abc + a \otimes bc + b \otimes a \vert c + c \otimes ab + ab \otimes c + ac \otimes b + bc \otimes a + 1 \otimes abc;$

$$
\Delta(a|bc) = 1 \otimes a|bc + a \otimes bc + b \otimes a|c + c \otimes a|b
$$

+a|b \otimes c + a|c \otimes b + bc \otimes a + 1 \otimes a|bc;

Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

- (A, φ) non-commutative probability space.
- $H = T(T_+(\mathcal{A}))$ words on non-empty words on \mathcal{A} .
- **■** The coproduct Δ in H is *codendriform*: $\Delta = \Delta_{\leq} + \Delta_{>}.$
- The space $(Hom_{lin}(H, K), \langle, \rangle)$ is a dendriform algebra, with $* = < + >$.
- **The linear form** φ **is extended to** $T_+(\mathcal{A})$ **by defining to all words** $\mathfrak{u}=\mathfrak{a}_{1}\cdots\mathfrak{a}_{\mathfrak{n}}\in\mathcal{A}^{\otimes\mathfrak{n}}$

$$
\phi(\mathfrak{a}_1\mathfrak{a}_2\cdots \mathfrak{a}_n):=\phi(\mathfrak{a}_1\cdot_{\mathcal{A}}\mathfrak{a}_2\cdot_{\mathcal{A}}\cdots\cdot_{\mathcal{A}}\mathfrak{a}_n).
$$

This is the multivariate moment of u.

Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

- (A, φ) non-commutative probability space.
- $H = T(T_+(\mathcal{A}))$ words on non-empty words on \mathcal{A} .
- **■** The coproduct Δ in H is *codendriform*: $\Delta = \Delta_{\leq} + \Delta_{>}.$
- The space $(Hom_{lin}(H, K), \langle, \rangle)$ is a dendriform algebra, with $* = < + >$.
- **The linear form** φ **is extended to** $T_+(\mathcal{A})$ **by defining to all words** $\mathfrak{u}=\mathfrak{a}_{1}\cdots\mathfrak{a}_{\mathfrak{n}}\in\mathcal{A}^{\otimes\mathfrak{n}}$

$$
\phi(\mathfrak{a}_1\mathfrak{a}_2\cdots \mathfrak{a}_n):=\phi(\mathfrak{a}_1\cdot_{\mathcal{A}}\mathfrak{a}_2\cdot_{\mathcal{A}}\cdots\cdot_{\mathcal{A}}\mathfrak{a}_n).
$$

This is the multivariate moment of u. The map φ is then extended multiplicatively to a map $\Phi : T(T_+(\mathcal{A})) \to \mathbb{K}$ with $\Phi(1) := 1$ and

$$
\Phi(\mathfrak{u}_1|\cdots|\mathfrak{u}_k):=\phi(\mathfrak{u}_1)\cdots\phi(\mathfrak{u}_k).
$$

Cumulants as infinitesimal characters

Proposition (Ebrahimi-Fard, Patras -2015)

Let ρ , κ , $\beta \in \mathfrak{g}(\mathcal{A})$ the infinitesimal characters solving

 $\Phi = \exp_*(\rho),$

$$
\Phi=\varepsilon+\kappa\prec\Phi
$$

and

$$
\Phi=\varepsilon+\Phi\succ\beta.
$$

Then, ρ , κ , β correspond to the monotone cumulants, free cumulants and boolean cumulants, respectively.

For any word $\mathfrak{u}=\mathfrak{a}_{1}\cdots\mathfrak{a}_{\mathfrak{n}}\in\mathcal{A}^{\otimes\mathfrak{n}}$, we have

 $h_n(a_1,\ldots,a_n)=\rho(u), r_n(a_1,\ldots,a_n)=\kappa(u), b_n(a_1,\ldots,a_n)=\beta(u).$

Series on species

There are functors

 $\mathcal{K},\overline{\mathcal{K}},\mathcal{K}^\vee,\overline{\mathcal{K}}$: Hopf monoids in species \to $\mathbb{N}\text{-}\mathsf{graded}$ Hopf algebras. $\mathcal{K}(\mathsf{h}) = \mathcal{K}^{\vee}(\mathsf{h}) := \bigoplus \mathsf{h}[\mathsf{n}]$ n≥0 $\overline{\mathcal{K}}(\mathsf{h}) := \bigoplus \mathsf{h}[\mathsf{n}]_{\mathfrak{S}_\mathfrak{n}} \quad , \quad \overline{\mathcal{K}}^\vee(\mathsf{h}) := \bigoplus \mathsf{h}[\mathsf{n}]^{\mathfrak{S}_\mathfrak{n}}$ n≥0 $n>0$

There are functors

 $\mathcal{K},\overline{\mathcal{K}},\mathcal{K}^\vee,\overline{\mathcal{K}}$: Hopf monoids in species \to $\mathbb{N}\text{-}\mathsf{graded}$ Hopf algebras. $\mathcal{K}(\mathsf{h}) = \mathcal{K}^{\vee}(\mathsf{h}) := \bigoplus \mathsf{h}[\mathsf{n}]$ n≥0 $\overline{\mathcal{K}}(\mathsf{h}) := \bigoplus \mathsf{h}[\mathsf{n}]_{\mathfrak{S}_\mathfrak{n}} \quad , \quad \overline{\mathcal{K}}^\vee(\mathsf{h}) := \bigoplus \mathsf{h}[\mathsf{n}]^{\mathfrak{S}_\mathfrak{n}}$ $n>0$ n≥0

Patras-Schocker-Reutenauer:

 $\mathcal{K}(h)$: cosymmetrized bialgebra $\mathcal K^\vee(\mathsf h)$: symmetrized bialgebra

There are functors

 $\mathcal{K},\overline{\mathcal{K}},\mathcal{K}^\vee,\overline{\mathcal{K}}$: Hopf monoids in species \to $\mathbb{N}\text{-}\mathsf{graded}$ Hopf algebras.

$$
\mathcal{K}(\mathsf{h}) = \mathcal{K}^{\vee}(\mathsf{h}) := \bigoplus_{n \geq 0} \mathsf{h}[n]
$$

$$
\overline{\mathcal{K}}(\mathsf{h}) := \bigoplus_{n \geq 0} \mathsf{h}[n]_{\mathfrak{S}_n} \quad , \quad \overline{\mathcal{K}}^{\vee}(\mathsf{h}) := \bigoplus_{n \geq 0} \mathsf{h}[n]^{\mathfrak{S}_n}
$$

■ $\mathcal{K}(h) \cong \overline{\mathcal{K}}(L \times h)$.

- If h is finite-dimensional, then $\overline{\mathcal{K}}(\mathsf{h}^*) \cong \overline{\mathcal{K}}(\mathsf{h})^*.$
- If h is cocommutative, then so are $\mathcal{K}(h)$ and $\overline{\mathcal{K}}(h)$.
- If h is commutative, so is $\overline{\mathcal{K}}(h)$.

Let p be a species.

Let p be a species. A series s of p is a collection of elements

 $s_I \in p[I],$

one for each finite set I, such that

 $p[\sigma](s_I) = s_I$

for each bijection $\sigma : I \rightarrow J$.

Let p be a species. A series s of p is a collection of elements

 $s_I \in p[I],$

one for each finite set I, such that

 $p[\sigma](s_I) = s_I$

for each bijection $\sigma : I \to I$.

The space $\mathscr{S}(p)$ of all series of p is a vector space:

 $(s + t)$ _I = s _I + t _I , $(\lambda \cdot s)$ _I := λs _I,

for s, $t \in \mathscr{S}(p)$ and $\lambda \in \mathbb{K}$.

Let p be a species. A series s of p is a collection of elements

 $s_I \in p[I],$

one for each finite set I, such that

 $p[\sigma](s_I) = s_I$

for each bijection $\sigma : I \rightarrow J$.

Let p be a species. A series s of p is a collection of elements

 $s_I \in p[I],$

one for each finite set I, such that

 $p[\sigma](s_I) = s_I$

for each bijection $\sigma : I \to J$.

Let E be the exponential map. A series s of p corresponds to the morphism of species

```
E \rightarrow p*_{I} \mapsto s_{I}
```
so $\mathscr{S}(p) \cong \text{Hom}_{\text{Sp}}(E, p)$.

Let p be a species. A series s of p is a collection of elements

 $s_I \in p[I],$

one for each finite set I, such that

$$
p[\sigma](s_1) = s_j,
$$
\n(1)

for each bijection $\sigma : I \rightarrow J$.

Let p be a species. A series s of p is a collection of elements

 $s_I \in p[I],$

one for each finite set I, such that

$$
p[\sigma](s_I) = s_J,
$$
\n(1)

for each bijection $\sigma : I \rightarrow J$.

Property [\(2\)](#page-101-0) implies that each $s_{[n]}$ is an \mathfrak{S}_{n} -invariant element of p[$n]$. In fact,

$$
\mathscr{S}(\mathsf{p}) \cong \prod_{\mathsf{n} \geq 0} \mathsf{p}[\mathsf{n}]^{\mathfrak{S}_{\mathsf{n}}}
$$

$$
s \mapsto (s_{[\mathsf{n}]})_{\mathsf{n} \geq 0}.
$$

Let p be a species. A series s of p is a collection of elements

 $s_I \in p[I],$

one for each finite set I, such that

$$
p[\sigma](s_1) = s_j,
$$
\n(2)

for each bijection $\sigma : I \to J$.

Let p be a species. A series s of p is a collection of elements

 $s_I \in p[I],$

one for each finite set I, such that

$$
p[\sigma](s_1) = s_J,
$$
\n(2)

for each bijection $\sigma : I \to J$.

There is a functor

$$
\mathscr{S}: \mathsf{Sp} \to \mathsf{Vec}.
$$

The functor $\mathscr S$ is *braided lax monoidal*: it preserves monoids, commutative monoids, Lie monoids . . .

Decorated series

Let V be a vector space.

Decorated series

Let V be a vector space. Recall that a series of p corresponds to a morphism of species $E \rightarrow p$.

Let V be a vector space. Recall that a series of p corresponds to a morphism of species $E \rightarrow p$.

A V-decorated series, or decorated series, is a morphism of species

 $E_V \rightarrow p$,

where E_V is the exponential decorated exponential given by

$$
\mathsf{E}_V[I]:=\mathbb{K}\{f:I\to V\}.
$$

Let $\mathscr{S}_{V}(p)$ be the space of decorated series.
Decorated series

A series s in $\mathcal{S}_{V}(p)$ is a collection of elements

 $s_{I,f} \in p[I],$

one for each finite set I and for each map $f: I \to V$, such that

$$
p[\sigma](s_{I,f})=s_{J,f\circ\sigma^{-1}},
$$

for each bijection $\sigma : I \rightarrow J$.

Let (\mathcal{A}, φ) be a non-commutative probability space.

Let (\mathcal{A}, φ) be a non-commutative probability space.

Consider the ripping and sewing Hopf monoid P.

Let (\mathcal{A}, φ) be a non-commutative probability space.

Consider the *ripping and sewing* Hopf monoid P. As a species, $P = L \circ L_{+}$.

Let (A, φ) be a non-commutative probability space.

Consider the *ripping and sewing* Hopf monoid P. As a species, $P = L \circ L_{+}$. Define $\Phi \in \mathscr{S}_{\mathcal{A}}(\mathsf{P}^{*})$ as follows: if I is a finite set and $f: I \to \mathcal{A}$, let

 $\Phi_{\mathrm{I},\mathrm{f}} \in \mathsf{P}^*[\mathrm{I}]$

given by

$$
\Phi_{I,f}(w_1w_2\cdots w_n):=\phi(w_1)\cdots\phi(w_n),
$$

where for each $w_{\rm k}$ $=$ $x_{\rm 1}^{\rm k}$ $x_1^k \cdots x_r^k \in L_+[I_k],$

$$
\phi(w):=(\phi\circ f)(x_1^k)\cdots(\phi\circ f)(x_r^k).
$$

Proposition (V. - 2024)

Let (A, φ) be a non-commutative probability space. For every species p,

consider the space $C_{\mathcal{A}}(p) := \mathscr{S}_{\mathcal{A}}((L \circ p_{+})^{*}).$

- **Classical cumulants are obtained from** $p = X$
- \blacksquare Non-commutative cumulants are obtained from $p = L$

Problem : structure on p giving a more general ripping and sewing coproduct on the free monoid $L \circ p_+$?

```
(In progress: structure of hereditary species on p)
```
Given two species p and q, let $\mathcal{H}(\mathsf{p},\mathsf{q})$ be the species defined by $\mathcal{H}(\mathsf{p},\mathsf{q})[I] := \mathsf{Hom}_{\mathbb{K}}(\mathsf{p}[I],\mathsf{q}[I]).$

Given two species p and q, let $\mathcal{H}(\mathsf{p},\mathsf{q})$ be the species defined by $\mathcal{H}(\mathsf{p},\mathsf{q})[I] := \mathsf{Hom}_{\mathbb{K}}(\mathsf{p}[I],\mathsf{q}[I]).$ If $\sigma : I \to J$ is a bijection and $f \in \mathcal{H}(\rho, q)[I]$, then $\mathcal{H}(\mathsf{p},\mathsf{q})[\sigma](\mathsf{f}) \in \mathcal{H}(\mathsf{p},\mathsf{q})[\mathsf{I}]$

is defined as the composition

$$
p[J] \xrightarrow{p[\sigma^{-1}]} p[I] \xrightarrow{f} q[I] \xrightarrow{q[\sigma]} q[J].
$$

Given two species p and q, let $\mathcal{H}(p,q)$ be the species defined by

 $\mathcal{H}(\mathsf{p},\mathsf{q})[I] := \mathsf{Hom}_{\mathbb{K}}(\mathsf{p}[I],\mathsf{q}[I]).$

Given two species p and q, let $\mathcal{H}(\mathsf{p}, \mathsf{q})$ be the species defined by

$$
\mathcal{H}(p,q)[I] := \mathsf{Hom}_{\mathbb{K}}(p[I],q[I]).
$$

There is a natural isomorphism

$$
\text{Hom}_{\text{Sp}_{\Bbbk}}(p\times q,r)\cong \text{Hom}_{\text{Sp}_{\Bbbk}}(p,\mathcal{H}(q,r)),
$$

for species p, q and r. This says that the functor $\mathcal H$ is the *internal Hom* in the symmetric monoidal category $({ \mathsf{Sp}}_{\Bbbk},\times)$ of species under Hadamard product.

System of products in PAQFT

Given a vector space V, the *decorated Fock functor* K_V is given by

$$
\mathcal{K}_V(\mathsf{p}) := \bigoplus_{n \geq 0} \mathsf{p}[n] \otimes V^{\otimes n}.
$$

A system of products (Norledge) is a homomorphism of algebras

$$
\bigoplus_{n\geq 0} \mathsf{p}[n] \otimes V^{\otimes n} \to \mathcal{A} \quad \text{ (Wick algebra)}
$$

In the language of species, this is precisely a species map

$$
\mathsf{h}\times\mathbf{E}_V\rightarrow\mathcal{U}_\mathcal{A},
$$

after applying K_V . Here, $\mathcal{U}_A[I] := \mathcal{A}$, for every finite set I.

System of products in PAQFT

Given two species p and q, let $\mathcal{H}(\mathsf{p},\mathsf{q})$ be the species defined by

$$
\mathcal{H}(p,q)[I] := \mathsf{Hom}_{\mathbb{K}}(p[I], q[I]).
$$

A system of products

$$
h\times E_V\to \mathcal{U}_{\mathcal{A}}
$$

is equivalent to a map of species

$$
h\to \mathcal H(\mathbf{E}_V,\mathcal U_\mathcal A).
$$

A system of fully (re)normalized time-ordered products, as defined in PAQFT/causal perturbation theory, is a system of products for the Hopf monoid $h := \Sigma$.

System of products in PAQFT

More precisely, a map

$$
\begin{aligned} T: \Sigma \times E_{\mathcal{F}_{\text{loc}}[[\hbar]]} &\to \mathcal{U}_{\mathcal{F}_{\text{mc}}((\hbar))} \\ a \otimes A_{i_1} \otimes \cdots \otimes A_{i_n} &\mapsto T_I(a \otimes A_{i_1} \otimes \cdots \otimes A_{i_n}) \end{aligned}
$$

(satisfying causal factorization, T_I inclusion) is equivalent to having linear maps

$$
T(S_1)\cdots T(S_n): \mathbf{E}_{\mathcal{F}_{\mathsf{loc}}[[\hslash]]}[I] \to \mathcal{U}_{\mathcal{F}_{\mathsf{mc}}((\hslash))}[I],
$$

where $I = S_1 \sqcup \cdots \sqcup S_n$.

Given two species p and q, let $\mathcal{H}(p,q)$ be the species defined by

 $\mathcal{H}(\mathsf{p},\mathsf{q})[I] := \mathsf{Hom}_{\mathbb{K}}(\mathsf{p}[I],\mathsf{q}[I]).$

Given two species p and q, let $\mathcal{H}(\mathsf{p},\mathsf{q})$ be the species defined by $\mathcal{H}(\mathsf{p}, \mathsf{q})[I] := \text{Hom}_{\mathbb{K}}(\mathsf{p}[I], \mathsf{q}[I]).$

A series of the species $\mathcal{H}(\mathsf{p},\mathsf{q})$ is a morphism of species from p to q:

 $\mathscr{S}(\mathcal{H}(p,q)) = \text{Hom}_{\mathsf{Sp}}(p,q).$

Given two species p and q, let $\mathcal{H}(\mathsf{p},\mathsf{q})$ be the species defined by $\mathcal{H}(\mathsf{p}, \mathsf{q})[I] := \text{Hom}_{\mathbb{K}}(\mathsf{p}[I], \mathsf{q}[I]).$

A series of the species $\mathcal{H}(\mathsf{p},\mathsf{q})$ is a morphism of species from p to q:

$$
\mathscr{S}(\mathcal{H}(p,q))=\mathsf{Hom}_{\mathsf{Sp}}(p,q).
$$

In analogy with a non-commutative space (A, φ) , consider the pair (h, φ) formed by a connected bimonoid and a map $\varphi : h \to E$ such that

$$
\begin{aligned} \phi_\emptyset: \mathsf{h}[\emptyset] &\to \mathbb{K} \\ 1 &\mapsto 1_\mathbb{K}. \end{aligned}
$$

Given two species p and q, let $\mathcal{H}(p,q)$ be the species defined by $\mathcal{H}(\mathsf{p}, \mathsf{q})[1] := \text{Hom}_{\mathbb{K}}(\mathsf{p}[1], \mathsf{q}[1]).$

A series of the species $\mathcal{H}(\mathsf{p},\mathsf{q})$ is a morphism of species from p to q:

$$
\mathscr{S}(\mathcal{H}(p,q))=\mathsf{Hom}_{\mathsf{Sp}}(p,q).
$$

In analogy with a non-commutative space (\mathcal{A}, φ) , consider the pair (h, φ) formed by a connected bimonoid and a map $\varphi : h \to E$ such that

$$
\phi_\emptyset: \mathsf{h}[\emptyset] \to \mathbb{K} \\ 1 \mapsto 1_\mathbb{K}.
$$

This leads to consider the space $C_h(p) := \mathscr{S}(\mathcal{H}(h, (L \circ p_+)^*))$.

Cumulants from decorated series (V. 2024)

$$
C_h(p):=\mathscr{S}(\mathcal{H}(h,(L\circ p_+)^*)).
$$

Cumulants from decorated series (V. 2024)

$$
C_h(p):=\mathscr{S}(\mathcal{H}(h,(L\circ p_+)^*)).
$$

Particular case: $p := X$, (h, φ) a connected bimonoid with

 $\varphi_I(x) := \dim_{\mathbb{K}} h[I],$

for all $x \in h[I]$.

Thanks for your attention!

References I

- Marcelo Aguiar and Swapneel Mahajan. Hopf monoids in the category of species. Hopf algebras and tensor categories, 585:17–124, 2013.
- Octavio Arizmendi and Adrián Celestino. 歸 Monotone cumulant-moment formula and schroder trees. arXiv preprint arXiv:2111.02179, 2021.
- **Kurusch Ebrahimi-Fard and Frédéric Patras.** A group-theoretical approach to conditionally free cumulants. arXiv preprint arXiv:1806.06287, 2018.

References II

晶 Hillary Einziger.

Incidence Hopf algebras: Antipodes, forest formulas, and noncrossing partitions. PhD thesis, The George Washington University, 2010.

Takahiro Hasebe and Franz Lehner. Cumulants, spreadability and the campbell-baker-hausdorff series. arXiv preprint arXiv:1711.00219, 2017.

Matthieu Josuat-Vergès, Frédéric Menous, Jean-Christophe Novelli, and 品 Jean-Yves Thibon.

Free cumulants, schr δ der trees, and operads.

Advances in Applied Mathematics, 88:92–119, 2017.

References III

F. Matthieu Josuat-Vergès, Frédéric Menous, Jean-Christophe Novelli, and Jean-Yves Thibon. Free cumulants, schr δ der trees, and operads. Advances in Applied Mathematics, 88:92–119, 2017.

Franz Lehner, Jean-Christophe Novelli, and Jean-Yves Thibon. Combinatorial hopf algebras in noncommutative probabilility. arXiv preprint arXiv:2006.02089, 2020.

Naofumi Muraki. 品

The five independences as natural products.

Infinite Dimensional Analysis, Quantum Probability and Related Topics, 6(03):337–371, 2003.

References IV

Nannic Vargas.

Free cumulants for bimonoids in species.

In preparation, 2024.

歸 Dan Voiculescu.

Symmetries of some reduced free product c*-algebras.

In Operator algebras and their connections with topology and ergodic theory, pages 556–588. Springer, 1985.