

From combinatorial species to spaces of generalized independences

Yannic VARGAS

Algebraic, analytic and geometric structures emerging from quantum field theory π , Chengdu, 2024

If $n \in \mathbb{N}$, let $[n] := \{1, 2, \ldots, n\}$.

Let I be a finite set.

A composition of I is a sequence

$$F = (F_1, \dots, F_k) = F_1 | \cdots | F_k$$

of disjoint non-empty sets such that their reunion is I. We write $F \vDash I$.

For example,

 $2|569|3|1478 \models [10].$

Let $\Sigma[I]$ the vector space generated by all compositions of I and let \mathfrak{S}_I be the group of permutations on I.

Let $\Sigma[I]$ the vector space generated by all compositions of I and let \mathfrak{S}_I be the group of permutations on I.

The vector space $\Sigma[I]$ is a right $\mathfrak{S}_I\text{-module},$ where the action permutes the elements of I.

Let $\Sigma[I]$ the vector space generated by all compositions of I and let \mathfrak{S}_I be the group of permutations on I.

The vector space $\Sigma[I]$ is a right $\mathfrak{S}_I\text{-module},$ where the action permutes the elements of I.

This action extends to a (covariant) functor

 $\Sigma:\mathsf{FinSet}\to\mathsf{Vect},$

where

 $I \mapsto \Sigma[I];$ $(I \xrightarrow{\sigma} J) \mapsto (\Sigma[I] \xrightarrow{\Sigma[\sigma]} \Sigma[J]).$

Let $\Sigma[I]$ the vector space generated by all compositions of I and let \mathfrak{S}_I be the group of permutations on I.

The vector space $\Sigma[I]$ is a right $\mathfrak{S}_I\text{-module},$ where the action permutes the elements of I.

This action extends to a (covariant) functor

 $\Sigma:\mathsf{FinSet}\to\mathsf{Vect},$

where

 $I \mapsto \Sigma[I];$ $(I \xrightarrow{\sigma} J) \mapsto (\Sigma[I] \xrightarrow{\Sigma[\sigma]} \Sigma[J]).$

The construction Σ is an example of a *vector species*.

Species

André Joyal, Alain Connes, Olivia Caramello and Laurent Lafforgue, IHES (2015)

The theory of *combinatorial species* was introduced by André Joyal in 1980. Species can be seen as a *categorification* of generating functions. It provides a categorical foundation for enumerative combinatorics.

Species

A vector species is a functor

 $p: FinSet \rightarrow Vect.$

Species

A vector species is a functor

 $\mathsf{p}:\mathsf{FinSet}\to\mathsf{Vect.}$

By functoriality,

$$\begin{split} I \xrightarrow{\alpha} J \xrightarrow{\beta} K \Longrightarrow p[\beta \circ \alpha] = p[\beta] \circ p[\alpha], \\ I \xrightarrow{id_I} I \Longrightarrow p[id_I] = id_{p[I]}. \end{split}$$

In particular, $p[\sigma]^{-1} = p[\sigma^{-1}]$ for every $I \xrightarrow{\sigma} J.$
For every $n \in \mathbb{N}$, \mathfrak{S}_n acts on $p[n]$ via $\sigma \cdot x := p[\sigma](x).$ Therefore,

species $\mathsf{p}\longleftrightarrow \mathsf{V}=(\mathsf{V}_n)_{n\geq 0}, \mathsf{V}_n$ is a $\mathfrak{S}_n\text{-module.}$

Examples of species

Species E of sets:

$$\mathsf{E}[\mathrm{I}] := \mathbb{K}\{\mathtt{H}_{\mathrm{I}}\}.$$

• Species E_n of n-sets:

$$\mathsf{E}_n[I] := \begin{cases} \mathbb{K}\{\mathtt{H}_I\}, & \text{ if } |I| = n; \\ (0), & \text{ if } |I| \neq n. \end{cases}$$

- Species $1 := E_0$.
- Species G of graphs:

 $G[I] := \mathbb{K} \{ H_G : G \text{ is a finite graphs with vertices in } I \}.$

Examples of species

- Species **T** of **partitions**.
- Species L of linear orders.
- Species Σ of set compositions.
- Species B of binary trees.
- Species S of permutations.
- Species Braid of braid hyperplane arrangements.

nLab: "A (combinatorial) species is a presheaf (or a higher categorical presheaf) on the groupoid core(FinSet)" (the "permutation groupoid").

Many variants are obtained by modifying the input category FinSet (replace by total orders, posets, permutations, \ldots) and/or the output category Vec (replace by sets, modules, algebras, species, \ldots).

Species is a categorical tool to understand generating functions and their interactions, combinatorially.

Generating functions: ordinary, exponential, Dirichlet, Lambert, ...

Operations on species

Sum of species

 $(\mathsf{p}+\mathsf{q})[I] := \mathsf{p}[I] \oplus \mathsf{q}[I].$

Product of species (Cauchy product)

$$(\mathbf{p} \cdot \mathbf{q})[I] := \bigoplus_{I = S \sqcup T} \mathbf{p}[S] \otimes \mathbf{q}[T].$$

Operations on species

Composition of species

Generating function of a species

To every species **p** it is associated its **exponential generating function**:

$$\mathbf{p}(\mathbf{x}) := \sum_{n \ge 0} \dim_{\mathbb{K}} \mathbf{p}[n] \frac{\mathbf{x}^n}{n!}.$$

We have:

$$(p+q)(x) = p(x) + q(x),$$

$$(p \cdot q)(x) = p(x) \cdot q(x),$$

$$(p \circ q)(x) = p(x) \circ q(x).$$

For the last identity, $\mathbf{q}[\emptyset] := (0)$.

Enumerative application

A *plane* labelled binary tree is:

- empty;
- a couple of labelled complete binary trees, and the labelled root.

This translates as,

 $\mathsf{B} = 1 + \mathsf{X} \cdot \mathsf{B}^2,$

which implies:

$$\mathsf{B}(\mathsf{x}) = 1 + \mathsf{x}\mathsf{B}(\mathsf{x})^2.$$

Therefore,

$$\mathsf{B}(x) = \frac{1 - \sqrt{1 - 4x}}{2x} = \sum_{n \ge 0} n! \left(\frac{1}{n + 1} \binom{2n}{n}\right) \frac{x^n}{n!}.$$

Recall that the Cauchy product of two species p and q is given by

$$(\mathbf{p} \cdot \mathbf{q})[\mathbf{I}] = \bigoplus_{\mathbf{I} = \mathbf{S} \sqcup \mathbf{T}} \mathbf{p}[\mathbf{S}] \otimes \mathbf{q}[\mathbf{T}].$$

Recall that the Cauchy product of two species p and q is given by

$$(p \cdot q)[I] = \bigoplus_{I = S \sqcup T} p[S] \otimes q[T].$$

Endowed with this operation, the *category of species* Sp is symmetric monoidal: we can speak of monoids $(\mu : p \cdot p \rightarrow p)$, comonoids $(\Delta : p \rightarrow p \cdot p)$, ..., in species.

$$\mathsf{p}[S] \otimes \mathsf{p}[\mathsf{T}] \xrightarrow{\mu_{S,\mathsf{T}}} \mathsf{p}[\mathsf{I}] \qquad \mathsf{p}[\mathsf{I}] \xrightarrow{\Delta_{S,\mathsf{T}}} \mathsf{p}[S] \otimes \mathsf{p}[\mathsf{T}].$$

Hopf monoids refine Hopf algebras. There are a bit more abstract but better suited for many combinatorial purposes.

There is a Fock functor

 $\mathsf{Hopf} \mathsf{ monoids} \to \mathsf{Hopf} \mathsf{ algebras}$

Many (combinatorial) phenomena in combinatorial Hopf algebras comes from phenomena in Hopf monoids.

Hopf monoids

A bimonoid (h, μ, Δ) consist of:

- for each finite set I, a vector space h[l];
- \blacksquare for each partition $I=S\sqcup \mathsf{T},$ maps

product	$\mu_{S,T}:h[S]\otimes h[T]\to h[I]$
coproduct	$\Delta_{S,T}:h[I]\to h[S]\otimes h[T]$
	$x\mapsto x _S\otimesx/_S$

satisfying associativity, coassociativity, unitality, counitality, compatibility and naturality.

(Bimonoidal object in the braided monoidal category of vector species)

Hopf monoids

A Hopf monoid (h, μ, Δ) consist of:

- for each finite set I, a vector space h[l];
- \blacksquare for each partition $I=S\sqcup \mathsf{T},$ maps

product	$\mu_{S,T}:h[S]\otimes h[T]\to h[I]$
coproduct	$\Delta_{S,T}: h[I] \to h[S] \otimes h[T]$

• for each finite set I and for each $x \in \mathsf{h}[I],$ there exists a formal linear combination

$$\begin{split} s_I(x) &\in \mathsf{h}[I] \\ \sum_{S \sqcup T = I} s_S(x|_S) \cdot x/_S = \sum_{S \sqcup T = I} x|_S \cdot s_T(x/_S) = \begin{cases} 1 & \text{ if } I = \emptyset, \\ 0 & \text{ otherwise.} \end{cases} \end{split}$$

Hopf monoids

A Hopf monoid (h, μ, Δ) consist of:

- for each finite set I, a vector space h[l];
- \blacksquare for each partition $I=S\sqcup \mathsf{T},$ maps

 $\begin{array}{ll} \mbox{product} & \mu_{S,T}:h[S]\otimes h[T]\to h[I] \\ \mbox{coproduct} & \Delta_{S,T}:h[I]\to h[S]\otimes h[T] \end{array}$

Takeuchi's formula: if h is connected, then

$$s_{I} = \sum_{F \vDash I} (-1)^{\ell(F)} \mu_{F} \Delta_{F},$$

for any non-empty set I.

Example: Hopf monoid of "ripping and sewing" of graphs

$$\begin{split} &\mathsf{G}[\mathsf{I}]{:=}\mathsf{K}\{\mathsf{H}_g\,:\,g\text{ is a graph (with half edges) on vertex set I}\}\\ &\mathsf{Product}{:}\; \mathsf{H}_{g_1}\cdot\mathsf{H}_{g_2}=\mathsf{H}_{g_1}\sqcup\mathsf{H}_{g_2}\qquad (\text{disjoint union})\\ &\mathsf{Coproduct}{:}\; \Delta_{\mathsf{S},\mathsf{T}}(\mathsf{H}_g)=\mathsf{H}_{g|_{\mathsf{S}}}\otimes\mathsf{H}_{g/_{\mathsf{S}}},\qquad \text{where}\\ &g|_{\mathsf{S}}=\text{keep everything incident to S}\\ &g/_{\mathsf{S}}=\text{remove everything incident to S} \end{split}$$

Example: Hopf monoid of graphs

 $\mathsf{G}[I] := \mathbb{K} \{ \mathsf{H}_G \ : \ G \text{ is a } \operatorname{graph} (\text{with half edges}) \text{ on vertex set } I \}$

$$g = \bigwedge_{a,bc}^{b} \in G[\{a,b,c\}].$$
$$\Delta_{a,bc}(H_g) = \overset{H}{\xrightarrow{a}} \otimes \overset{H}{\xrightarrow{b}} \overset{c}{\xrightarrow{b}}$$
$$\Delta_{bc,a}(H_g) = \overset{H}{\xrightarrow{b}} \otimes \overset{c}{\xrightarrow{b}} \otimes \overset{H}{\xrightarrow{a}}$$

There are many other examples...

- graphs G
- posets P
- trees T
- matroids M
- linear orders L
- set partitions ∏
- set compositions Σ
- paths A
- simplicial complexes SC
- hypergraphs HG
- building sets BS

Character group of a Hopf monoid

Let I a finite set and $I = S \sqcup T$.

A character ζ of a Hopf monoid h is a species map

$$\zeta: \mathsf{h} \to \mathbf{E}, \quad \zeta = (\zeta_{\mathrm{I}}), \quad \zeta_{\mathrm{I}}: \mathsf{h}[\mathrm{I}] \to \mathbb{K}$$

such that

$$\zeta_I(x\cdot y) = \zeta_S(x)\cdot \zeta_T(y) \qquad,\qquad \zeta_\emptyset(\varepsilon) = 1.$$

Character group of a Hopf monoid

The characters of h form a group $\mathbb{X}(h)$ under convolution product:

$$(\zeta\xi)_{I}(x) = \sum_{I=S\sqcup T} \zeta_{S}(x|_{S})\xi(x/_{S}).$$

The unit of $\mathbb{X}(h)$ is $u_{\mathrm{I}}(x):=\delta_{x,\varepsilon};$ the inverse of $\zeta\in\mathbb{X}(h)$ is

$$\zeta_{\mathrm{I}}^{-1} = \zeta_{\mathrm{I}} \circ s_{\mathrm{I}}.$$

Example: $\mathbb{X}(\mathbf{L}) \cong (\mathbb{K}, +)$.

Standard Permutahedron

Let I be a non-empty finite set.

Let \mathbb{R}^I be the real vector space of functions $x : I \to \mathbb{R}$. A vector x has coordinates $\{x_i\}_{i \in I}$, where x_i is the value of x at i.

Let n = |I|. The *standard permutahedron* π_I is the polytope in \mathbb{R}^I whose vertices consist of all the permutations of the point (1, 2, ..., n).

Standard Permutahedron

For example, $\pi_{\{a,b,c\}}$ is a regular hexagon lying on the plane $x_a + x_b + x_c = 6$, and $\pi_{\{a,b,c,d\}}$ lies on the hyperplane $x_a + x_b + x_c + x_d = 10$. We have dim $\pi_I = n - 1$.

Images from "Hopf monoids and polynomial invariants of combinatorial structures", ECCO course - Marcelo Aguiar and Jose Bastidas.

Standard Permutahedron

For $i \in I$, let $e_i \in \mathbb{R}^I$ denote the standard vector

$$e_i = (0, \ldots, 1, \ldots, 0),$$

with j-th coordinate equal to $\delta(i, j)$. The set $\{e_i\}_{i \in I}$ is the *standard basis* of \mathbb{R}^I . For any nonempty subset $S \subseteq I$, let

$$e_{S} = \sum_{i \in S} e_{i}.$$

Given two vectors v and w, let [v, w] denote the line segment joining their endpoints:

$$[\nu, w] = \{\lambda \nu + (1 - \lambda)w \mid 0 \le \lambda \le 1\}.$$

The standard permutahedron coincides with the following Minkowski sum:

$$\pi_{\mathrm{I}} = e_{\mathrm{I}} + \sum_{\{\mathfrak{i},\mathfrak{j}\}\in \binom{\mathrm{I}}{2}} [e_{\mathfrak{i}},e_{\mathfrak{j}}].$$

The set of (n - k)-dimensional faces of π_I is in bijection with the set of compositions of I into k parts.

The closed normal cone of the face π_F is

$$\mathcal{N}_{\pi_{\mathrm{I}}}(\pi_{\mathrm{F}}) = \{ \alpha_{1} e_{S_{1}} + \cdots + \alpha_{k} e_{S_{k}} \in \mathbb{R}^{\mathrm{I}} \mid \alpha_{1} \geq \cdots \geq \alpha_{k} \}.$$

A fan \mathcal{F} refines a fan \mathcal{G} if every cone of \mathcal{G} is a union of cones of \mathcal{F} .

Image from "Hopf monoids and polynomial invariants of combinatorial structures", ECCO course - Marcelo Aguiar and Jose Bastidas.

Generalized Permutahedra

A generalized permutahedron $\mathfrak{p} \subseteq \mathbb{R}^{I}$ is a polytope such that its normal fan is coarser than that of the standard permutahedron.

 $\mathsf{GP}[I] := \{ \text{ generalized permutahedra } \mathfrak{p} \subseteq \mathbb{R}^I \}.$

There is a (commutative) Hopf monoid structure on GP:

- Product: cartesian product;
- Coproduct: if \mathfrak{p}_S denote the face of \mathfrak{p} maximized by the functional $x \mapsto \sum_{i \in S} x_i$, then

$$\mathfrak{p}_{S}=\mathfrak{p}|_{S}\times\mathfrak{p}/_{S}.$$

Antipode (Aguiar, Ardila):

$$s_{\mathrm{I}}(\mathfrak{p}) = (-1)^{|\mathrm{I}|} \sum_{\mathfrak{q} \leq \mathfrak{p}} (-1)^{\dim(\mathfrak{q})} \mathfrak{q}.$$

Generalized permutahedra: Posets, graphs, matroids

There is a long tradition of modeling combinatorics geometrically. Stanley (73): graphic zonotope Z(G) associated to a graph G

$$\mathsf{Z}(\mathsf{G}) = \sum_{ij \in \mathsf{G}} (e_i - e_j)$$

Geissinger (81): poset cone C_G associated to a poset P $C_P = \text{cone}\{e_i - e_j : i <_P j\}$

Edmonds (70): matroid polytope P_M associated to a matroid P $C_P = conv\{e_{i_1} + \cdots e_{i_k} : \{i_1, \dots, i_k\} \text{ is a basis of } M\}$

Aguiar-Ardila: all the examples of Hopf monoids can be realized as sub-Hopf monoids of GP.

Geometrical application

Consider formal power series

$$A(t)=t+\sum_{n\geq 2} \mathfrak{a}_{n-1}t^n \qquad \text{and} \qquad B(t)=t+\sum_{n\geq 2} \mathfrak{b}_{n-1}t^n,$$

such that A(B(t)) = t. Then

$$\begin{split} b_1 &= -a_1 \\ b_2 &= -a_2 + 2a_1^2 \\ b_3 &= -a_3 + 5a_2a_1 - 5a_1^3 \\ b_4 &= -a_4 + 6a_3a_1 + 3a_2^2 - 21a_2a_1^2 + 14a_1^4. \end{split}$$

Geometrical application

Consider formal power series

$$A(t)=t+\sum_{n\geq 2} \alpha_{n-1}t^n \qquad \text{and}\qquad B(t)=t+\sum_{n\geq 2} b_{n-1}t^n,$$

such that A(B(t)) = t. Then

$$\begin{split} b_1 &= -a_1 \\ b_2 &= -a_2 + 2a_1^2 \\ b_3 &= -a_3 + 5a_2a_1 - 5a_1^3 \\ b_4 &= -a_4 + 6a_3a_1 + 3a_2^2 - 21a_2a_1^2 + 14a_1^4. \end{split}$$

What do these numbers count? Look at the associahedra!

Counting with the associahedra

Face structure of associahedra

 $b_4 \!=\! - a_4 \!+\! 6 a_3 a_1 \!+\! 3 a_2^2 \!-\! 21 a_2 a_1^2 \!+\! 14 a_1^4$

1 three-dimensional associahedron 6 pentagons and 3 squares 21 segments 14 points

A "mythical polytope"

Some realizations of the associahedron

- Tamari (1951): defines the associahedron combinatorially. (lattice).
- Stasheff (1963): realizes the associahedron as a cell complex (polytope).
- Loday, Ronco (2001): relates the associahedron to a Hopf algebra of binary trees.

Associahedron

Some realizations of the associahedron

- Tamari (1951): defines the associahedron combinatorially. (lattice).
- Stasheff (1963): realizes the associahedron as a cell complex (polytope).
- Loday, Ronco (2001): relates the associahedron to a Hopf algebra of binary trees.

Tamari order

Tamari order

 $\mathcal{Y}_n := \mathsf{planar} \text{ binary trees with } n+1$ leaves.

Covering relation:

 $s \lessdot t$,

if t is obtained after moving one child node of s, from left to right, across their parent.

(Weak) Bruhat order

(Weak) Bruhat order on \mathfrak{S}_n

Covering relation:

u < (i i + 1)u,

if the letter i appears before i + 1 inside u.

Permutohedron

Some realizations of the permutohedron

- Schoute (1911): studies on regular polytopes.
- Guilbaud, Rosenstiehl (1963): derives the permutohedron as a lattice,
- Loday, Ronco (2001): relates the permutohedron to Sym.

Permutohedron

Some realizations of the permutohedron

- Schoute (1911): studies on regular polytopes.
- Guilbaud, Rosenstiehl (1963): derive the permutohedron as a lattice,
- Loday, Ronco (2001): relate the permutohedron to a Hopf algebra of permutations (Malvenuto-Reutenauer).

Permutohedron (3D), in arts

Some realizations of the permutohedron

- Da Vinci (1509): illustration from Luca Pacioli's 1509 book "The Divine Proportion".
- Hirschvogel (1543): Hirschvogel's book "Geometria".

Permutohedron (3D), in nature

Tectosilicates: internal structure based on a three dimensional framework of silicate tetrahedra

Permutohedron, in mathematics

Consider formal power series

$$A(t) = 1 + \sum_{n \ge 1} a_n \frac{t^n}{n!} \qquad \text{and} \qquad B(t) = 1 + \sum_{n \ge 1} b_n \frac{t^n}{n!},$$

such that A(t)B(t) = 1. Then

$$\begin{split} b_1 &= -a_1 \\ b_2 &= -a_2 + 2a_1^2 \\ b_3 &= -a_3 + 6a_2a_1 - 6a_1^3 \\ b_4 &= -a_4 + 8a_3a_1 + 6a_2^2 - 36a_2a_1^2 + 25a_1^4. \end{split}$$

Permutohedron, in mathematics

Consider formal power series

$$A(t) = 1 + \sum_{n \ge 1} a_n \frac{t^n}{n!} \qquad \text{and} \qquad B(t) = 1 + \sum_{n \ge 1} b_n \frac{t^n}{n!},$$

such that A(t)B(t) = 1. Then

$$\begin{split} b_1 &= -a_1 \\ b_2 &= -a_2 + 2a_1^2 \\ b_3 &= -a_3 + 6a_2a_1 - 6a_1^3 \\ b_4 &= -a_4 + 8a_3a_1 + 6a_2^2 - 36a_2a_1^2 + 25a_1^4. \end{split}$$

What do these numbers count? Look at the permutohedra!

Counting with the permutohedra

Face structure of permutohedra

 $b_4{=}{-}\alpha_4{+}8\alpha_3\alpha_1{+}6\alpha_2^2{-}36\alpha_2\alpha_1^2{+}25\alpha_1^4$

1 three-dimensional permutohedron 8 hexagons and 6 squares 36 segments 24 points

- Associahedra "know" how to compute multiplicative inverses.
- Permutohedra "know" how to compute compositional inverses.

This is one of the many consequences of a Hopf monoid structure on *generalized permutahedra* (Aguiar-Ardila).

Generalized Permutahedra: (standard) Permutahedra

If n := |I|, let $\mathfrak{p}_I := \operatorname{conv}\{(\mathfrak{a}_i)_{i \in I} \in \mathbb{R}I : \{\mathfrak{a}_i\}_{i \in I} = [n]\}$ and $\mathfrak{p}_n := \mathfrak{p}_{[n]}$. The value $\mathfrak{a}_n = \zeta(\mathfrak{p}_n)$ determine the character $\zeta \in \mathbb{X}(\overline{P})$. In the group of characters

 $\mathbb{X}(\overline{P})\cong \mbox{ group of exponential formal power series, under multiplication}$

of the (standard) **Permutahedra** \overline{P} , the multiplicative inverse of $1 + a_1x + a_2\frac{x^2}{2!} + a_3\frac{x^3}{3!} + \cdots$ is $1 + b_1x + b_2\frac{x^2}{2!} + b_3\frac{x^3}{3!} + \cdots$, where

$$b_n = (-1)^n \sum_{F \leq \mathfrak{p}_n} (-1)^{\dim F} \mathfrak{a}_F,$$

with $a_F = a_{f_1}a_{f_2}\cdots a_{f_k}$, for each face $F \cong \mathfrak{p}_{f_1} \times \mathfrak{p}_{f_2} \times \cdots \mathfrak{p}_{f_k}$ of the permutahedron.

Generalized Permutahedra: (Loday's) Associahedra

Let
$$\mathfrak{a}_n := \sum_{i,j \in [n]} \Delta_{[i,j]}$$
.

In the group of characters

 $\mathbb{X}(\overline{A})\cong \mbox{ group of ordinary formal power series, under composition }$

of the (Loday's) Associahedra \overline{P} , the compositional inverse of $x + a_1x^2 + a_2x^3 + a_3x^4 \cdots$ is $x + b_1x^2 + b_2x^3 + b_3x^4 + \cdots$, where

$$b_n = (-1)^n \sum_{F \leq \mathfrak{p}_n} (-1)^{\dim F} \mathfrak{a}_F,$$

with $a_F = a_{f_1}a_{f_2}\cdots a_{f_k}$, for each face $F \cong \mathfrak{a}_{f_1} \times \mathfrak{a}_{f_2} \times \cdots \mathfrak{a}_{f_k}$ of the associahedron.

Non-commutative probability

- The field of *Free Probability* was created by Dan-Virgil Voiculescu in the 1980s.
- Philosophy: investigate the notion of "freeness" in analogy to the concept of "independence" from (classical) probability theory.
- A combinatorial theory of freeness was developed by Nica and Speicher in the 1990s.
- Voiculescu discovered freeness also asymptotically for many kinds of random matrices (1991).

Dan Voiculescu , 2015

Commutative vs non-commutative

Voiculescu: "Free probability is a probability theory adapted to dealing with variables which have the highest degree of noncommutativity. *Failure of commutativity may occur in many ways*."

- Quantum mechanics' commutation relation: XY YX = I.
- Free product of groups.
- Independent random matrices tend to be asymptotically freely independent, under certain conditions.

Classical probability space

A **probability space** (Kolmogorov, 1930's) is given by the following data:

- a set Ω (sample space),
- a collection \mathcal{F} (event space),
- $\blacksquare \ \mathbb{P}: \mathcal{F} \to [0,1] \ (\text{probability function}),$

Andrey Kolmogorov

satisfying several axioms.

Expectation: for every bounded random variable $X \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$, let

$$\mathbb{E}[X] := \int_{\Omega} X(\omega) \, d\mathbb{P}(\omega).$$

Intuition: replace $(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E})$ by a more general pair (\mathcal{A}, ϕ) .

A non-commutative probability space is a pair (\mathcal{A}, ϕ) such that

- \mathcal{A} is a unital associative algebra over \mathbb{C} ;
- $\phi: \mathcal{A} \to \mathbb{C}$ is a linear functional such that $\phi(1_{\mathcal{A}}) = 1$.

- A non-commutative probability space is a pair (\mathcal{A}, ϕ) such that
 - \mathcal{A} is a unital associative algebra over \mathbb{C} ;
 - $\phi: \mathcal{A} \to \mathbb{C}$ is a linear functional such that $\phi(1_{\mathcal{A}}) = 1$.

Examples: $(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E})$, $(Mat_n(\mathbb{C}), \frac{1}{n}Tr)$, $(Mat_n(\Omega), \phi)$.

A non-commutative probability space is a pair (\mathcal{A}, ϕ) such that

- \mathcal{A} is a unital associative algebra over \mathbb{C} ;
- $\phi: \mathcal{A} \to \mathbb{C}$ is a linear functional such that $\phi(1_{\mathcal{A}}) = 1$.

 $\text{Examples: } (L^{\infty}(\Omega,\mathcal{F},\mathbb{P}),\mathbb{E}), \ \left(\mathsf{Mat}_{n}(\mathbb{C}),\frac{1}{n}\mathsf{Tr}\right), \ \left(\mathsf{Mat}_{n}(\Omega),\phi\right).$

$$\varphi(\mathfrak{a}) := \int_{\Omega} \operatorname{tr}(\mathfrak{a}(\omega)) d\mathbb{P}(\omega)$$

Random variable: $a \in \mathcal{A}$ Moments: $(\phi(a), \phi(a^2), \phi(a^3), \ldots) \longleftrightarrow \mu : \mathbb{C}[x] \to \mathbb{C}, \mu(t^i) := \phi(a^i)$ Join distribution of (a_1, \ldots, a_k) : if $1 \le i_1, \ldots, i_n \le k$,

 $\mu : \mathbb{C} \langle t_1, \dots, t_k \rangle \to \mathbb{C} \quad , \quad \mu(t_{i_1} \cdots t_{i_n}) \coloneqq \phi(a_{i_1} \cdots a_{i_n})$

A non-commutative probability space is a pair (\mathcal{A}, ϕ) such that

- \mathcal{A} is a unital associative algebra over \mathbb{C} ;
- $\phi: \mathcal{A} \to \mathbb{C}$ is a linear functional such that $\phi(1_{\mathcal{A}}) = 1$.

In a (classical) probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the notion of independence between two random variables $X, Y : \Omega \to \mathbb{C}$ implies

 $\mathbb{E}(X^m Y^n) = \mathbb{E}(X^m) \mathbb{E}(Y^n).$

Let (\mathcal{A},ϕ) be a non-commutative probability space.

Let (\mathcal{A},ϕ) be a non-commutative probability space.

 $\text{Consider}\; \{\mathcal{A}_i\}_{i\in I} \text{ unital subalgebras of } \mathcal{A}.$

Let (\mathcal{A},ϕ) be a non-commutative probability space.

Consider $\{A_i\}_{i \in I}$ unital subalgebras of A.

The family $\{\mathcal{A}_i\}_{i\in I}$ of algebras is **freely independent** if for every $n \in \mathbb{N}$ and for every choice of (i_1, \ldots, i_n) of "different neighbouring indices" (i.e., $i_{j-1} \neq i_j \neq i_{j+1}$), we have

$$\varphi(\mathfrak{a}_1\cdots\mathfrak{a}_n)=0,$$

whenever $a_j \in \mathcal{A}_{\mathfrak{i}_j}$ and $\phi(a_j)=0,$ for every $1 \leq j \leq n.$

Let (\mathcal{A},ϕ) be a non-commutative probability space.

Consider $\{A_i\}_{i \in I}$ unital subalgebras of A.

The family $\{\mathcal{A}_i\}_{i\in I}$ of algebras is **freely independent** if for every $n \in \mathbb{N}$ and for every choice of (i_1, \ldots, i_n) of "different neighbouring indices" (i.e., $i_{j-1} \neq i_j \neq i_{j+1}$), we have

$$\varphi(\mathfrak{a}_1\cdots\mathfrak{a}_n)=0,$$

whenever $a_j \in \mathcal{A}_{\mathfrak{i}_j}$ and $\phi(a_j)=0,$ for every $1 \leq j \leq n.$

A family $(a_i)_{i \in I}$ of non-commutative random variables is called **free** if the family of subalgebras $(\langle 1_A, a_i \rangle)_{i \in I}$ is freely independent.

Let (\mathcal{A},ϕ) be a non-commutative probability space.

Consider $\{A_i\}_{i \in I}$ unital subalgebras of A.

The family $\{\mathcal{A}_i\}_{i\in I}$ of algebras is **freely independent** if for every $n \in \mathbb{N}$ and for every choice of (i_1, \ldots, i_n) of "different neighbouring indices" (i.e., $i_{j-1} \neq i_j \neq i_{j+1}$), we have

$$\varphi(\mathfrak{a}_1\cdots\mathfrak{a}_n)=0,$$

whenever $a_j \in \mathcal{A}_{i_j}$ and $\phi(a_j)=0,$ for every $1 \leq j \leq n.$

A family $(a_i)_{i \in I}$ of non-commutative random variables is called **free** if the family of subalgebras $(\langle 1_A, a_i \rangle)_{i \in I}$ is freely independent.

Sets of variables in (\mathcal{A}, ϕ) are free if the algebras they generate are free.

It looks artificial...

Free independence provides a rule to compute mixed moments.

Free independence provides a rule to compute mixed moments.

Let (\mathcal{A}, ϕ) be a n.c.p.s. and let $a, b \in \mathcal{A}$ free n.c.r.v.

Free independence provides a rule to compute mixed moments. Let (\mathcal{A}, ϕ) be a n.c.p.s. and let $a, b \in \mathcal{A}$ free n.c.r.v. What is $\phi(ab)$?

Free independence provides a rule to compute mixed moments. Let (\mathcal{A}, ϕ) be a n.c.p.s. and let $a, b \in \mathcal{A}$ free n.c.r.v. What is $\phi(ab)$? $\phi((a - \phi(a)\mathbf{1}_{\mathcal{A}})(b - \phi(b)\mathbf{1}_{\mathcal{A}})) = 0$, so

 $\label{eq:computer} \mbox{Free independence provides a rule to compute mixed moments.}$ Let (\mathcal{A},ϕ) be a n.c.p.s. and let $a,b\in\mathcal{A}$ free n.c.r.v.

What is $\phi(ab)?\;\phi((a-\phi(a)\mathbf{1}_{\mathcal{A}})(b-\phi(b)\mathbf{1}_{\mathcal{A}}))=0,$ so

$$D = \varphi((a - \varphi(a) \cdot \mathbf{1}_{\mathcal{A}})(b - \varphi(b) \cdot \mathbf{1}_{\mathcal{A}})))$$

= $\varphi(ab) - \varphi(a \cdot \mathbf{1}_{\mathcal{A}})\varphi(b) - \varphi(a)\varphi(\mathbf{1}_{\mathcal{A}} \cdot b) + \varphi(a)\varphi(b)\varphi(\mathbf{1}_{\mathcal{A}})$
= $\varphi(ab) - \varphi(a)\varphi(b) - \varphi(a)\varphi(b) + \varphi(a)\varphi(b)$

Free independence provides a rule to compute mixed moments.

Let (\mathcal{A}, ϕ) be a n.c.p.s. and let $a, b \in \mathcal{A}$ free n.c.r.v.

What is $\phi(ab)?\;\phi((a-\phi(a)\mathbf{1}_{\mathcal{A}})(b-\phi(b)\mathbf{1}_{\mathcal{A}}))=0,$ so

$$D = \varphi((a - \varphi(a) \cdot \mathbf{1}_{\mathcal{A}})(b - \varphi(b) \cdot \mathbf{1}_{\mathcal{A}})))$$

= $\varphi(ab) - \varphi(a \cdot \mathbf{1}_{\mathcal{A}})\varphi(b) - \varphi(a)\varphi(\mathbf{1}_{\mathcal{A}} \cdot b) + \varphi(a)\varphi(b)\varphi(\mathbf{1}_{\mathcal{A}})$
= $\varphi(ab) - \varphi(a)\varphi(b) - \varphi(a)\varphi(b) + \varphi(a)\varphi(b)$

Therefore, $\varphi(ab) = \varphi(a)\varphi(b)$.

Free independence provides a rule to compute mixed moments.

Let (\mathcal{A}, ϕ) be a n.c.p.s. and let $\{a_1, a_2\}, \{b\} \subseteq \mathcal{A}$ free n.c.r.v.

Free independence provides a rule to compute mixed moments. Let (\mathcal{A}, ϕ) be a n.c.p.s. and let $\{a_1, a_2\}, \{b\} \subseteq \mathcal{A}$ free n.c.r.v. What is $\phi(a_1ba_2)$?

Free independence provides a rule to compute mixed moments. Let (\mathcal{A}, ϕ) be a n.c.p.s. and let $\{a_1, a_2\}, \{b\} \subseteq \mathcal{A}$ free n.c.r.v. What is $\phi(a_1 b a_2)$? From $\phi((a_1 - \phi(a_1) \cdot 1_{\mathcal{A}})(b - \phi(b) \cdot 1_{\mathcal{A}})(a_2 - \phi(a_2) \cdot 1_{\mathcal{A}})) = 0$, we obtains

 $\varphi(a_1ba_2) = \varphi(a_1a_2)\varphi(b).$

Free independence provides a rule to compute mixed moments. Let (\mathcal{A}, ϕ) be a n.c.p.s. and let $\{a_1, a_2\}, \{b\} \subseteq \mathcal{A}$ free n.c.r.v. What is $\phi(a_1ba_2)$? From

$$\varphi\Big((\mathfrak{a}_1-\varphi(\mathfrak{a}_1)\cdot \mathbf{1}_{\mathcal{A}})(\mathfrak{b}-\varphi(\mathfrak{b})\cdot \mathbf{1}_{\mathcal{A}})(\mathfrak{a}_2-\varphi(\mathfrak{a}_2)\cdot \mathbf{1}_{\mathcal{A}})\Big)=0,$$

we obtains

$$\varphi(\mathfrak{a}_1\mathfrak{b}\mathfrak{a}_2)=\varphi(\mathfrak{a}_1\mathfrak{a}_2)\varphi(\mathfrak{b}).$$

If $\{a_1, a_2\}, \{b_1, b_2\} \subseteq \mathcal{A}$ free n.c.r.v,

$$\begin{split} \phi(a_1b_1a_2b_2) = & \phi(a_1a_2)\phi(b_1)\phi(b_2) + \phi(a_1)\phi(a_2)\phi(b_1b_2) \\ & - \phi(a_1)\phi(a_2)\phi(b_1)\phi(b_2). \end{split}$$

Free independence provides a rule to compute mixed moments. Let (\mathcal{A}, ϕ) be a n.c.p.s. and let $\{a_1, a_2\}, \{b\} \subseteq \mathcal{A}$ free n.c.r.v. What is $\phi(a_1ba_2)$? From

$$\varphi\Big((\mathfrak{a}_1-\varphi(\mathfrak{a}_1)\cdot \mathbf{1}_{\mathcal{A}})(\mathfrak{b}-\varphi(\mathfrak{b})\cdot \mathbf{1}_{\mathcal{A}})(\mathfrak{a}_2-\varphi(\mathfrak{a}_2)\cdot \mathbf{1}_{\mathcal{A}})\Big)=0,$$

we obtains

$$\varphi(\mathfrak{a}_1\mathfrak{b}\mathfrak{a}_2)=\varphi(\mathfrak{a}_1\mathfrak{a}_2)\varphi(\mathfrak{b}).$$

If $\{a_1, a_2\}, \{b_1, b_2\} \subseteq \mathcal{A}$ free n.c.r.v,

$$\begin{split} \phi(a_1b_1a_2b_2) = & \phi(a_1a_2)\phi(b_1)\phi(b_2) + \phi(a_1)\phi(a_2)\phi(b_1b_2) \\ & - \phi(a_1)\phi(a_2)\phi(b_1)\phi(b_2). \end{split}$$

$$\Rightarrow \varphi(abab) = \varphi(a^2)\varphi(b)^2 + \varphi(a)^2\varphi(b^2) - \varphi(a)^2\varphi(b)^2.$$

Freeness from the free product

Voiculescu gave the definition of freeness in the context of von Neumann algebras of free products of groups.

$$\begin{split} \mathsf{F}(\mathsf{G}) &:= \{ \alpha : \mathsf{G} \to \mathbb{C} \, : \, |\{ \mathsf{g} \in \mathsf{G} \, | \, \alpha(\mathsf{g}) \neq 0 \}| < \infty \}, \\ (\alpha * \beta)(\mathsf{g}) &:= \sum_{\mathsf{h} \in \mathsf{G}} \alpha(\mathsf{g}\mathsf{h}^{-1})\beta(\mathsf{h}), \end{split}$$

$$\varphi_{\mathsf{G}}:\mathsf{F}(\mathsf{G})\to\mathbb{C}\qquad,\qquad \alpha\mapsto\alpha(e).$$

F(G) is linearly generated by $\{\delta_g:g\in G\}$, where

$$\delta_g(h) = \begin{cases} 1, & h = g \\ 0, & h \neq g \end{cases}$$

Freeness from the free product

Theorem

If $\{G_i\}_{i \in I}$ subgroups of G are algebraically free, then $\{F(G_i)\}_{i \in I} \subseteq F(G)$ are freely independent in $(F(G), \phi_G)$.

Sketch of the proof: Consider $(i_1, \ldots, i_n) \in I^n$ such that $i_1 \neq i_2 \neq \cdots \neq i_n$, and $\alpha_k \in F(G_{i_k})$ such that $\alpha_k(e) = 0$, for $1 \leq k \leq n$.

Freeness from the free product

Theorem

If $\{G_i\}_{i \in I}$ subgroups of G are algebraically free, then $\{F(G_i)\}_{i \in I} \subseteq F(G)$ are freely independent in $(F(G), \phi_G)$.

Sketch of the proof: Consider $(i_1, \ldots, i_n) \in I^n$ such that $i_1 \neq i_2 \neq \cdots \neq i_n$, and $\alpha_k \in F(G_{i_k})$ such that $\alpha_k(e) = 0$, for $1 \leq k \leq n$.

$$\varphi(\alpha_1 * \cdots * \alpha_n) = (\alpha_1 * \cdots * \alpha_n)(e)$$

= $\sum_{\substack{g_1, \dots, g_n \in G \\ g_1 \cdots g_n = e}} \alpha_1(g_1) \cdots \alpha_n(g_n).$

Since G_{i_1}, \ldots, G_{i_n} are algebraically free. there exists k such that $g_k = e$, leading to $\varphi(\alpha_1 * \cdots * \alpha_n)$.

Non-commutative independence

Let (\mathcal{A}, ϕ) be a non-commutative probability space. Consider $\{\mathcal{A}_i\}_{i \in I}$ unital subalgebras of \mathcal{A} . Let $a_1 \in \mathcal{A}_{i_1}, \ldots, a_n \in \mathcal{A}_{i_n}$ such that $i_j \neq i_{j+1}$.

The family $\{\mathcal{A}_i\}_{i\in I}$ is

freely independent if

 $\varphi(\mathfrak{a}_1\cdots\mathfrak{a}_n)=0,$

when $\phi(a_j)=0,$ for all $1\leq j\leq n;$

boolean independent if

$$\varphi(\mathfrak{a}_1\cdots\mathfrak{a}_n)=\varphi(\mathfrak{a}_1)\cdots\varphi(\mathfrak{a}_n);$$

Other notions: monotone independence, conditional monotone, ...

Back to the examples

$$\begin{split} \varphi(ab) &= \varphi(a)\varphi(b) \\ \varphi(a_{1}ba_{2}) &= \varphi(a_{1}a_{2})\varphi(b) \\ \varphi(a_{1}b_{1}a_{2}b_{2}) &= \varphi(a_{1}a_{2})\varphi(b_{1})\varphi(b_{2}) + \varphi(a_{1})\varphi(a_{2})\varphi(b_{1}b_{2}) \\ &- \varphi(a_{1})\varphi(a_{2})\varphi(b_{1})\varphi(b_{2}) \\ \varphi(a_{1}b_{1}cb_{2}a_{2}da_{3}) &= \varphi(a_{1}b_{1}cb_{2}a_{2}da_{3}) \\ &= \varphi(a_{1}a_{2}da_{3})\varphi(b_{1}cb_{2}) \\ &= \varphi(a_{1}a_{2}da_{3})\varphi(b_{1}cb_{2}) \\ &= \varphi(a_{1}a_{2}a_{3})\varphi(b_{1}b_{2})\varphi(c)\varphi(d). \end{split}$$

"Non-crossing moments" factorize; "crossing moments" do not.

Back to (\mathcal{A}, ϕ)

Let $n \in \mathbb{N}$ and $a_1, a_2, \ldots, a_n \in \mathcal{A}$.

Consider $\{f_n : \mathcal{A}^n \to \mathbb{C} \,|\, n \ge 0\}$ a family of multilinear functionals.

Let $\pi = \{B_1, \dots, B_k\} \in \mathsf{NC}(n)$. We define $f_{\pi}(a_1, \dots, a_n) := \prod_{\substack{B \in \pi \\ B = \{b_1 < b_2 < \dots < b_r\}}} f_{|B|}(b_1, b_2, \dots, b_r).$

Back to (\mathcal{A},ϕ)

If $\pi = \{\{1\}, \{2, 3, 4, 5\}, \{6\}, \{7, 8, 9\}\}$, then

 $f_{\pi}(a_1,\ldots,a_9) = f_1(a_1) f_4(a_2,a_3,a_4,a_5) f_1(a_6) f_3(a_7,a_8,a_9).$

Moment to cumulant relations in (\mathcal{A}, ϕ)

Consider the multilinear functionals

$$\begin{array}{ll} \{r_n: \mathcal{A}^n \to \mathbb{C}\}_{n \geq 1} & \{b_n: \mathcal{A}^n \to \mathbb{C}\}_{n \geq 1} & \{h_n: \mathcal{A}^n \to \mathbb{C}\}_{n \geq 1} \\ (\text{ Free cumulants }) & \text{'} & (\text{ Boolean cumulants }) & \text{'} & (\text{ Monotone cumulants }) \end{array}$$

defined by

$$\begin{split} \varphi(a_1 \cdots a_n) &= \sum_{\pi \in \mathsf{NC}(n)} r_{\pi}(a_1, \dots, a_n), \\ \varphi(a_1 \cdots a_n) &= \sum_{\pi \in \mathsf{NC}(n)} b_{\pi}(a_1, \dots, a_n), \\ \varphi(a_1 \cdots a_n) &= \sum_{\pi \in \mathsf{NC}(n)} \frac{1}{\tau(\pi)!} h_{\pi}(a_1, \dots, a_n). \end{split}$$

Double tensor Hopf algebra

Double tensor Hopf algebra $T(T_+(V))$: non-commutative and non-cocommutative Hopf algebra, with graduation

$$\mathsf{T}(\mathsf{T}_+(\mathsf{V}))_n := \bigoplus_{\mathfrak{n}_1 + \dots + \mathfrak{n}_k = \mathfrak{n}} \mathsf{V}^{\otimes \mathfrak{n}_1} \otimes \dots \otimes \mathsf{V}^{\otimes \mathfrak{n}_k}.$$

Elements in $\mathsf{T}(\mathsf{T}_+(V))_n$ are written as (linear combinations of) words with bars

 $w_1 | \cdots | w_k,$

where $w_i \in V^{\otimes n_i}$ for some $n_1 + \cdots + n_k = n$. We call this elements words on (non-empty) words.

Double tensor Hopf algebra

Let V be a $\mathbb K\text{-vector space}.$

If $k\geq 0$, we write elementary tensors from $V^{\otimes k}$ as words, $u_1u_2\cdots u_k$, with $u_i\in V.$ We called the $\mathbb K\text{-vector spaces}$

$$\mathsf{T}(\mathsf{V}) := igoplus_{k \ge 0} \mathsf{V}^{\otimes k} \quad , \quad \mathsf{T}_+(\mathsf{V}) := igoplus_{k \ge 1} \mathsf{V}^{\otimes k}$$

the tensor module and reduced tensor module, respectively, generated by $V\!\!$.

Product rule: if $u \in T(T_+(V))_n$ and $v \in_m$, then

$$\mathfrak{u}|\mathfrak{v}:=\mathfrak{u}_1|\cdots|\mathfrak{u}_r|\mathfrak{v}_1|\cdots|\mathfrak{v}_s\in\mathsf{T}(\mathsf{T}_+(\mathsf{V}))_{\mathfrak{n}+\mathfrak{m}}.$$

• Coproduct rule: given a word $u = u_1 \cdots u_n \in V^{\otimes n}$ and $A = \{a_1, \ldots, a_k\} \subset \mathbb{N}$, we write $u_A := u_{a_1} \cdots u_{a_k}$. Consider the map $\Delta : T_+(V) \to T(V) \otimes T(T_+(V))$ given by

$$\Delta(\mathfrak{u}) := \sum_{A \subseteq [\mathfrak{n}]} \mathfrak{u}_A \otimes \mathfrak{u}_{K(A, [\mathfrak{n}])}$$
$$= \sum_{A \subseteq [\mathfrak{n}]} \mathfrak{u}_A \otimes \mathfrak{u}_{K_1} | \cdots | \mathfrak{u}_{K_r}.$$

Finally, we extend the map Δ multiplicatively to all of $\mathsf{T}(\mathsf{T}_+(V)),$ by setting

$$\Delta(w_1|\cdots|w_k):=\Delta(w_1)\cdots\Delta(w_k).$$

For example, we have

$$\Delta(ab) = 1 \otimes ab + a \otimes b + b \otimes a + ab \otimes 1;$$

 $\Delta(a|b) = 1 \otimes a|b + a \otimes b + b \otimes a + a|b \otimes 1;$

 $\Delta(abc) = 1 \otimes abc + a \otimes bc + b \otimes a|c + c \otimes ab + ab \otimes c + ac \otimes b + bc \otimes a + 1 \otimes abc;$

$$\Delta(a|bc) = 1 \otimes a|bc + a \otimes bc + b \otimes a|c + c \otimes a|b +a|b \otimes c + a|c \otimes b + bc \otimes a + 1 \otimes a|bc;$$

Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

- $\blacksquare~(\mathcal{A},\phi)$ non-commutative probability space.
- $H = T(T_+(A))$ words on non-empty words on A.
- The coproduct Δ in H is *codendriform*: $\Delta = \Delta_{<} + \Delta_{>}$.
- The space $(Hom_{lin}(H, \mathbb{K}), <, >)$ is a dendriform algebra, with * = < + >.
- The linear form ϕ is extended to $\mathsf{T}_+(\mathcal{A})$ by defining to all words $\mathfrak{u}=\mathfrak{a}_1\cdots\mathfrak{a}_n\in\mathcal{A}^{\otimes n}$

$$\varphi(\mathfrak{a}_1\mathfrak{a}_2\cdots\mathfrak{a}_n):=\varphi(\mathfrak{a}_1\cdot_{\mathcal{A}}\mathfrak{a}_2\cdot_{\mathcal{A}}\cdots\cdot_{\mathcal{A}}\mathfrak{a}_n).$$

This is the **multivariate moment** of u.

Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

- (\mathcal{A}, ϕ) non-commutative probability space.
- $H = T(T_+(A))$ words on non-empty words on A.
- The coproduct Δ in H is *codendriform*: $\Delta = \Delta_{<} + \Delta_{>}$.
- The space $(Hom_{lin}(H, \mathbb{K}), <, >)$ is a dendriform algebra, with * = < + >.
- The linear form ϕ is extended to $\mathsf{T}_+(\mathcal{A})$ by defining to all words $\mathfrak{u}=\mathfrak{a}_1\cdots\mathfrak{a}_n\in\mathcal{A}^{\otimes n}$

$$\varphi(\mathfrak{a}_1\mathfrak{a}_2\cdots\mathfrak{a}_n):=\varphi(\mathfrak{a}_1\cdot_{\mathcal{A}}\mathfrak{a}_2\cdot_{\mathcal{A}}\cdots\cdot_{\mathcal{A}}\mathfrak{a}_n).$$

This is the **multivariate moment** of u. The map φ is then extended multiplicatively to a map $\Phi: T(T_+(\mathcal{A})) \to \mathbb{K}$ with $\Phi(1) := 1$ and

$$\Phi(\mathfrak{u}_1|\cdots|\mathfrak{u}_k):=\varphi(\mathfrak{u}_1)\cdots\varphi(\mathfrak{u}_k).$$

Cumulants as infinitesimal characters

Proposition (Ebrahimi-Fard, Patras -2015)

Let $\rho,\kappa,\beta\in\mathfrak{g}(\mathcal{A})$ the infinitesimal characters solving

 $\Phi = \exp_*(\rho),$

$$\Phi = \varepsilon + \kappa \prec \Phi$$

and

$$\Phi = \epsilon + \Phi \succ \beta.$$

Then, ρ , κ , β correspond to the **monotone cumulants**, free cumulants and boolean cumulants, respectively.

For any word $u=a_1\cdots a_n\in \mathcal{A}^{\otimes n}$, we have

 $h_n(a_1,\ldots,a_n) = \rho(u), r_n(a_1,\ldots,a_n) = \kappa(u), b_n(a_1,\ldots,a_n) = \beta(u).$

Series on species

There are functors

$$\begin{split} \mathcal{K}, \overline{\mathcal{K}}, \mathcal{K}^{\vee}, \overline{\mathcal{K}} : & \text{Hopf monoids in species} \to \mathbb{N}\text{-graded Hopf algebras.} \\ \mathcal{K}(h) &= \mathcal{K}^{\vee}(h) := \bigoplus_{n \geq 0} h[n] \\ & \overline{\mathcal{K}}(h) := \bigoplus_{n \geq 0} h[n]_{\mathfrak{S}_n} \quad , \quad \overline{\mathcal{K}}^{\vee}(h) := \bigoplus_{n \geq 0} h[n]^{\mathfrak{S}_n} \end{split}$$

There are functors

$$\begin{split} \mathcal{K}, \overline{\mathcal{K}}, \mathcal{K}^{\vee}, \overline{\mathcal{K}}: & \text{Hopf monoids in species} \to \mathbb{N}\text{-graded Hopf algebras.} \\ \mathcal{K}(h) &= \mathcal{K}^{\vee}(h) := \bigoplus_{n \geq 0} h[n] \\ & \overline{\mathcal{K}}(h) := \bigoplus_{n \geq 0} h[n]_{\mathfrak{S}_n} \quad , \quad \overline{\mathcal{K}}^{\vee}(h) := \bigoplus_{n \geq 0} h[n]^{\mathfrak{S}_n} \end{split}$$

Patras-Schocker-Reutenauer:

 $\label{eq:Kh} \begin{array}{l} \mathcal{K}(h): \text{ cosymmetrized bialgebra} \\ \mathcal{K}^{\vee}(h): \text{ symmetrized bialgebra} \end{array}$

There are functors

$$\begin{split} \mathcal{K}, \overline{\mathcal{K}}, \mathcal{K}^{\vee}, \overline{\mathcal{K}}: & \text{Hopf monoids in species} \to \mathbb{N}\text{-graded Hopf algebras.} \\ \mathcal{K}(h) &= \mathcal{K}^{\vee}(h) := \bigoplus_{n \geq 0} h[n] \\ & \overline{\mathcal{K}}(h) := \bigoplus_{n \geq 0} h[n]_{\mathfrak{S}_n} \quad , \quad \overline{\mathcal{K}}^{\vee}(h) := \bigoplus_{n \geq 0} h[n]^{\mathfrak{S}_n} \end{split}$$

• $\mathcal{K}(h) \cong \overline{\mathcal{K}}(L \times h).$

- If h is finite-dimensional, then $\overline{\mathcal{K}}(h^*) \cong \overline{\mathcal{K}}(h)^*$.
- If h is cocommutative, then so are $\mathcal{K}(h)$ and $\overline{\mathcal{K}}(h)$.
- If h is commutative, so is $\overline{\mathcal{K}}(h)$.

Let p be a species.

Let p be a species. A **series** s of p is a collection of elements

 $s_{I}\in \mathsf{p}[I],$

one for each finite set I, such that

 $\mathsf{p}[\sigma](s_{\mathrm{I}}) = s_{\mathrm{J}},$

for each bijection $\sigma: I \to J$.

Let p be a species. A **series** s of p is a collection of elements

 $s_{I}\in \mathsf{p}[I],$

one for each finite set I, such that

 $\mathsf{p}[\sigma](s_I) = s_J,$

for each bijection $\sigma: I \rightarrow J$.

The space $\mathscr{S}(p)$ of all series of p is a vector space:

 $(s+t)_{I} = s_{I} + t_{I}$, $(\lambda \cdot s)_{I} := \lambda s_{I}$,

for $s, t \in \mathscr{S}(p)$ and $\lambda \in \mathbb{K}$.

Let p be a species. A **series** s of p is a collection of elements

 $s_{I} \in p[I],$

one for each finite set I, such that

 $\mathsf{p}[\sigma](s_{\mathrm{I}}) = s_{\mathrm{J}},$

for each bijection $\sigma: I \to J$.

Let p be a species. A **series** s of p is a collection of elements

 $s_{I} \in p[I],$

one for each finite set I, such that

 $\mathsf{p}[\sigma](s_{\mathrm{I}}) = s_{\mathrm{J}},$

for each bijection $\sigma: I \to J$.

Let E be the exponential map. A series s of p corresponds to the morphism of species

$${\sf E} o {\sf p} \ *_{
m I} \mapsto {\sf s}_{
m I},$$

so $\mathscr{S}(p) \cong Hom_{Sp}(E,p)$.

Let p be a species. A **series** s of p is a collection of elements

 $s_{I} \in p[I],$

one for each finite set $I, \mbox{ such that }$

$$\mathsf{p}[\sigma](\mathsf{s}_{\mathrm{I}}) = \mathsf{s}_{\mathrm{J}},\tag{1}$$

for each bijection $\sigma: I \to J$.

Let p be a species. A **series** s of p is a collection of elements

 $s_{I} \in p[I],$

one for each finite set I, such that

$$\mathsf{p}[\sigma](\mathsf{s}_{\mathrm{I}}) = \mathsf{s}_{\mathrm{J}},\tag{1}$$

for each bijection $\sigma: I \to J$.

Property (2) implies that each $s_{[n]}$ is an \mathfrak{S}_n -invariant element of p[n]. In fact,

$$\mathscr{S}(\mathsf{p}) \cong \prod_{n \ge 0} \mathsf{p}[n]^{\mathfrak{S}_n}$$

 $s \mapsto (s_{[n]})_{n \ge 0}.$

Let p be a species. A series s of p is a collection of elements

 $s_{I}\in \mathsf{p}[I],$

one for each finite set I, such that

$$\mathsf{p}[\sigma](s_{\mathrm{I}}) = s_{\mathrm{J}},\tag{2}$$

for each bijection $\sigma: I \to J$.

Let p be a species. A series s of p is a collection of elements

 $s_{I} \in p[I],$

one for each finite set I, such that

$$\mathsf{p}[\sigma](\mathsf{s}_{\mathrm{I}}) = \mathsf{s}_{\mathrm{J}},\tag{2}$$

for each bijection $\sigma: I \to J$.

There is a functor

 $\mathscr{S}: \mathsf{Sp} \to \mathsf{Vec.}$

The functor \mathscr{S} is *braided lax monoidal*: it preserves monoids, commutative monoids, Lie monoids . . .

Decorated series

Let V be a vector space.

Decorated series

Let V be a vector space. Recall that a series of p corresponds to a morphism of species $\mathsf{E}\to \mathsf{p}.$

Let V be a vector space. Recall that a series of p corresponds to a morphism of species $\mathsf{E}\to \mathsf{p}.$

A V-decorated series, or decorated series, is a morphism of species

 $E_V \rightarrow p$,

where E_V is the exponential decorated exponential given by

$$\mathsf{E}_V[I] := \mathbb{K}\{f: I \to V\}.$$

Let $\mathscr{S}_{V}(p)$ be the space of decorated series.

Decorated series

A series s in $\mathscr{S}_V(p)$ is a collection of elements

 $s_{\mathrm{I},f} \in \mathsf{p}[\mathrm{I}],$

one for each finite set I and for each map $f:I \rightarrow V\text{, such that}$

 $\mathsf{p}[\sigma](s_{\mathrm{I},\mathrm{f}}) = s_{\mathrm{J},\mathrm{f}\circ\sigma^{-1}},$

for each bijection $\sigma: I \to J$.

Let (\mathcal{A},ϕ) be a non-commutative probability space.

Let (\mathcal{A},ϕ) be a non-commutative probability space.

Consider the *ripping and sewing* Hopf monoid P.

Let (\mathcal{A},ϕ) be a non-commutative probability space.

Consider the *ripping and sewing* Hopf monoid P. As a species, $P = L \circ L_+$.

Let (\mathcal{A}, ϕ) be a non-commutative probability space.

Consider the *ripping and sewing* Hopf monoid P. As a species, $P = L \circ L_+$. Define $\Phi \in \mathscr{S}_{\mathcal{A}}(P^*)$ as follows: if I is a finite set and $f : I \to \mathcal{A}$, let

 $\Phi_{I,f} \in \mathsf{P}^*[I]$

given by

$$\Phi_{\mathrm{I},\mathrm{f}}(w_1w_2\cdots w_n):=\phi(w_1)\cdots\phi(w_n),$$

where for each $w_k = x_1^k \cdots x_r^k \in \mathsf{L}_+[I_k]$,

$$\varphi(w) \coloneqq (\phi \circ f)(x_1^k) \cdots (\phi \circ f)(x_r^k).$$

Proposition (V. - 2024)

Let (\mathcal{A}, φ) be a non-commutative probability space. For every species p, consider the space $C_{\mathcal{A}}(p) := \mathscr{S}_{\mathcal{A}}((L \circ p_{+})^{*}).$

- Classical cumulants are obtained from p = X
- Non-commutative cumulants are obtained from p = L

Problem : structure on p giving a more general ripping and sewing coproduct on the *free monoid* $L \circ p_+$?

(In progress: structure of *hereditary species* on p)

Given two species p and q, let $\mathcal{H}(p,q)$ be the species defined by $\mathcal{H}(p,q)[I] := Hom_{\mathbb{K}}(p[I],q[I]).$

Given two species p and q, let $\mathcal{H}(p,q)$ be the species defined by $\mathcal{H}(p,q)[I] := \operatorname{Hom}_{\mathbb{K}}(p[I],q[I]).$ If $\sigma: I \to J$ is a bijection and $f \in \mathcal{H}(p,q)[I]$, then $\mathcal{H}(p,q)[\sigma](f) \in \mathcal{H}(p,q)[J]$

is defined as the composition

$$\mathsf{p}[J] \xrightarrow{\mathsf{p}[\sigma^{-1}]} \mathsf{p}[I] \xrightarrow{\mathsf{f}} \mathsf{q}[I] \xrightarrow{\mathsf{q}[\sigma]} \mathsf{q}[J].$$

Given two species p and q, let $\mathcal{H}(p,q)$ be the species defined by

 $\mathcal{H}(p,q)[I] := Hom_{\mathbb{K}}(p[I],q[I]).$

Given two species p and q, let $\mathcal{H}(p,q)$ be the species defined by

$$\mathcal{H}(\mathsf{p},\mathsf{q})[I]:=\mathsf{Hom}_{\mathbb{K}}(\mathsf{p}[I],\mathsf{q}[I]).$$

There is a natural isomorphism

$$\operatorname{Hom}_{\operatorname{Sp}_{\Bbbk}}(p \times q, r) \cong \operatorname{Hom}_{\operatorname{Sp}_{\Bbbk}}(p, \mathcal{H}(q, r)),$$

for species p, q and r. This says that the functor $\mathcal H$ is the *internal Hom* in the symmetric monoidal category (Sp_\Bbbk,\times) of species under Hadamard product.

System of products in PAQFT

Given a vector space V, the decorated Fock functor \mathcal{K}_{V} is given by

$$\mathcal{K}_{\mathbf{V}}(\mathsf{p}) := \bigoplus_{n \ge 0} \mathsf{p}[n] \otimes \mathbf{V}^{\otimes n}.$$

A system of products (Norledge) is a homomorphism of algebras

$$igoplus_{n\geq 0} \mathsf{p}[n]\otimes \mathsf{V}^{\otimes n} o \mathcal{A} \quad (\mathsf{Wick algebra})$$

In the language of species, this is precisely a species map

$$\mathsf{h}\times E_V\to \mathcal{U}_{\mathcal{A}},$$

after applying \mathcal{K}_V . Here, $\mathcal{U}_{\mathcal{A}}[I] := \mathcal{A}$, for every finite set I.

System of products in PAQFT

Given two species p and q, let $\mathcal{H}(p,q)$ be the species defined by

$$\mathcal{H}(\mathsf{p},\mathsf{q})[\mathrm{I}] := \mathsf{Hom}_{\mathbb{K}}(\mathsf{p}[\mathrm{I}],\mathsf{q}[\mathrm{I}]).$$

A system of products

$$\mathsf{h} \times E_V \to \mathcal{U}_\mathcal{A}$$

is equivalent to a map of species

$$\mathsf{h} \to \mathcal{H}(\mathbf{E}_V, \mathcal{U}_A).$$

A system of fully (re)normalized time-ordered products, as defined in PAQFT/causal perturbation theory, is a system of products for the Hopf monoid $h := \Sigma$.

System of products in PAQFT

More precisely, a map

$$T: \Sigma \times \mathbf{E}_{\mathcal{F}_{\mathsf{loc}}[[\hbar]]} \to \mathcal{U}_{\mathcal{F}_{\mathsf{mc}}([\hbar))}$$
$$\mathfrak{a} \otimes A_{\mathfrak{i}_1} \otimes \cdots \otimes A_{\mathfrak{i}_n} \mapsto \mathsf{T}_{I}(\mathfrak{a} \otimes A_{\mathfrak{i}_1} \otimes \cdots \otimes A_{\mathfrak{i}_n})$$

(satisfying causal factorization, T_{I} inclusion) is equivalent to having linear maps

$$\Gamma(S_1)\cdots T(S_n): \mathbf{E}_{\mathcal{F}_{\mathsf{loc}}[[\hbar]]}[I] \to \mathcal{U}_{\mathcal{F}_{\mathsf{mc}}((\hbar))}[I],$$

where $I = S_1 \sqcup \cdots \sqcup S_n$.

Given two species p and q, let $\mathcal{H}(p,q)$ be the species defined by

 $\mathcal{H}(p,q)[I] := Hom_{\mathbb{K}}(p[I],q[I]).$

Given two species p and q, let $\mathcal{H}(p,q)$ be the species defined by $\mathcal{H}(p,q)[I] := Hom_{\mathbb{K}}(p[I],q[I]).$

A series of the species $\mathcal{H}(p,q)$ is a morphism of species from p to q:

 $\mathscr{S}(\mathcal{H}(\mathsf{p},\mathsf{q})) = \mathsf{Hom}_{\mathsf{Sp}}(\mathsf{p},\mathsf{q}).$

Given two species p and q, let $\mathcal{H}(p,q)$ be the species defined by

 $\mathcal{H}(\mathsf{p},\mathsf{q})[I] := \mathsf{Hom}_{\mathbb{K}}(\mathsf{p}[I],\mathsf{q}[I]).$

A series of the species $\mathcal{H}(p,q)$ is a morphism of species from p to $q{:}$

$$\mathscr{S}(\mathcal{H}(\mathsf{p},\mathsf{q})) = \mathsf{Hom}_{\mathsf{Sp}}(\mathsf{p},\mathsf{q}).$$

In analogy with a non-commutative space (\mathcal{A},ϕ) , consider the pair (h,ϕ) formed by a connected bimonoid and a map $\phi:h\to \mathsf{E}$ such that

$$egin{aligned} \phi_{\emptyset} &: \mathsf{h}[\emptyset] \to \mathbb{K} \ & 1 \mapsto 1_{\mathbb{K}}. \end{aligned}$$

Given two species p and q, let $\mathcal{H}(p,q)$ be the species defined by

 $\mathcal{H}(\mathsf{p},\mathsf{q})[\mathrm{I}] := \mathsf{Hom}_{\mathbb{K}}(\mathsf{p}[\mathrm{I}],\mathsf{q}[\mathrm{I}]).$

A series of the species $\mathcal{H}(p,q)$ is a morphism of species from p to $q{:}$

$$\mathscr{S}(\mathcal{H}(\mathsf{p},\mathsf{q})) = \mathsf{Hom}_{\mathsf{Sp}}(\mathsf{p},\mathsf{q}).$$

In analogy with a non-commutative space (\mathcal{A}, ϕ) , consider the pair (h, ϕ) formed by a connected bimonoid and a map $\phi : h \to E$ such that

$$egin{aligned} \phi_{\emptyset} &: \mathsf{h}[\emptyset] o \mathbb{K} \ 1 &\mapsto \mathbf{1}_{\mathbb{K}}. \end{aligned}$$

This leads to consider the space $C_h(p) := \mathscr{S}(\mathcal{H}(h, (L \circ p_+)^*)).$

Cumulants from decorated series (V. 2024)

$$C_{\mathsf{h}}(\mathsf{p}) := \mathscr{S}(\mathcal{H}(\mathsf{h}, (\mathsf{L} \circ \mathsf{p}_{+})^{*})).$$

Cumulants from decorated series (V. 2024)

$$C_{\mathsf{h}}(\mathsf{p}) := \mathscr{S}(\mathcal{H}(\mathsf{h},(\mathsf{L} \circ \mathsf{p}_{+})^{*})).$$

Particular case: p := X, (h, ϕ) a connected bimonoid with

 $\phi_I(x) := \mathsf{dim}_{\mathbb{K}} h[I],$

for all $x \in h[I]$.

Thanks for your attention!

References I

- Marcelo Aguiar and Swapneel Mahajan.
 Hopf monoids in the category of species.
 Hopf algebras and tensor categories, 585:17–124, 2013.
- Octavio Arizmendi and Adrián Celestino. Monotone cumulant-moment formula and schróder trees. arXiv preprint arXiv:2111.02179, 2021.
- Kurusch Ebrahimi-Fard and Frédéric Patras. A group-theoretical approach to conditionally free cumulants. arXiv preprint arXiv:1806.06287, 2018.

References II

Hillary Einziger.

Incidence Hopf algebras: Antipodes, forest formulas, and noncrossing partitions. PhD thesis, The George Washington University, 2010.

Takahiro Hasebe and Franz Lehner. Cumulants, spreadability and the campbell-baker-hausdorff series. arXiv preprint arXiv:1711.00219, 2017.

Matthieu Josuat-Vergès, Frédéric Menous, Jean-Christophe Novelli, and Jean-Yves Thibon.

Free cumulants, schroder trees, and operads.

Advances in Applied Mathematics, 88:92–119, 2017.

References III

 Matthieu Josuat-Vergès, Frédéric Menous, Jean-Christophe Novelli, and Jean-Yves Thibon.
 Free cumulants, schróder trees, and operads.
 Advances in Applied Mathematics, 88:92–119, 2017.

Franz Lehner, Jean-Christophe Novelli, and Jean-Yves Thibon. Combinatorial hopf algebras in noncommutative probabilility. *arXiv preprint arXiv:2006.02089*, 2020.

🔋 Naofumi Muraki.

The five independences as natural products.

Infinite Dimensional Analysis, Quantum Probability and Related Topics, 6(03):337–371, 2003.

References IV

Yannic Vargas.

Free cumulants for bimonoids in species.

In preparation, 2024.

Dan Voiculescu.

Symmetries of some reduced free product c*-algebras.

In Operator algebras and their connections with topology and ergodic theory, pages 556–588. Springer, 1985.