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If n ∈ N, let [n] := {1, 2, . . . , n}.

Let I be a finite set.

A composition of I is a sequence

F = (F1, . . . , Fk) = F1| · · · |Fk

of disjoint non-empty sets such that their reunion is I. We write F ⊨ I.

For example,
2|569|3|1478 ⊨ [10].



Let I be a finite set.

Let Σ[I] the vector space generated by all compositions of I and let SI be
the group of permutations on I.

The vector space Σ[I] is a right SI-module, where the action permutes the
elements of I.

This action extends to a (covariant) functor

Σ : FinSet→ Vect,

where
I 7→ Σ[I];

(I
σ−→ J) 7→ (Σ[I]

Σ[σ]−−−→ Σ[J]).

The construction Σ is an example of a vector species.
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Species

André Joyal, Alain Connes, Olivia Caramello
and Laurent Lafforgue, IHES (2015)

The theory of combinatorial species
was introduced by André Joyal in
1980. Species can be seen as a
categorification of generating
functions. It provides a categorical
foundation for enumerative
combinatorics.



Species

A vector species is a functor

p : FinSet→ Vect.

By functoriality,

I
α−→ J

β−→ K =⇒ p[β ◦ α] = p[β] ◦ p[α],

I
idI−→ I =⇒ p[idI] = idp[I].

In particular, p[σ]−1 = p[σ−1] for every I
σ−→ J.

For every n ∈ N, Sn acts on p[n] via σ · x := p[σ](x). Therefore,

species p←→ V = (Vn)n≥0, Vn is a Sn-module.
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Examples of species

Species E of sets:
E[I] := K{HI}.

Species En of n-sets:

En[I] :=

{
K{HI}, if |I| = n;

(0), if |I| ̸= n.

Species X := E1 of sets of one element.
Species 1 := E0.
Species G of graphs:

G[I] := K{ HG : G is a finite graphs with vertices in I }.



Examples of species

Species Π of partitions.
Species L of linear orders.
Species Σ of set compositions.
Species B of binary trees.
Species S of permutations.
Species Braid of braid hyperplane arrangements.

...



What is a species, really?

nLab: “A (combinatorial) species is a presheaf (or a higher categorical
presheaf) on the groupoid core(FinSet)” (the “permutation groupoid”).

Many variants are obtained by modifying the input category FinSet (replace
by total orders, posets, permutations, . . .) and/or the output category Vec
(replace by sets, modules, algebras, species, . . .).

Species is a categorical tool to understand generating functions and their
interactions, combinatorially.

Generating functions: ordinary, exponential, Dirichlet, Lambert, . . .



Operations on species

Sum of species
(p + q)[I] := p[I]⊕ q[I].

Product of species (Cauchy product)

(p · q)[I] :=
⊕

I=S⊔T

p[S]⊗ q[T ].



Operations on species

Composition of species

(p ◦ q)[I] :=
⊕

π∈Π[I]

p[π]⊗
⊗
B∈π

q[B].



Generating function of a species

To every species p it is associated its exponential generating function:

p(x) :=
∑
n≥0

dimK p[n]
xn

n!
.

We have:
(p + q)(x) = p(x) + q(x),

(p · q)(x) = p(x) · q(x),

(p ◦ q)(x) = p(x) ◦ q(x).

For the last identity, q[∅] := (0).



Enumerative application

A plane labelled binary tree is:
empty;
a couple of labelled complete binary trees, and the labelled root.

This translates as,
B = 1 + X · B2,

which implies:
B(x) = 1+ xB(x)2.

Therefore,

B(x) =
1−

√
1− 4x
2x

=
∑
n≥0

n!

(
1

n+ 1

(
2n
n

))
xn

n!
.



Recall that the Cauchy product of two species p and q is given by

(p · q)[I] =
⊕

I=S⊔T

p[S]⊗ q[T ].

Endowed with this operation, the category of species Sp is symmetric
monoidal: we can speak of monoids (µ : p · p→ p), comonoids
(∆ : p→ p · p), ..., in species.

p[S]⊗ p[T ]
µS,T // p[I] p[I]

∆S,T // p[S]⊗ p[T ].
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Hopf monoids

Hopf monoids refine Hopf algebras. There are a bit more abstract but
better suited for many combinatorial purposes.

There is a Fock functor

Hopf monoids→ Hopf algebras

Many (combinatorial) phenomena in combinatorial Hopf algebras comes
from phenomena in Hopf monoids.



Hopf monoids

A bimonoid (h, µ, ∆) consist of:
for each finite set I, a vector space h[I];
for each partition I = S ⊔ T , maps

product µS,T : h[S]⊗ h[T ]→ h[I]
coproduct ∆S,T : h[I]→ h[S]⊗ h[T ]

x 7→ x|S ⊗ x/S

satisfying associativity, coassociativity, unitality, counitality, compatibility
and naturality.

(Bimonoidal object in the braided monoidal category of vector species)



Hopf monoids

A Hopf monoid (h, µ, ∆) consist of:
for each finite set I, a vector space h[I];
for each partition I = S ⊔ T , maps

product µS,T : h[S]⊗ h[T ]→ h[I]
coproduct ∆S,T : h[I]→ h[S]⊗ h[T ]

for each finite set I and for each x ∈ h[I], there exists a formal linear
combination

sI(x) ∈ h[I]∑
S⊔T=I

sS(x|S) · x/S =
∑

S⊔T=I

x|S · sT (x/S) =

{
1 if I = ∅,
0 otherwise.



Hopf monoids

A Hopf monoid (h, µ, ∆) consist of:
for each finite set I, a vector space h[I];
for each partition I = S ⊔ T , maps

product µS,T : h[S]⊗ h[T ]→ h[I]
coproduct ∆S,T : h[I]→ h[S]⊗ h[T ]

Takeuchi’s formula: if h is connected, then

sI =
∑
F⊨I

(−1)ℓ(F)µF∆F,

for any non-empty set I.



Example: Hopf monoid of “ripping and sewing” of graphs

G[I]:=K{Hg : g is a graph (with half edges) on vertex set I}

Product: Hg1 · Hg2 = Hg1 ⊔ Hg2 (disjoint union)

Coproduct: ∆S,T (Hg) = Hg|S ⊗ Hg/S
, where

g|S = keep everything incident to S

g/S = remove everything incident to S



Example: Hopf monoid of graphs

G[I] := K{HG : G is a graph (with half edges) on vertex set I}

g =
b a c ∈ G[{a, b, c}].

∆a,bc(Hg) = H a ⊗ H
b c

∆bc,a(Hg) =
H

b c ⊗ H a



There are many other examples...

graphs G
posets P
trees T
matroids M
linear orders L
set partitions Π
set compositions Σ
paths A
simplicial complexes SC
hypergraphs HG
building sets BS



Character group of a Hopf monoid

Let I a finite set and I = S ⊔ T .

A character ζ of a Hopf monoid h is a species map

ζ : h→ E, ζ = (ζI), ζI : h[I]→ K

such that

ζI(x · y) = ζS(x) · ζT (y) , ζ∅(ϵ) = 1.



Character group of a Hopf monoid

The characters of h form a group X(h) under convolution product:

(ζξ)I(x) =
∑

I=S⊔T

ζS(x|S)ξ(x/S).

The unit of X(h) is uI(x) := δx,ϵ; the inverse of ζ ∈ X(h) is

ζ−1
I = ζI ◦ sI.

Example: X(L) ∼= (K,+).



Standard Permutahedron

Let I be a non-empty finite set.

Let RI be the real vector space of functions x : I→ R. A vector x has
coordinates {xi}i∈I, where xi is the value of x at i.

Let n = |I|. The standard permutahedron πI is the polytope in RI whose
vertices consist of all the permutations of the point (1, 2, . . . , n).



Standard Permutahedron

(1, 3, 2)

(1, 2, 3)(2, 1, 3)

(3, 1, 2)

(3, 2, 1) (2, 3, 1)

(3, 1, 2, 4)
(2, 1, 3, 4) (1, 2, 3, 4)

(1, 3, 2, 4)

(1, 4, 2, 3)
(1, 4, 3, 2)

(4, 3, 2, 1) (3, 4, 2, 1)

For example, π{a,b,c} is a regular hexagon lying on the plane
xa + xb + xc = 6, and π{a,b,c,d} lies on the hyperplane
xa + xb + xc + xd = 10. We have dimπI = n− 1.
Images from “Hopf monoids and polynomial invariants of combinatorial structures”, ECCO
course - Marcelo Aguiar and Jose Bastidas.



Standard Permutahedron

For i ∈ I, let ei ∈ RI denote the standard vector

ei = (0, . . . , 1, . . . ,0),
with j-th coordinate equal to δ(i, j). The set {ei}i∈I is the standard basis
of RI. For any nonempty subset S ⊆ I, let

eS =
∑
i∈S

ei.

Given two vectors v and w, let [v,w] denote the line segment joining their
endpoints:

[v,w] = {λv+ (1− λ)w | 0 ≤ λ ≤ 1}.
The standard permutahedron coincides with the following Minkowski sum:

πI = eI +
∑

{i,j}∈(I2)

[ei, ej].



The set of (n− k)-dimensional faces of πI is in bijection with the set of
compositions of I into k parts.

πd,b,ac

πbd,ac

πd,abc

πac,bd

The closed normal cone of the face πF is

NπI
(πF) = {α1eS1 + · · ·+ αkeSk

∈ RI | α1 ≥ · · · ≥ αk}.

A fan F refines a fan G if every cone of G is a union of cones of F .
Image from “Hopf monoids and polynomial invariants of combinatorial structures”, ECCO
course - Marcelo Aguiar and Jose Bastidas.



Generalized Permutahedra

A generalized permutahedron p ⊆ RI is a polytope such that its normal fan
is coarser than that of the standard permutahedron.

GP[I] := { generalized permutahedra p ⊆ RI}.

There is a (commutative) Hopf monoid structure on GP:
Product: cartesian product;
Coproduct: if pS denote the face of p maximized by the functional
x 7→∑i∈S xi, then

pS = p|S × p/S.

Antipode (Aguiar, Ardila):

sI(p) = (−1)|I|
∑
q≤p

(−1)dim(q)q.



Generalized permutahedra: Posets, graphs, matroids

There is a long tradition of modeling combinatorics geometrically.

Stanley (73): graphic zonotope Z(G) associated to a graph G

Z(G) =
∑
ij∈G

(ei − ej)

Geissinger (81): poset cone CG associated to a poset P

CP = cone{ei − ej : i <P j}

Edmonds (70): matroid polytope PM associated to a matroid P

CP = conv{ei1 + · · · eik : {i1, . . . , ik} is a basis of M}

Aguiar-Ardila: all the examples of Hopf monoids can be realized as
sub-Hopf monoids of GP.



Geometrical application

Consider formal power series

A(t) = t+
∑
n≥2

an−1t
n and B(t) = t+

∑
n≥2

bn−1t
n,

such that A(B(t)) = t. Then

b1 = −a1

b2 = −a2 + 2a2
1

b3 = −a3 + 5a2a1 − 5a3
1

b4 = −a4 + 6a3a1 + 3a2
2 − 21a2a

2
1 + 14a4

1 .

What do these numbers count? Look at the associahedra!
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Counting with the associahedra

Face structure of associahedra

b4=−a4+6a3a1+3a2
2−21a2a

2
1+14a4

1

1 three-dimensional associahedron
6 pentagons and 3 squares
21 segments
14 points



A “mythical polytope”

Some realizations of the associahedron

Tamari (1951): defines the associahedron combinatorially. (lattice).
Stasheff (1963): realizes the associahedron as a cell complex
(polytope).
Loday, Ronco (2001): relates the associahedron to a Hopf algebra of
binary trees.
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Tamari order

Tamari order

Yn := planar binary trees with n+ 1
leaves.

Covering relation:

s⋖ t,

if t is obtained after moving one child
node of s, from left to right, across
their parent.



(Weak) Bruhat order

(Weak) Bruhat order on Sn

Covering relation:

u⋖ (i i+ 1)u,

if the letter i appears before i+ 1
inside u.



Permutohedron

Some realizations of the permutohedron

Schoute (1911): studies on regular polytopes.
Guilbaud, Rosenstiehl (1963): derives the permutohedron as a lattice,
Loday, Ronco (2001): relates the permutohedron to SSym.



Permutohedron

Some realizations of the permutohedron

Schoute (1911): studies on regular polytopes.
Guilbaud, Rosenstiehl (1963): derive the permutohedron as a lattice,
Loday, Ronco (2001): relate the permutohedron to a Hopf algebra of
permutations (Malvenuto-Reutenauer).



Permutohedron (3D), in arts

Some realizations of the permutohedron

Da Vinci (1509): illustration from Luca Pacioli’s 1509 book “The
Divine Proportion”.
Hirschvogel (1543): Hirschvogel’s book “Geometria”.



Permutohedron (3D), in nature



Permutohedron, in mathematics

Consider formal power series

A(t) = 1+
∑
n≥1

an
tn

n!
and B(t) = 1+

∑
n≥1

bn
tn

n!
,

such that A(t)B(t) = 1. Then

b1 = −a1

b2 = −a2 + 2a2
1

b3 = −a3 + 6a2a1 − 6a3
1

b4 = −a4 + 8a3a1 + 6a2
2 − 36a2a

2
1 + 25a4

1 .

What do these numbers count? Look at the permutohedra!
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Counting with the permutohedra

Face structure of permutohedra

b4=−a4+8a3a1+6a2
2−36a2a

2
1+25a4

1

1 three-dimensional permutohedron
8 hexagons and 6 squares
36 segments
24 points



Associahedra “know” how to compute multiplicative inverses.

Permutohedra “know” how to compute compositional inverses.

This is one of the many consequences of a Hopf monoid structure on
generalized permutahedra (Aguiar-Ardila).



Generalized Permutahedra: (standard) Permutahedra

If n := |I|, let pI := conv{(ai)i∈I ∈ RI : {ai}i∈I = [n]} and pn := p[n].
The value an = ζ(pn) determine the character ζ ∈ X(P).
In the group of characters

X(P) ∼= group of exponential formal power series, under multiplication

of the (standard) Permutahedra P, the multiplicative inverse of
1+ a1x+ a2

x2

2! + a3
x3

3! + · · · is 1+ b1x+ b2
x2

2! + b3
x3

3! + · · · , where

bn = (−1)n
∑
F≤pn

(−1)dimFaF,

with aF = af1af2 · · ·afk , for each face F ∼= pf1 × pf2 × · · · pfk of the
permutahedron.



Generalized Permutahedra: (Loday’s) Associahedra

Let an :=
∑

i,j∈[n]∆[i,j].

In the group of characters

X(A) ∼= group of ordinary formal power series, under composition

of the (Loday’s) Associahedra P, the compositional inverse of
x+ a1x

2 + a2x
3 + a3x

4 · · · is x+ b1x
2 + b2x

3 + b3x
4 + · · · , where

bn = (−1)n
∑
F≤pn

(−1)dimFaF,

with aF = af1af2 · · ·afk , for each face F ∼= af1 × af2 × · · · afk of the
associahedron.



Non-commutative probability



The field of Free Probability was
created by Dan-Virgil Voiculescu
in the 1980s.
Philosophy: investigate the
notion of “freeness" in analogy to
the concept of “independence”
from (classical) probability
theory.
A combinatorial theory of
freeness was developed by Nica
and Speicher in the 1990s.
Voiculescu discovered freeness
also asymptotically for many
kinds of random matrices (1991).

Dan Voiculescu , 2015



Commutative vs non-commutative

Voiculescu: “’Free probability is a probability theory adapted to dealing with
variables which have the highest degree of noncommutativity. Failure of
commutativity may occur in many ways.”

Quantum mechanics’ commutation relation: XY − YX = I.
Free product of groups.
Independent random matrices tend to be asymptotically freely
independent, under certain conditions.



Classical probability space

Andrey Kolmogorov

A probability space (Kolmogorov,
1930’s) is given by the following
data:

a set Ω (sample space),
a collection F (event space),
P : F → [0, 1] (probability
function),

satisfying several axioms.

Expectation: for every bounded random variable X ∈ L∞(Ω,F ,P), let

E[X] :=
∫
Ω

X(ω)dP(ω).

Intuition: replace (L∞(Ω,F ,P),E) by a more general pair (A, φ).



Non-commutative probability space

A non-commutative probability space is a pair (A, φ) such that
A is a unital associative algebra over C;
φ : A→ C is a linear functional such that φ(1A) = 1.

Examples: (L∞(Ω,F ,P),E),
(
Matn(C), 1

n
Tr
)
, (Matn(Ω), φ).

φ(a) :=

∫
Ω

tr(a(ω))dP(ω)



Non-commutative probability space

A non-commutative probability space is a pair (A, φ) such that
A is a unital associative algebra over C;
φ : A→ C is a linear functional such that φ(1A) = 1.

Examples: (L∞(Ω,F ,P),E),
(
Matn(C), 1

n
Tr
)
, (Matn(Ω), φ).

φ(a) :=

∫
Ω

tr(a(ω))dP(ω)



Non-commutative probability space

A non-commutative probability space is a pair (A, φ) such that
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Non-commutative probability space

Random variable: a ∈ A

Moments: (φ(a), φ(a2), φ(a3), . . . )←→ µ : C[x]→ C, µ(ti) := φ(ai)

Join distribution of (a1, . . . , ak): if 1 ≤ i1, . . . , in ≤ k,

µ : C⟨t1, . . . , tk⟩→ C , µ(ti1 · · · tin) := φ(ai1 · · ·ain)



Non-commutative probability space

A non-commutative probability space is a pair (A, φ) such that
A is a unital associative algebra over C;
φ : A→ C is a linear functional such that φ(1A) = 1.

In a (classical) probability space (Ω,F ,P), the notion of independence
between two random variables X, Y : Ω→ C implies

E(XmYn) = E(Xm)E(Yn).



Free independence

Let (A, φ) be a non-commutative probability space.

Consider {Ai}i∈I unital subalgebras of A.

The family {Ai}i∈I of algebras is freely independent if for every n ∈ N
and for every choice of (i1, . . . , in) of “different neighbouring indices” (i.e.,
ij−1 ̸= ij ̸= ij+1), we have

φ(a1 · · ·an) = 0,

whenever aj ∈ Aij and φ(aj) = 0, for every 1 ≤ j ≤ n.

A family (ai)i∈I of non-commutative random variables is called free if the
family of subalgebras (⟨1A, ai⟩)i∈I is freely independent.

Sets of variables in (A, φ) are free if the algebras they generate are free.

It looks artificial...
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It looks artificial...
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Free independence

Free independence provides a rule to compute mixed moments.

Let (A, φ) be a n.c.p.s. and let a, b ∈ A free n.c.r.v.

What is φ(ab)? φ((a−φ(a)1A)(b−φ(b)1A)) = 0, so

0 = φ((a−φ(a) · 1A)(b−φ(b) · 1A))
= φ(ab) −φ(a · 1A)φ(b) −φ(a)φ(1A · b) +φ(a)φ(b)φ(1A)
= φ(ab) −φ(a)φ(b) −φ(a)φ(b) +φ(a)φ(b)

Therefore, φ(ab) = φ(a)φ(b).
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Free independence

Free independence provides a rule to compute mixed moments.

Let (A, φ) be a n.c.p.s. and let {a1, a2}, {b} ⊆ A free n.c.r.v.

What is φ(a1ba2)? From

φ
(
(a1 −φ(a1) · 1A)(b−φ(b) · 1A)(a2 −φ(a2) · 1A)

)
= 0,

we obtains
φ(a1ba2) = φ(a1a2)φ(b).

If {a1, a2}, {b1, b2} ⊆ A free n.c.r.v,

φ(a1b1a2b2) =φ(a1a2)φ(b1)φ(b2) +φ(a1)φ(a2)φ(b1b2)

−φ(a1)φ(a2)φ(b1)φ(b2).

⇒ φ(abab) = φ(a2)φ(b)2 +φ(a)2φ(b2) −φ(a)2φ(b)2.
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Freeness from the free product

Voiculescu gave the definition of freeness in the context of von Neumann
algebras of free products of groups.

F(G) := {α : G→ C : |{g ∈ G |α(g) ̸= 0}| <∞},

(α ∗ β)(g) :=
∑
h∈G

α(gh−1)β(h),

φG : F(G)→ C , α 7→ α(e).

F(G) is linearly generated by {δg : g ∈ G}, where

δg(h) =

{
1, h = g

0, h ̸= g



Freeness from the free product

Theorem
If {Gi}i∈I subgroups of G are algebraically free, then {F(Gi)}i∈I ⊆ F(G)
are freely independent in (F(G), φG).

Sketch of the proof:
Consider (i1, . . . , in) ∈ In such that i1 ̸= i2 ̸= · · · ≠ in, and
αk ∈ F(Gik) such that αk(e) = 0, for 1 ≤ k ≤ n.

φ(α1 ∗ · · · ∗ αn) = (α1 ∗ · · · ∗ αn)(e)

=
∑

g1,...,gn∈G
g1···gn=e

α1(g1) · · ·αn(gn).

Since Gi1, . . . , Gin are algebraically free. there exists k such that gk = e,
leading to φ(α1 ∗ · · · ∗ αn).
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Non-commutative independence

Let (A, φ) be a non-commutative probability space. Consider {Ai}i∈I
unital subalgebras of A. Let a1 ∈ Ai1, . . . , an ∈ Ain such that ij ̸= ij+1.

The family {Ai}i∈I is
freely independent if

φ(a1 · · ·an) = 0,

when φ(aj) = 0, for all 1 ≤ j ≤ n;
boolean independent if

φ(a1 · · ·an) = φ(a1) · · ·φ(an);

Other notions: monotone independence, conditional monotone, . . .



Back to the examples

φ(ab) =φ(a)φ(b)

φ(a1ba2) =φ(a1a2)φ(b)

φ(a1b1a2b2) =φ(a1a2)φ(b1)φ(b2) +φ(a1)φ(a2)φ(b1b2)

−φ(a1)φ(a2)φ(b1)φ(b2)

φ(a1b1cb2a2da3) =φ(a1b1cb2a2da3)

=φ(a1a2da3)φ(b1cb2)

=φ(a1a2da3)φ(b1cb2)

=φ(a1a2a3)φ(b1b2)φ(c)φ(d).

“Non-crossing moments” factorize; “crossing moments” do not.



Back to (A, φ)

Let n ∈ N and a1, a2, . . . , an ∈ A.

Consider {fn : An → C |n ≥ 0} a family of multilinear functionals.

Let π = {B1, . . . , Bk} ∈ NC(n). We define

fπ(a1, . . . , an) :=
∏
B∈π

B={b1<b2<···<br}

f|B|(b1, b2, . . . , br).



Back to (A, φ)

If π = {{1}, {2, 3,4, 5}, {6}, {7, 8, 9}}, then

fπ(a1, . . . , a9) = f1(a1) f4(a2, a3, a4, a5) f1(a6) f3(a7, a8, a9).



Moment to cumulant relations in (A, φ)

Consider the multilinear functionals

{rn : An → C}n≥1
( Free cumulants )

,
{bn : An → C}n≥1

( Boolean cumulants )
,

{hn : An → C}n≥1
( Monotone cumulants )

defined by

φ(a1 · · ·an) =
∑

π∈NC(n)

rπ(a1, . . . , an),

φ(a1 · · ·an) =
∑

π∈NCInt(n)

bπ(a1, . . . , an),

φ(a1 · · ·an) =
∑

π∈NC(n)

1
τ(π)!

hπ(a1, . . . , an).



Double tensor Hopf algebra

Double tensor Hopf algebra T(T+(V)): non-commutative and
non-cocommutative Hopf algebra, with graduation

T(T+(V))n :=
⊕

n1+···+nk=n

V⊗n1 ⊗ · · · ⊗ V⊗nk.

Elements in T(T+(V))n are written as (linear combinations of) words with
bars

w1| · · · |wk,

where wi ∈ V⊗ni for some n1 + · · ·+ nk = n. We call this elements
words on (non-empty) words.



Double tensor Hopf algebra

Let V be a K-vector space.

If k ≥ 0, we write elementary tensors from V⊗k as words, u1u2 · · ·uk,
with ui ∈ V . We called the K-vector spaces

T(V) :=
⊕
k≥ 0

V⊗k , T+(V) :=
⊕
k≥ 1

V⊗k

the tensor module and reduced tensor module, respectively, generated
by V .



Product rule: if u ∈ T(T+(V))n and v ∈m, then

u|v := u1| · · · |ur|v1| · · · |vs ∈ T(T+(V))n+m.

Coproduct rule: given a word u = u1 · · ·un ∈ V⊗n and
A = {a1, . . . , ak} ⊂ N, we write uA := ua1 · · ·uak

.
Consider the map ∆ : T+(V)→ T(V)⊗ T(T+(V)) given by

∆(u) : =
∑

A⊆ [n]

uA ⊗ uK(A,[n])

=
∑

A⊆ [n]

uA ⊗ uK1 | · · · |uKr.

Finally, we extend the map ∆ multiplicatively to all of T(T+(V)), by
setting

∆(w1| · · · |wk) := ∆(w1) · · ·∆(wk).



For example, we have

∆(ab) = 1⊗ ab+ a⊗ b+ b⊗ a+ ab⊗ 1;

∆(a|b) = 1⊗ a|b+ a⊗ b+ b⊗ a+ a|b⊗ 1;

∆(abc) = 1⊗abc+a⊗bc+b⊗ a|c+c⊗ab+ab⊗c+ac⊗b+bc⊗a+1⊗abc;

∆(a|bc) =1⊗ a|bc+ a⊗ bc+ b⊗ a|c+ c⊗ a|b

+a|b⊗ c+ a|c⊗ b+ bc⊗ a+ 1⊗ a|bc;



Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

(A, φ) non-commutative probability space.
H = T(T+(A)) words on non-empty words on A.
The coproduct ∆ in H is codendriform: ∆ = ∆< + ∆>.
The space (Homlin(H,K), <,>) is a dendriform algebra, with
∗ =< + >.
The linear form φ is extended to T+(A) by defining to all words
u = a1 · · ·an ∈ A⊗n

φ(a1a2 · · ·an) := φ(a1 ·A a2 ·A · · · ·A an).

This is the multivariate moment of u.

The map φ is then extended multiplicatively to a map
Φ : T(T+(A))→ K with Φ(1) := 1 and

Φ(u1| · · · |uk) := φ(u1) · · ·φ(uk).
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Cumulants as infinitesimal characters

Proposition (Ebrahimi-Fard, Patras -2015)

Let ρ, κ, β ∈ g(A) the infinitesimal characters solving

Φ = exp∗(ρ),

Φ = ϵ+ κ ≺ Φ

and
Φ = ϵ+Φ ≻ β.

Then, ρ, κ, β correspond to the monotone cumulants, free cumulants
and boolean cumulants, respectively.

For any word u = a1 · · ·an ∈ A⊗n, we have

hn(a1, . . . , an) = ρ(u), rn(a1, . . . , an) = κ(u), bn(a1, . . . , an) = β(u).



Series on species



From species to vector spaces I

There are functors

K,K,K∨,K : Hopf monoids in species→ N-graded Hopf algebras.

K(h) = K∨(h) :=
⊕
n≥0

h[n]

K(h) :=
⊕
n≥0

h[n]Sn , K∨
(h) :=

⊕
n≥0

h[n]Sn

Patras-Schocker-Reutenauer:

K(h) : cosymmetrized bialgebra

K∨(h) : symmetrized bialgebra
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From species to vector spaces I

There are functors

K,K,K∨,K : Hopf monoids in species→ N-graded Hopf algebras.
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n≥0

h[n]

K(h) :=
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n≥0

h[n]Sn , K∨
(h) :=
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n≥0

h[n]Sn

K(h) ∼= K(L × h).
If h is finite-dimensional, then K(h∗) ∼= K(h)∗.
If h is cocommutative, then so are K(h) and K(h).
If h is commutative, so is K(h).



From species to vector spaces II

Let p be a species.

A series s of p is a collection of elements

sI ∈ p[I],

one for each finite set I, such that

p[σ](sI) = sJ,

for each bijection σ : I→ J.

The space S (p) of all series of p is a vector space:

(s+ t)I = sI + tI , (λ · s)I := λ sI,

for s, t ∈ S (p) and λ ∈ K.
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Let E be the exponential map. A series s of p corresponds to the morphism
of species

E→ p

∗I 7→ sI,

so S (p) ∼= HomSp(E, p).
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From species to vector spaces II

Let p be a species.
A series s of p is a collection of elements

sI ∈ p[I],

one for each finite set I, such that

p[σ](sI) = sJ, (1)

for each bijection σ : I→ J.

Property (2) implies that each s[n] is an Sn-invariant element of p[n]. In
fact,

S (p) ∼=
∏
n≥0

p[n]Sn

s 7→ (s[n])n≥0.
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There is a functor
S : Sp→ Vec.

The functor S is braided lax monoidal: it preserves monoids, commutative
monoids, Lie monoids . . .
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Decorated series

Let V be a vector space.

Recall that a series of p corresponds to a

morphism of species E→ p.

A V-decorated series, or decorated series, is a morphism of species

EV → p,

where EV is the exponential decorated exponential given by

EV [I] := K{f : I→ V}.

Let SV(p) be the space of decorated series.
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Decorated series

A series s in SV(p) is a collection of elements

sI,f ∈ p[I],

one for each finite set I and for each map f : I→ V , such that

p[σ](sI,f) = sJ,f◦σ−1,

for each bijection σ : I→ J.



Cumulants from decorated series

Let (A, φ) be a non-commutative probability space.

Consider the ripping and sewing Hopf monoid P. As a species, P = L ◦ L+.

Define Φ ∈ SA(P∗) as follows: if I is a finite set and f : I→ A, let

ΦI,f ∈ P∗[I]

given by
ΦI,f(w1w2 · · ·wn) := φ(w1) · · ·φ(wn),

where for each wk = xk1 · · · xkr ∈ L+[Ik],

φ(w) := (φ ◦ f)(xk1 ) · · · (φ ◦ f)(xkr ).



Cumulants from decorated series

Let (A, φ) be a non-commutative probability space.

Consider the ripping and sewing Hopf monoid P.

As a species, P = L ◦ L+.

Define Φ ∈ SA(P∗) as follows: if I is a finite set and f : I→ A, let

ΦI,f ∈ P∗[I]

given by
ΦI,f(w1w2 · · ·wn) := φ(w1) · · ·φ(wn),

where for each wk = xk1 · · · xkr ∈ L+[Ik],

φ(w) := (φ ◦ f)(xk1 ) · · · (φ ◦ f)(xkr ).



Cumulants from decorated series

Let (A, φ) be a non-commutative probability space.

Consider the ripping and sewing Hopf monoid P. As a species, P = L ◦ L+.

Define Φ ∈ SA(P∗) as follows: if I is a finite set and f : I→ A, let

ΦI,f ∈ P∗[I]

given by
ΦI,f(w1w2 · · ·wn) := φ(w1) · · ·φ(wn),

where for each wk = xk1 · · · xkr ∈ L+[Ik],

φ(w) := (φ ◦ f)(xk1 ) · · · (φ ◦ f)(xkr ).



Cumulants from decorated series

Let (A, φ) be a non-commutative probability space.

Consider the ripping and sewing Hopf monoid P. As a species, P = L ◦ L+.

Define Φ ∈ SA(P∗) as follows: if I is a finite set and f : I→ A, let

ΦI,f ∈ P∗[I]

given by
ΦI,f(w1w2 · · ·wn) := φ(w1) · · ·φ(wn),

where for each wk = xk1 · · · xkr ∈ L+[Ik],

φ(w) := (φ ◦ f)(xk1 ) · · · (φ ◦ f)(xkr ).



Cumulants from decorated series

Proposition (V. - 2024)

Let (A, φ) be a non-commutative probability space. For every species p,

consider the space CA(p) := SA((L ◦ p+)
∗).

Classical cumulants are obtained from p = X
Non-commutative cumulants are obtained from p = L

Problem : structure on p giving a more general ripping and sewing
coproduct on the free monoid L ◦ p+?

(In progress: structure of hereditary species on p)



Series of the internal Hom species

Given two species p and q, let H(p, q) be the species defined by

H(p, q)[I] := HomK(p[I], q[I]).

If σ : I→ J is a bijection and f ∈ H(p, q)[I], then

H(p, q)[σ](f) ∈ H(p, q)[J]

is defined as the composition

p[J]
p[σ−1]−−−−→ p[I] f−→ q[I]

q[σ]−−→ q[J].
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Series of the internal Hom species

Given two species p and q, let H(p, q) be the species defined by

H(p, q)[I] := HomK(p[I], q[I]).

There is a natural isomorphism

HomSpk(p × q, r) ∼= HomSpk

(
p,H(q, r)

)
,

for species p, q and r. This says that the functor H is the internal Hom in
the symmetric monoidal category (Spk,×) of species under Hadamard
product.



Series of the internal Hom species

Given two species p and q, let H(p, q) be the species defined by

H(p, q)[I] := HomK(p[I], q[I]).

There is a natural isomorphism

HomSpk(p × q, r) ∼= HomSpk

(
p,H(q, r)

)
,

for species p, q and r. This says that the functor H is the internal Hom in
the symmetric monoidal category (Spk,×) of species under Hadamard
product.



System of products in PAQFT

Given a vector space V , the decorated Fock functor KV is given by

KV(p) :=
⊕
n≥0

p[n]⊗ V⊗n.

A system of products (Norledge) is a homomorphism of algebras⊕
n≥0

p[n]⊗ V⊗n → A (Wick algebra)

In the language of species, this is precisely a species map

h × EV → UA,

after applying KV . Here, UA[I] := A, for every finite set I.



System of products in PAQFT

Given two species p and q, let H(p, q) be the species defined by

H(p, q)[I] := HomK(p[I], q[I]).

A system of products
h × EV → UA

is equivalent to a map of species

h→ H(EV ,UA).

A system of fully (re)normalized time-ordered products, as defined in
PAQFT/causal perturbation theory, is a system of products for the Hopf
monoid h := Σ.



System of products in PAQFT

More precisely, a map

T : Σ× EFloc[[ℏ]] → UFmc((ℏ))

a⊗Ai1 ⊗ · · · ⊗Ain 7→ TI(a⊗Ai1 ⊗ · · · ⊗Ain)

(satisfying causal factorization, TI inclusion) is equivalent to having linear
maps

T(S1) · · · T(Sn) : EFloc[[ℏ]][I]→ UFmc((ℏ))[I],

where I = S1 ⊔ · · · ⊔ Sn.



Given two species p and q, let H(p, q) be the species defined by

H(p, q)[I] := HomK(p[I], q[I]).

A series of the species H(p, q) is a morphism of species from p to q:

S (H(p, q)) = HomSp(p, q).

In analogy with a non-commutative space (A, φ), consider the pair (h, φ)
formed by a connected bimonoid and a map φ : h→ E such that

φ∅ : h[∅]→ K
1 7→ 1K.

This leads to consider the space Ch(p) := S (H(h, (L ◦ p+)
∗)).
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Cumulants from decorated series (V. 2024)

Ch(p) := S (H(h, (L ◦ p+)
∗)).

Particular case: p := X, (h, φ) a connected bimonoid with

φI(x) := dimKh[I],

for all x ∈ h[I].



Cumulants from decorated series (V. 2024)

Ch(p) := S (H(h, (L ◦ p+)
∗)).

Particular case: p := X, (h, φ) a connected bimonoid with

φI(x) := dimKh[I],

for all x ∈ h[I].



Thanks for your attention!
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