

Introduction to combinatorial species

Lectures 3 and 4

Yannic VARGAS

Algebraic, analytic and geometric structures emerging from quantum field theory

4-16 March 2024, Chengdu, China

- 1. [Hopf algebras](#page-2-0)
- 2. [Species](#page-23-0)
- 3. [Algebraic structures on Sp](#page-42-0)
- 4. [The Tits monoid of set compositions](#page-65-0)
- 5. [Back to species](#page-85-0)

[Hopf algebras](#page-2-0)

Classical Hopf algebras: Borel, Cartier, Hopf (1940-1950).

Motivation: algebraic topology, homological algebra, study of loop spaces, algebras of operations (Steenrod), homology of Eilenberg–MacLane spaces.

Joni-Rota: "A great many problems in combinatorics are concerned in assembling, or disassembling, large objects out of pieces of prescribed shape, as in the familiar board puzzles. "

(Joni, S. A., & Rota, G. C. (1979). Coalgebras and bialgebras in combinatorics. Studies in Applied Mathematics, 61(2), 93-139.)

A Hopf algebra $(H, m, \iota, \Delta, \varepsilon, S)$ consists of

- an associative algebra $(H, m, \iota);$
- a coassociative coalgebra (H, Δ, ε) ;
- compatibility between the product and the coproduct;
- the identity map id : $H \rightarrow H$ is invertible in the **convolution** algebra $(End(H), *)$, where

$$
f * g := m \circ (f \otimes g) \circ \Delta.
$$

The inverse of id, denoted by S, is called the antipode of H . Finding an optimal formula for the antipode is not easy. It provides a rich information about hidden combinatorial structures on H.

A (graded, connected) Hopf-algebraic square

A (graded, connected) Hopf-algebraic square

- QSym: quasisymmetric functions (compositions)
- Sym: symmetric functions (partitions)
- SSym: free quasisymmetric functions (permutations)
- NSym: non-commutative symmetric functions (compositions)

• Sym \hookrightarrow QSym \hookrightarrow $\mathbb{K}[x_1, x_2, \ldots]$ and $NSym \hookrightarrow \mathfrak{S}Sym \hookrightarrow \mathbb{K}\langle x_1, x_2, \ldots \rangle$

- Sym \hookrightarrow QSym \hookrightarrow K[x_1, x_2, \ldots] and $\mathsf{NSym} \hookrightarrow \mathfrak{S}\mathsf{Sym} \hookrightarrow \mathbb{K}\langle x_1, x_2, \ldots \rangle$
- Every $\zeta : H \to \mathbb{K}$ is a character

- Sym \hookrightarrow QSym \hookrightarrow K[x_1, x_2, \ldots] and $\mathsf{NSym} \hookrightarrow \mathfrak{S}\mathsf{Sym} \hookrightarrow \mathbb{K}\langle x_1, x_2, \ldots \rangle$
- Every $\zeta : H \to \mathbb{K}$ is a character
- $\zeta_0 : \mathsf{QSym} \to \mathbb{K}$ is defined as $\zeta_0(f(x_1, x_2, \ldots)) := f(1, 0, \ldots)$

- Sym \hookrightarrow QSym \hookrightarrow K[x_1, x_2, \ldots] and $\mathsf{NSvm} \hookrightarrow \mathfrak{S}\mathsf{Sym} \hookrightarrow \mathbb{K}\langle x_1, x_2, \ldots \rangle$
- Every $\zeta : H \to \mathbb{K}$ is a character
- $\zeta_0 : \text{QSym} \to \mathbb{K}$ is defined as $\zeta_0(f(x_1, x_2, \ldots)) := f(1, 0, \ldots)$
- Theorem (Aguiar, Bergeron, Sottile): $(QSym, \zeta_0)$ is terminal.

The map $\Psi : (H,\zeta) \to (\mathsf{QSym},\zeta_0)$

is defined, for every $h \in H_n$ and $n \geq 0$, as

$$
\Psi(h) = \sum_{c \text{ composition of } n} \zeta_c(h) \mathsf{M}_c,
$$

where, for $c = (c_1, c_2, \ldots, c_k)$, ζ_c is the composite

 $H \xrightarrow{\Delta^{(k-1)}} H^{\otimes k} \longrightarrow H_{c_1} \otimes \cdots \otimes H_{c_k} \xrightarrow{\zeta^{\otimes k}} \mathbb{K} .$

The map $\Psi : (H,\zeta) \to (\mathsf{QSym},\zeta_0)$

is defined, for every $h \in H_n$ and $n \geq 0$, as

$$
\Psi(h) = \sum_{c \text{ composition of } n} \zeta_c(h) \mathsf{M}_c,
$$

where, for $c = (c_1, c_2, \ldots, c_k)$, ζ_c is the composite

$$
H \xrightarrow{\Delta^{(k-1)}} H^{\otimes k} \xrightarrow{\qquad} H_{c_1} \otimes \cdots \otimes H_{c_k} \xrightarrow{\zeta^{\otimes k}} \mathbb{K} .
$$

The map Ψ explains the "ubiquity" of quasisymmetric functions as generating functions in combinatorics.

A combinatorial example

Let G be a simple graph, with vertices $V(G)$ and edges $E(G)$.

A proper coloring of G is a function col : $V(G) \rightarrow \{1, 2, ...\}$ such that $col(v) \neq col(w)$, whenever v and w are adjacent.

A proper coloring of G is a function col : $V(G) \rightarrow \{1, 2, ...\}$ such that $col(v) \neq col(w)$, whenever v and w are adjacent.

The *chromatic symmetric function* of G is

$$
X(G) = X(G; x_1, x_2, \ldots) := \sum_{\text{col } v} \prod_{v \in V(G)} x_{\text{col}(v)},
$$

where the sum is over the set of proper colorings of G .

A proper coloring of G is a function col : $V(G) \rightarrow \{1, 2, ...\}$ such that $col(v) \neq col(w)$, whenever v and w are adjacent.

The *chromatic symmetric function* of G is

$$
X(G) = X(G; x_1, x_2, \ldots) := \sum_{\text{col } v} \prod_{v \in V(G)} x_{\text{col}(v)},
$$

where the sum is over the set of proper colorings of G .

• If $n = |V(G)|$, then $X(G)$ is homogeneous of degree n.

A proper coloring of G is a function col : $V(G) \rightarrow \{1, 2, \ldots\}$ such that $col(v) \neq col(w)$, whenever v and w are adjacent.

The *chromatic symmetric function* of G is

$$
X(G) = X(G; x_1, x_2, \ldots) := \sum_{\text{col } v} \prod_{v \in V(G)} x_{\text{col}(v)},
$$

where the sum is over the set of proper colorings of G .

- If $n = |V(G)|$, then $X(G)$ is homogeneous of degree n.
- $X(G)$ is symmetric $(X(G) \in \mathsf{Sym})$.

A proper coloring of G is a function col : $V(G) \rightarrow \{1, 2, ...\}$ such that $col(v) \neq col(w)$, whenever v and w are adjacent.

The *chromatic symmetric function* of G is

$$
X(G) = X(G; x_1, x_2, \ldots) := \sum_{\text{col } v} \prod_{v \in V(G)} x_{\text{col}(v)},
$$

where the sum is over the set of proper colorings of G .

- If $n = |V(G)|$, then $X(G)$ is homogeneous of degree n.
- $X(G)$ is symmetric $(X(G) \in \mathsf{Sym})$.
- Under $x_i \leftarrow 1$, for $1 \leq i \leq t$, and $x_i \leftarrow 0$, for $i < t$, written $x = 1^t$, then $X(G; 1^t)$ is the (classical) chromatic polynomial on t.

Let $\mathcal{G} = \mathbb{K} \{$ isomophism classes of finite (unonriented) graphs $\}$.

If $G, H \in \mathcal{G}$, let $G \cdot H := G \sqcup H$ the disjoint union. Also, let

$$
\Delta(G) := \sum_{S \subseteq V(G)} G|_S \otimes G|_{V(G) \setminus S}.
$$

Then, (G, \cdot, Δ) is a graded Hopf algebra (Schmitt).

Let $G = \mathbb{K} \{$ isomophism classes of finite (unonriented) graphs $\}$.

If $G, H \in \mathcal{G}$, let $G \cdot H := G \sqcup H$ the disjoint union. Also, let

$$
\Delta(G) := \sum_{S \,\subseteq\, V(G)} G|_S \otimes G|_{V(G) \backslash S}.
$$

Then, $(\mathcal{G}, \cdot, \Delta)$ is a graded Hopf algebra (Schmitt). Consider now the character $\zeta : \mathcal{G} \to \mathbb{K}$ given by

$$
\zeta(G) = \begin{cases} 1, & \text{if } G \text{ has no edges,} \\ 0, & \text{otherwise} \end{cases}
$$

Let $G = \mathbb{K} \{$ isomophism classes of finite (unonriented) graphs $\}$.

If $G, H \in \mathcal{G}$, let $G \cdot H := G \sqcup H$ the disjoint union. Also, let

$$
\Delta(G) := \sum_{S \subset V(G)} G|_S \otimes G|_{V(G) \setminus S}.
$$

Then, $(\mathcal{G}, \cdot, \Delta)$ is a graded Hopf algebra (Schmitt). Consider now the character $\zeta : \mathcal{G} \to \mathbb{K}$ given by

$$
\zeta(G) = \begin{cases} 1, & \text{if } G \text{ has no edges,} \\ 0, & \text{otherwise} \end{cases}
$$

Theorem: $\Psi(G)$ is the chromatic symmetric function. $(\mathcal{G}, \cdot, \Delta)$ is called the *chromatic Hopf algebra of graphs*.

Let $\Sigma[I]$ the vector space generated by all compositions of I and let \mathfrak{S}_I be the group of permutations on I .

Let $\Sigma[I]$ the vector space generated by all compositions of I and let \mathfrak{S}_I be the group of permutations on I .

The vector space $\Sigma[I]$ is a right \mathfrak{S}_I -module, where the action permutes the elements of I.

Let $\Sigma[I]$ the vector space generated by all compositions of I and let \mathfrak{S}_I be the group of permutations on I .

The vector space $\Sigma[I]$ is a right \mathfrak{S}_I -module, where the action permutes the elements of I.

This action extends to a (covariant) functor

 Σ : FinSet \rightarrow Vect,

where

- $I \mapsto \Sigma[I];$
- \bullet $(I \xrightarrow{\sigma} J) \mapsto (\Sigma[I] \xrightarrow{\Sigma[\sigma]} \Sigma[J]).$

Let $\Sigma[I]$ the vector space generated by all compositions of I and let \mathfrak{S}_I be the group of permutations on I .

The vector space $\Sigma[I]$ is a right \mathfrak{S}_I -module, where the action permutes the elements of I.

This action extends to a (covariant) functor

 Σ : FinSet \rightarrow Vect,

where

- $I \mapsto \Sigma[I]$;
- \bullet $(I \xrightarrow{\sigma} J) \mapsto (\Sigma[I] \xrightarrow{\Sigma[\sigma]} \Sigma[J]).$

The construction Σ is an example of a vector species.

A vector species is a functor

 $p : FinSet \rightarrow Vect.$

A vector species is a functor

 $p : FinSet \rightarrow Vect.$

By functoriality,

$$
I \xrightarrow{\alpha} J \xrightarrow{\beta} K \Longrightarrow \mathsf{p}[\beta \circ \alpha] = \mathsf{p}[\beta] \circ \mathsf{p}[\alpha],
$$

$$
I \xrightarrow{\mathrm{id}_I} I \Longrightarrow \mathsf{p}[\mathrm{id}_I] = \mathrm{id}_{\mathsf{p}[I]}.
$$

A vector species is a functor

 $p : FinSet \rightarrow Vect.$

By functoriality,

$$
I \xrightarrow{\alpha} J \xrightarrow{\beta} K \Longrightarrow \mathsf{p}[\beta \circ \alpha] = \mathsf{p}[\beta] \circ \mathsf{p}[\alpha],
$$

$$
I \xrightarrow{\mathrm{id}_I} I \Longrightarrow \mathsf{p}[\mathrm{id}_I] = \mathrm{id}_{\mathsf{p}[I]}.
$$

In particular, $p[\sigma]^{-1} = p[\sigma^{-1}]$ for every $I \xrightarrow{\sigma} J$.

A vector species is a functor

 $p : FinSet \rightarrow Vect.$

By functoriality,

$$
I \xrightarrow{\alpha} J \xrightarrow{\beta} K \Longrightarrow \mathsf{p}[\beta \circ \alpha] = \mathsf{p}[\beta] \circ \mathsf{p}[\alpha],
$$

$$
I \xrightarrow{\mathrm{id}_I} I \Longrightarrow \mathsf{p}[\mathrm{id}_I] = \mathrm{id}_{\mathsf{p}[I]}.
$$

In particular, $p[\sigma]^{-1} = p[\sigma^{-1}]$ for every $I \xrightarrow{\sigma} J$.

For every $n \in \mathbb{N}$, \mathfrak{S}_n acts on p[n] via $\sigma \cdot x := \mathsf{p}[\sigma](x)$.

A vector species is a functor

 $p : FinSet \rightarrow Vect.$

By functoriality,

$$
I \xrightarrow{\alpha} J \xrightarrow{\beta} K \Longrightarrow \mathsf{p}[\beta \circ \alpha] = \mathsf{p}[\beta] \circ \mathsf{p}[\alpha],
$$

$$
I \xrightarrow{\mathrm{id}_I} I \Longrightarrow \mathsf{p}[\mathrm{id}_I] = \mathrm{id}_{\mathsf{p}[I]}.
$$

In particular, $p[\sigma]^{-1} = p[\sigma^{-1}]$ for every $I \xrightarrow{\sigma} J$.

For every $n \in \mathbb{N}$, \mathfrak{S}_n acts on p[n] via $\sigma \cdot x := \mathsf{p}[\sigma](x)$. Therefore,

species $p \longleftrightarrow V = (V_n)_{n \geq 0}, V_n$ is a \mathfrak{S}_n -module.

Examples of species

• Species E of sets:

$$
\mathsf{E}[I]:=\mathbb{K}\{\ast_I\}.
$$

• Species E_n of *n*-sets:

$$
\mathsf{E}_n[I] := \begin{cases} \mathbb{K}\{\ast_I\}, & \text{if } |I| = n; \\ (0), & \text{if } |I| \neq n. \end{cases}
$$

- Species $X := E_1$ of sets of one element.
- Species $1 := E_0$.
- Species G of graphs:

 $G[I] := \mathbb{K}\{$ finite graphs with vertices in I }.

- Species Π of partitions.
- Species L of linear orders.
- Species Σ of set compositions.
- Species B of binary trees.
- Species G of permutations.
- Species Braid of braid hyperplane arrangements.

. . .
Operations on species

• Sum of species

$$
(\mathsf{p}+\mathsf{q})[I]:=\mathsf{p}[I]\oplus\mathsf{q}[I].
$$

• Product of species (Cauchy product)

$$
(\mathsf{p} \cdot \mathsf{q})[I] := \bigoplus_{I = S \sqcup T} \mathsf{p}[S] \otimes \mathsf{q}[T].
$$

• Composition of species

To every species p it is associated its exponential generating function:

$$
\mathsf{p}(x):=\sum_{n\geq 0} \dim_{\mathbb{K}} \mathsf{p}[n] \frac{x^n}{n!}.
$$

We have:

 $(p+q)(x) = p(x) + q(x),$ $({\bf p} \cdot {\bf q})(x) = {\bf p}(x) \cdot {\bf q}(x),$ $(\mathsf{p} \circ \mathsf{q})(x) = \mathsf{p}(x) \circ \mathsf{q}(x).$

For the last identity, $q[\emptyset] := (0)$.

A **morphism of species** p $\stackrel{f}{\to}$ q is a collection $f=(f_I)$ of linear maps such that

$$
\begin{array}{c}\n p[I] \xrightarrow{f_I} q[I] \\
\downarrow^{p[\sigma]} \downarrow^{q[\sigma]} \\
p[J] \xrightarrow{f_J} q[J]\n \end{array}
$$

for every $I\stackrel{\sigma}{\rightarrow} J$. This defines the category Sp of species.

Recall that the Cauchy product of two species p and q is given by

$$
(\mathsf{p} \cdot \mathsf{q})[I] = \bigoplus_{I = S \sqcup T} \mathsf{p}[S] \otimes \mathsf{q}[T].
$$

Recall that the Cauchy product of two species p and q is given by

$$
(\mathsf{p} \cdot \mathsf{q})[I] = \bigoplus_{I = S \sqcup T} \mathsf{p}[S] \otimes \mathsf{q}[T].
$$

Endowed with this operation, Sp is symmetric monoidal: we can speak of monoids $(\mu : \mathsf{p} \cdot \mathsf{p} \rightarrow \mathsf{p})$, comonoids $(\Delta : \mathsf{p} \rightarrow \mathsf{p} \cdot \mathsf{p})$, ..., in species.

$$
\mathsf{p}[S] \otimes \mathsf{p}[T] \xrightarrow{\mu_{S,T}} \mathsf{p}[I] \qquad \mathsf{p}[I] \xrightarrow{\Delta_{S,T}} \mathsf{p}[S] \otimes \mathsf{p}[T].
$$

[Algebraic structures on](#page-42-0) Sp

A monoid in Sp is given by (a, μ, ι) , where a is a species and

 $\mu : \mathsf{a} \cdot \mathsf{a} \to \mathsf{a}$, $\iota : \mathsf{1} \to \mathsf{a}$.

Explicitly, if $I = S \sqcup T$ then

$$
\mu_{S,T}: \mathsf{a}[S] \otimes \mathsf{a}[T] \to \mathsf{a}[I].
$$

The map ι is uniquely determined by its component $\iota_{\emptyset} : \mathbb{K} \to \mathsf{a}[\emptyset]$.

A monoid in Sp is given by (a, μ, ι) , where a is a species and

 $\mu : \mathsf{a} \cdot \mathsf{a} \to \mathsf{a}$, $\iota : \mathsf{1} \to \mathsf{a}$.

Explicitly, if $I = S \sqcup T$ then

$$
\mu_{S,T}: \mathsf{a}[S] \otimes \mathsf{a}[T] \to \mathsf{a}[I].
$$

The map ι is uniquely determined by its component $\iota_{\emptyset} : \mathbb{K} \to \mathsf{a}[\emptyset]$.

The maps μ and ι must satisfy associativity, unitality and naturality axioms.

A comonoid in Sp is given by (c, Δ, ε) , where c is a species and

 $\Delta: c \to c \cdot c$, $\varepsilon: c \to 1$.

Explicitly, if $I = S \sqcup T$ then

$$
\Delta_{S,T}: \mathsf{c}[I] \to \mathsf{c}[S] \otimes \mathsf{c}[T].
$$

The map ε is uniquely determined by its component $\varepsilon_{\emptyset}: c[\emptyset] \to \mathbb{K}$.

The maps Δ and ε must satisfy coassociativity, counitality and naturality axioms.

A comonoid in Sp is given by (c, Δ, ε) , where c is a species and

 $\Delta: c \to c \cdot c$, $\varepsilon: c \to 1$.

Explicitly, if $I = S \sqcup T$ then

$$
\Delta_{S,T}: \mathsf{c}[I] \to \mathsf{c}[S] \otimes \mathsf{c}[T].
$$

The map ε is uniquely determined by its component $\varepsilon_{\emptyset}: c[\emptyset] \to \mathbb{K}$.

The maps Δ and ε must satisfy coassociativity, counitality and naturality axioms.

Notions of **bimonoids** and **Hopf monoids** exist, analogues to bialgebras and Hopf algebras.

Proposition: any graded, locally finite and connected bialgebra H is a Hopf algebra.

A species h is *connected* (resp. *positive*) if $\dim_{\mathbb{K}} h[\emptyset] = 1$ (resp. $\dim_{\mathbb{K}} \mathsf{h}[\emptyset] = 0$.

Proposition: any connected bimonoid h is a Hopf monoid.

The antipode is a map $s : h \rightarrow h$. When a bimonoid h possess an antipode, it is unique.

Algebraic structures in Sp: examples

 \bullet $(\mathbf{E}, \mu, \Delta)$ $\mathbf{E}[I] := \mathbb{K}\{\mathbf{H}_I\}.$ $\mu_{S,T}(\mathbf{H}_S \otimes \mathbf{H}_T) := \mathbf{H}_{S \sqcup T}$, $\Delta_{S,T}(\mathbf{H}_I) := \mathbf{H}_S \otimes \mathbf{H}_T$. $s_I(H_I) = (-1)^{|I|} H_I.$

Algebraic structures in Sp: examples

 \bullet $(\mathbf{E}, \mu, \Delta)$ $\mathbb{E}[I] := \mathbb{K}\{\mathbf{H}_I\}.$ $\mu_{S,T}(\mathbf{H}_S \otimes \mathbf{H}_T) := \mathbf{H}_{S \sqcup T}$, $\Delta_{S,T}(\mathbf{H}_I) := \mathbf{H}_S \otimes \mathbf{H}_T$. $s_I(H_I) = (-1)^{|I|} H_I.$

• (L, μ, Δ)

 $\mathbf{L}[I] := \mathbb{K}\{\mathbf{H}_{\ell} : \ell : [n] \to I\},\$ where $|I| = n$. $\mu_{S,T}(\mathtt{H}_{\ell_1}\otimes \mathtt{H}_{\ell_2}):=\mathtt{H}_{\ell_1\odot \ell_2}\qquad ,\qquad \Delta_{S,T}(\mathtt{H}_{\ell}):=\mathtt{H}_{\ell|_S}\otimes \mathtt{H}_{\ell|_T}.$ $s_I(\mathbf{H}_{\ell}) = (-1)^{|I|} \mathbf{H}_{\text{reverse}}(\ell).$

Algebraic structures in Sp: examples

 \bullet $(\mathbf{E}, \mu, \Delta)$ $\mathbb{E}[I] := \mathbb{K}\{\mathbf{H}_I\}.$ $\mu_{S,T}(\mathbf{H}_S \otimes \mathbf{H}_T) := \mathbf{H}_{S \sqcup T}$, $\Delta_{S,T}(\mathbf{H}_I) := \mathbf{H}_S \otimes \mathbf{H}_T$. $s_I(H_I) = (-1)^{|I|} H_I.$

•
$$
(\mathbf{L}, \mu, \Delta)
$$

\n
$$
\mathbf{L}[I] := \mathbb{K}\{\mathbf{H}_{\ell} : \ell : [n] \to I\}, \text{ where } |I| = n.
$$
\n
$$
\mu_{S,T}(\mathbf{H}_{\ell_1} \otimes \mathbf{H}_{\ell_2}) := \mathbf{H}_{\ell_1 \odot \ell_2} , \qquad \Delta_{S,T}(\mathbf{H}_{\ell}) := \mathbf{H}_{\ell|_S} \otimes \mathbf{H}_{\ell|_T}.
$$
\n
$$
s_I(\mathbf{H}_{\ell}) = (-1)^{|I|} \mathbf{H}_{\text{reverse}}(\ell).
$$

The product of L is concatenation, while the coproduct is deshuffle. There is also a Hopf monoid (Σ, μ, Δ) with analogues operations.

A Lie monoid in Sp is given by $(g, [,])$, where g is a species and

 $[,] : \mathfrak{g} \cdot \mathfrak{g} \rightarrow \mathfrak{g}$

satisfies

• Anticommutativity

$$
[x,y]_{S,T}=-[y,x]_{T,S};
$$

• Jacobi identity:

 $[[x,y]_{S,T}, z]_{S\sqcup T,R} + [[z,x]_{R,S}, y]_{R\sqcup S,T} + [[z,x]_{T,R}, x]_{T\sqcup R,S} = 0.$

The species $Prim(c)$ of *primitive parts* of c is given by

Prim(c) := { $x \in c[I]$: $\Delta_I(x) = x \otimes 1 + 1 \otimes x$ }.

The species $Prim(c)$ of *primitive parts* of c is given by

$$
\mathsf{Prim}(\mathsf{c}) := \{ x \in \mathsf{c}[I] \, : \, \Delta_I(x) = x \otimes 1 + 1 \otimes x \}.
$$

When h is a bialgebra, the restriction of the Lie bracket induced from h endows Prim(h) with a Lie monoid structure.

The species $Prim(c)$ of *primitive parts* of c is given by

$$
\mathsf{Prim}(\mathsf{c}) := \{ x \in \mathsf{c}[I] \, : \, \Delta_I(x) = x \otimes 1 + 1 \otimes x \}.
$$

When h is a bialgebra, the restriction of the Lie bracket induced from h endows Prim(h) with a Lie monoid structure.

If h is connected, then $Prim(h)$ is positive and

$$
\text{Prim}(\mathsf{h})[I] = \bigcap_{\substack{S \sqcup T = I \\ S, T \neq \emptyset}} \text{ker}(\Delta_{S, T}: \mathsf{h}[I] \to \mathsf{h}[S] \otimes \mathsf{h}[T]),
$$

for every $I \neq \emptyset$.

A monoid in Sp is given by (a, μ, ι) , where a is a species and

 $\mu : \mathsf{a} \cdot \mathsf{a} \to \mathsf{a}$, $\iota : \mathsf{1} \to \mathsf{a}$.

Explicitly, if $I = S \sqcup T$ then

$$
\mu_{S,T}: \mathsf{a}[S] \otimes \mathsf{a}[T] \to \mathsf{a}[I].
$$

The map ι is uniquely determined by its component $\iota_{\emptyset} : \mathbb{K} \to \mathsf{a}[\emptyset]$.

The maps μ and ι must satisfy associativity, unitality and naturality axioms.

Naturality: the product map behaves well with respect with the transport of structures (relabeling).

More precisely, if $I = S \sqcup T$ and $\sigma : I \rightarrow J$ is a bijection. the diagram

$$
a[S] \otimes a[T] \xrightarrow{\mu_{S,T}} a[I]
$$

$$
a[\sigma|_{S}] \otimes a[\sigma|_{T}] \qquad \qquad a[\sigma(S)] \otimes a[\sigma(T)] \xrightarrow{\mu_{\sigma(S), \sigma(T)}} \sigma[J]
$$

commutes.

Unitality:

The unit axiom states that for each finite set I , the diagrams

commute.

Associativity : given a decomposition $I = R \sqcup S \sqcup T$,

Associativity : given a decomposition $I = R \sqcup S \sqcup T$,

From the associativity of the collection $(\mu_{S,T})_{S,T}$, there is a unique map called the *higher product map* of a

 $\mathsf{a}[S_1] \otimes \cdots \otimes \mathsf{a}[S_k] \xrightarrow{\mu_{S_1,...,S_k}} \mathsf{a}[I] \quad \text{ for every } I = S_1 \sqcup \cdots \sqcup S_k, k \geq 0,$

obtained by iterating the product maps μ_S .

Associativity : given a decomposition $I = R \sqcup S \sqcup T$,

From the associativity of the collection $(\mu_{S,T})_{S,T}$, there is a unique map called the *higher product map* of a

$$
\mathsf{a}[S_1] \otimes \cdots \otimes \mathsf{a}[S_k] \xrightarrow{\mu_{S_1,...,S_k}} \mathsf{a}[I] \quad \text{ for every } I = S_1 \sqcup \cdots \sqcup S_k, k \geq 0,
$$

obtained by iterating the product maps μ_S .

If $F = S_1 | \cdots | S_k \vDash I$, we define $\mu_F := \mu_{S_1,...,S_k}$ and $a(F) := a[S_1] \otimes \cdots \otimes a[S_k]$, so

 $\mu_F : \mathsf{a}(F) \to \mathsf{a}[I].$

Monoids in species from higher product maps

Theorem(Aguiar-Mahajan): Let a be a connected species equipped with a collection of maps

 $\mu_F: \textsf{a}(F) \rightarrow \textsf{a}[I], \quad \text{ for every } F \vDash I, I \text{ finite set }.$

Then a is a connected monoid with higher products maps μ_F if and only if the naturality axiom holds and the diagram

commutes, for each compositions F and G of I with $F \leq G$.

Monoids in species from higher product maps

Theorem(Aguiar-Mahajan): Let a be a connected species equipped with a collection of maps

 $\mu_F: \textsf{a}(F) \rightarrow \textsf{a}[I], \quad \text{ for every } F \vDash I, I \text{ finite set }.$

Then a is a connected monoid with higher products maps μ_F if and only if the naturality axiom holds and the diagram

commutes, for each compositions F and G of I with $F \leq G$.

Here, \leq refers to the *refinement partial order* on set compositions. Also, G/F is a set composition of I constructed from G and F.

The combinatorics of set compositions encode algebraic properties of connected monoids in species.

[The Tits monoid of set](#page-65-0) [compositions](#page-65-0)

A set composition of I is a sequence

$$
F=(F_1,\ldots,F_k)=F_1|\cdots|F_k
$$

of disjoint non-empty sets such that their reunion is I .

A set composition of I is a sequence

$$
F=(F_1,\ldots,F_k)=F_1|\cdots|F_k
$$

of disjoint non-empty sets such that their reunion is I .

Let $\Sigma[I]$ be the set of all compositions of I. If $F \in \mathsf{S}[I]$, we write $F \models I$. There is a unique set composition on the empty set, so $|\Sigma[\emptyset]| = 1$.

A set composition of I is a sequence

$$
F=(F_1,\ldots,F_k)=F_1|\cdots|F_k
$$

of disjoint non-empty sets such that their reunion is I .

Let $\Sigma[I]$ be the set of all compositions of I. If $F \in \mathsf{S}[I]$, we write $F \models I$. There is a unique set composition on the empty set, so $|\Sigma[\emptyset]| = 1$.

For example,

```
2|569|3|1478 \in \Sigma[10].
```
• Concatenation

Let $I = \{a, b, c, d, e, f, g, h\}$ and let $I = S \sqcup T$, with

 $S = \{a, b, c, d, e\}$ and $T = \{f, g, h\}.$

Consider

$$
F = de | abc \qquad \text{and } G = fg | h.
$$

The **concatenation** of F and G is

$$
F \odot G := de|abc|fg|h \vDash I.
$$

If p is species and $F, G \models I$, there is a canonical isomorphism

$$
\mathsf{p}(F) \otimes \mathsf{p}(G) \cong \mathsf{p}(F \odot G).
$$

Operations on set compositions

• Tits product (Jacques Tits - 1974; Coxeter groups, Buildings)

Let $I = \{a, b, c, d, e, f, g, h\}$ and consider

 $F = cdfq|ah|be \models I$ and $G = adefh|bcq \models I$.

The **Tits product** of F and G is

$$
F \cdot G := df | cg|ah| |e|b \equiv df | cg|ah|e|b \models I.
$$

 $(\Sigma[I],\cdot)$ is a monoid (with unit (I)), called the **Tits monoid on** I. The Tits product is *strongly* non-commutative:

$$
G \cdot F = df |ah|e|cg| |b| \equiv df |ah|e|cg|b.
$$
Operations on set compositions

• Tits product (Jacques Tits - 1974; Coxeter groups, Buildings)

Let $I = \{a, b, c, d, e, f, q, h\}$ and consider

 $F = cdfq|ah|be \models I$ and $G = adefh|bca \models I$.

The **Tits product** of F and G is

$$
F \cdot G := df | cg|ah| |e|b \equiv df | cg|ah|e|b \models I.
$$

 $(\Sigma[I],\cdot)$ is a monoid (with unit (I)), called the **Tits monoid on** I. The Tits product is *strongly* non-commutative:

$$
G \cdot F = df |ah|e|cg| |b| \equiv df |ah|e|cg|b.
$$

The Tits product is intimately related to the *refinement order* on set compositions.

Let I be a finite set and $F, G \models I$.

Let I be a finite set and $F, G \models I$.

 $F \leq G$ if each block of F is a reunion of **advacent** blocks of G.

Let I be a finite set and $F, G \models I$.

 $F \leq G$ if each block of F is a reunion of **adyacent** blocks of G.

Minimal element: $\widehat{0}_I := (I)$ Maximal elements: permutations in \mathfrak{S}_I . Let I be a finite set and let $\Pi[I]$ be the set of all set partitions of I.

 $\pi \leq \tau$ if each block of π is a reunion of blocks of τ .

 $\pi \leq \tau$ if each block of π is a reunion of blocks of τ .

 $\pi \leq \tau$ if each block of π is a reunion of blocks of τ .

 $\pi \leq \tau$ if each block of π is a reunion of blocks of τ .

Minimal element: $\widehat{0}_I := \{I\}$ Maximal element: $\hat{1}_I := \{\{i\} : i \in I\}.$ Let *I* be a finite set.

Let *I* be a finite set.

Let

$$
\mathsf{supp} : \Sigma[I] \to \Pi[I]
$$

be the function that forgets the order of the blocks. It is a poset map.

Let *I* be a finite set.

Let

$$
\mathsf{supp} : \Sigma[I] \to \Pi[I]
$$

be the function that forgets the order of the blocks. It is a poset map.

Let $F, G \models I$. We have:

1. $F \leq F \cdot G$. 2. $F \leq G \Longleftrightarrow F \cdot G = G$. 3. $F^2 = F$. 4. $F \cdot G \cdot F = F \cdot G$ (The monoid $(\Sigma[I], \cdot)$ is a left regular band) 5. $\mathsf{supp}(F \cdot G) = \mathsf{supp}_I(F) \vee \mathsf{supp}(G)$. 6. $G \cdot F = G \Longleftrightarrow supp(F) \leq supp(G)$.

[Back to species](#page-85-0)

Let $F, G \models I$.

$$
F \leq G \Longleftrightarrow \exists! \text{ "splitting" } G/F := G_1|\cdots|G_k \text{ of } G \text{ with } \begin{cases} G_j \vDash I_j \\ F = I_1|\cdots|I_j \end{cases}
$$

Let (a, μ, ι) be a monoid. Define $\mu_{G/F} : a(G) \to a(F)$ by means of the diagram

Monoids in species from higher product maps

Theorem(Aguiar-Mahajan): Let a be a connected species equipped with a collection of maps

 $\mu_F: \textsf{a}(F) \rightarrow \textsf{a}[I], \quad \text{ for every } F \vDash I, I \text{ finite set }.$

Then a is a connected monoid with higher products maps μ_F if and only if the naturality axiom holds and the diagram

commutes, for each compositions F and G of I with $F \leq G$.

Monoids in species from higher product maps

Theorem(Aguiar-Mahajan): Let a be a connected species equipped with a collection of maps

 $\mu_F: \textsf{a}(F) \rightarrow \textsf{a}[I], \quad \text{ for every } F \vDash I, I \text{ finite set }.$

Then a is a connected monoid with higher products maps μ_F if and only if the naturality axiom holds and the diagram

commutes, for each compositions F and G of I with $F \leq G$.

Here, \leq refers to the *refinement partial order* on set compositions. Also, G/F is a set composition of I constructed from G and F.

The combinatorics of set compositions encode algebraic properties of connected monoids in species.

A comonoid in Sp is given by (c, Δ, ε) , where c is a species and

 $\Delta: c \to c \cdot c$, $\varepsilon: c \to 1$.

Explicitly, if $I = S \sqcup T$ then

$$
\Delta_{S,T}: \mathsf{c}[I] \to \mathsf{c}[S] \otimes \mathsf{c}[T].
$$

The map ε is uniquely determined by its component $\varepsilon_{\emptyset}: c[\emptyset] \to \mathbb{K}$.

The maps Δ and ε must satisfy coassociativity, counitality and naturality axioms.

A comonoid in Sp is given by (c, Δ, ε) , where c is a species and

 $\Delta: c \to c \cdot c$, $\varepsilon: c \to 1$.

Explicitly, if $I = S \sqcup T$ then

$$
\Delta_{S,T}: \mathsf{c}[I] \to \mathsf{c}[S] \otimes \mathsf{c}[T].
$$

The map ε is uniquely determined by its component $\varepsilon_{\emptyset}: c[\emptyset] \to \mathbb{K}$.

The maps Δ and ε must satisfy coassociativity, counitality and naturality axioms.

Exercise: write explicitely the naturality axiom, counitality axiom and coassociative axiom for the coproduct in a comonoid.

Given a decomposition $I = S_1 \sqcup \cdots \sqcup S_k$, there is a unique map

$$
\mathsf{c}[I] \xrightarrow{\Delta_{S_1,\ldots,S_k}} \mathsf{a}[S_1] \otimes \cdots \otimes \mathsf{a}[S_k].
$$

For $k = 1$, this map is defined to be the identity of c[I], and for $k = 0$ to be the counit map ε_{\emptyset} .

The map $\Delta_{S_1,...,S_k}$ is called the *higher coproduct map* of a. As before, if $F = S_1 | \cdots | S_k \vDash I$, we define write $\Delta_F := \Delta_{S_1,...,S_k}$. Hence,

$$
\Delta_F: \mathsf{a}[I] \to \mathsf{a}(F).
$$

Definition/Theorem(Aguiar-Mahajan): Let h be a connected species equipped with two collections of maps

 $\mu_F : \mathsf{h}(F) \to \mathsf{h}[I]$ and $\Delta_F : \mathsf{h}[I] \to \mathsf{h}(F)$,

one map for each composition F of a nonempty finite set I . Then h is a bimonoid with higher product maps μ_F and higher coproduct maps Δ_F if and only if the following conditions hold:

- naturality,
- higher associativity,
- higher coassociativy,
- higher compatitiblity: the diagram commutes for any pair of compositions $F, G \models I$.

$$
\begin{array}{ccc}\nh(FG) & & \beta & \longrightarrow h(GF) \\
\Delta_{FG/F} & & \downarrow & \downarrow \\
h(F) & & \downarrow & \downarrow & \downarrow \\
h(F) & & \downarrow & \downarrow & \downarrow \\
\downarrow & & \downarrow & \downarrow & \downarrow \\
h(F) & & \downarrow & \downarrow & \downarrow \\
\downarrow & & \downarrow & \downarrow & \downarrow \\
\downarrow & & \downarrow & \downarrow & \downarrow & \downarrow \\
\downarrow & & \downarrow & \downarrow & \downarrow & \downarrow \\
\downarrow & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\downarrow & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow & \downarrow
$$

Questions?

Bimonoids in species

A bimonoid h is at the same time a monoid (h, μ, ι) and a comonoid (h, Δ, ε) , which are *related* in the following way: the maps

 $\mu : h \cdot h \rightarrow a$, $\iota : 1 \rightarrow h$

are morphism of comonoids. This is equivalent to ask that the maps

 $\Delta: h \to h \cdot h$, $\varepsilon: h \to 1$

are morphism of monoids.

Bimonoids in species

A bimonoid h is at the same time a monoid (h, μ, ι) and a comonoid (h, Δ, ε) , which are *related* in the following way: the maps

 $\mu : \mathsf{h} \cdot \mathsf{h} \to \mathsf{a}$, $\iota : \mathsf{1} \to \mathsf{h}$

are morphism of comonoids. This is equivalent to ask that the maps

 $\Delta: h \to h \cdot h$, $\varepsilon: h \to 1$

are morphism of monoids.

In order to describe the compatibility rule, fix decompositions $S \sqcup T = I = S' \sqcup T'$, and consider the resulting pairwise intersections:

$$
A = S_1 \cap S_2, \ B = S_1 \cap T_2, \ C = T_1 \cap S_2, \ D = T_1 \cap T_2.
$$

42