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Integrability of Lie algebroids, Courant algebroids, Leibniz
algbras, L∞-algebras:

M. Crainic and R. L. Fernandes, Integrability of Lie brackets. Ann. of
Math. (2) 157 (2003), 575-620.

A. Henriques. Integrating L∞-algebras. Compos. Math. 144(4) (2008),
1017-1045.

Y. Sheng and C. Zhu, Higher Extensions of Lie Algebroids, Commun.
Contemp. Math. 19 (3) (2017), 1650034, 41 pages.

C. Laurent-Gengoux and F. Wagemann, Lie rackoids integrating Courant
algebroids, Ann. Global Anal. Geom. 57 (2020), no. 2, 225-256.
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Definition

Let φ : g→ Der(h) be an action of a Lie algebra (g, [·, ·]g) on a Lie
algebra (h, [·, ·]h). A linear map T : h→ g is called a relative
Rota-Baxter operator of weight λ on g with respect to (h;φ) if

[T (u), T (v)]g = T
(
φ(T (u))v − φ(T (v))u+ λ[u, v]h

)
, ∀u, v ∈ h.

If h = g and φ = ad, then we call B a Rota-Baxter operator of
weight λ.

L. Guo, An introduction to Rota-Baxter algebra. Surveys of Modern
Mathematics, 4. International Press, Somerville, MA; Higher Education
Press, Beijing, 2012. xii+226 pp.
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Operator form of CYBE

triangular Lie bialgebra:

r+(ad∗r+ξη − ad∗r+ηξ) = [r+(ξ), r+(η)].

r+ : g∗ → g is a relative Rota-Baxter operator of weight 0 with
respect to the coadjoint representation.

quasitriangular Lie bialgebra:

r+(ad∗r+ξη − ad∗r+ηξ + ad∗I(η)ξ) = [r+(ξ), r+(η)].

It turns out that [ξ, η]I , ad∗I(η)ξ defines a Lie bracket on g∗,
and ad∗ is an action of the Lie algebra g on (g∗, [·, ·]I).

r+ : g∗ → g is a relative Rota-Baxter operator of weight 1 on
g with respect to the action ad∗ on (g∗, [·, ·]I).
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Questions

What is the integration of Rota-Baxter operators on Lie
algebras?

Li Guo, Honglei Lang and Yunhe Sheng, Integration and geometrization of
Rota-Baxter Lie algebras, Adv. Math. 387 (2021), 107834.

Rota-Baxter operators on Lie groups
differentiation−→ Rota-Baxter operators

on Lie algebras
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Rota-Baxter Lie groups

Definition (Guo-Lang-S.)

A Rota-Baxter operator of weight 1 on a Lie group G is a smooth
map B : G→ G such that

B(g)B(h) = B(gAdB(g)h), g, h ∈ G.

Theorem (Guo-Lang-S.)

If (G,B) is a Rota-Baxter Lie group, then (g, B = B∗e) is a
Rota-Baxter Lie algebra of weight 1.
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Useful formulas

Let G be a Lie group and e its identity. Let g = TeG be the
Lie algebra of G and let

exp(·) : g −→ G

be the exponential map. Then the relation between the Lie bracket
[·, ·]g and the Lie group multiplication is given by the following
important formula:

[u, v]g =
d2

dtds

∣∣∣
t,s=0

exptu expsv exp−tu, ∀ u, v ∈ g.

Since B = B∗e is the tangent map of B at e, we have the
following relation for sufficiently small t:

d

dt

∣∣∣
t=0

B(exptu) =
d

dt

∣∣∣
t=0

exptB(u) = B(u), ∀ u ∈ g.
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Proof.

[B(u), B(v)]

=
d2

dtds

∣∣∣
t,s=0

exptB(u) expsB(v) exp−tB(u)

=
d2

dtds

∣∣∣
t,s=0

B(exptu)B(expsv)B(exp−tu)

=
d2

dtds

∣∣∣
t,s=0

B(exptu)B(expsv AdB(expsv) exp
−tu)

=
d2

dtds

∣∣∣
t,s=0

B(exptu(AdB(exptu) exp
sv)(AdB(exptu)B(expsv) exp

−tu))

= B∗e

(
d2

dtds

∣∣∣
t,s=0

AdB(exptu) exp
sv +

d2

dtds

∣∣∣
t,s=0

AdB(expsv) exp
−tu

+
d2

dtds

∣∣∣
t,s=0

exptu expsv exp−tu

)
= B([B(u), v]− [B(v), u] + [u, v]).
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Example

B : g→ g, B(u) = −u is a Rota-Baxter operator of weight 1 on g;
B : G→ G,B(g) = g−1 is a Rota-Baxter operator on G.

Example

Let g be a Lie algebra with g+, g− two Lie subalgebras such
that g = g+ ⊕ g−. Then the minus of the projections
−P+,−P− : g→ g are two RB operators of weight 1 on g.

Let G be a Lie group, G+, G− two subgroups such that
G = G+G− and G+ ∩G− = {e}. Then
B : G→ G,B(g+g−) = g−1− is a Rota-Baxter operator on G.

SL(n,C) = SU(n)SB(n,C), Iwasawa decomposition,

where SB(n,C) consists of all upper triangular matrices in
SL(n,C) with positive entries on the diagonal.

10 / 33
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[Bu,Bv] = B([Bu, v]+[u,Bv]+[u, v]), B(g)B(h) = B(gAdB(g)h).

Remark

If (g, B) is a Rota-Baxter Lie algebra, then there is s a new Lie
algebra structure (called the descendent Lie algebra)

[u, v]B = [Bu, v] + [u,Bv] + [u, v],

s.t. B : (g, [·, ·]B)→ g is a Lie algebra homomorphism.
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Proposition

Let (G,B) be a Rota-Baxter Lie group.

The pair (G, ∗), with the multiplication

g ∗ h := gAdB(g)h, ∀ g, h ∈ G,

is also a Lie group (called the descendent Lie group), whose
Lie algebra is (g, [·, ·]B), where B = B∗e.

The operator B is a Rota-Baxter operator on the Lie group
(G, ∗).

The map B : (G, ∗)→ G is a homomorphism of Rota-Baxter
Lie groups from (G, ∗,B) to (G,B).

12 / 33
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Post-Lie algebras

Definition (Vallette)

A post-Lie algebra (g, [·, ·]g,�) consists of a Lie algebra (g, [·, ·]g)
and a binary product � : g⊗ g → g such that

x� [y, z]g = [x� y, z]g + [y, x� z]g,

[x, y]g � z = a�(x, y, z)− a�(y, x, z),

where a�(x, y, z) = x� (y � z)− (x� y) � z.

H. Z. Munthe-Kaas and A. Lundervold, On post-Lie algebras, Lie-Butcher
series and moving frames, Found. Comput. Math. 13 (2013), 583-613.

Y. Bruned, M. Hairer and L. Zambotti, Algebraic renormalisation of
regularity structures. Invent. Math. 215 (2019), 1039-1156.

Y. Bruned and F. Katsetsiadis, Post-Lie algebras in regularity structures.
Forum Math. Sigma 11 (2023), Paper No. e98. 13 / 33
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splittings of algebras

Rota-Baxter operators  splitting of algebras

Proposition

Let B : g→ g be a Rota-Baxter operator on a Lie algebra g.
Define a multiplication �B on g by

x�B y = [B(x), y]g, ∀x, y ∈ g.

Then (g, [·, ·]g,�B) is a post-Lie algebra.

C. Bai, L. Guo and X. Ni, Nonabelian generalized Lax pairs, the classical
Yang-Baxter equation and PostLie algebras, Comm. Math. Phys. 297
(2010), 553-596.
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In a post-Lie algebra (g, [·, ·]g,�), if the Lie bracket [·, ·]g is
trivial, then we obtain a pre-Lie algebra, namely a vector space g
with a multiplication � satisfying

a�(x, y, z)− a�(y, x, z) = 0

Smoktunowicz proposed the following questions:
Question. Is there a passage from all left nilpotent braces of

cardinality pn, with n+ 1 < p, to left nilpotent pre-Lie rings?

A. Smoktunowicz, On the passage from finite braces to pre-Lie rings.
Adv. Math. 409 (2022), 108683.

15 / 33
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Questions:

What is the integration of post-Lie algebras?

Rota-Baxter Lie group
splitting// post-Lie group

Rota-Baxter Lie algebra
splitting//

integration

OO

post-Lie algebra

integration

OO

Chengming Bai, Li Guo, Yunhe Sheng and Rong Tang, Post-groups,
(Lie-)Butcher groups and the Yang-Baxter equation, Math. Ann. (2023),
https://doi.org/10.1007/s00208-023-02592-z

Post-Lie groups
differentiation−→ Post-Lie algebras
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Definition (Bai-Guo-S.-Tang)

A post-group is a group (G, ·) equipped with another binary
operation � on G such that

1 for all a ∈ G, the left multiplication

L�
a : G→ G, L�

a b = a� b, ∀b ∈ G,

is an automorphism of the group (G, ·), that is,

a� (b · c) = (a� b) · (a� c), ∀a, b, c ∈ G;

2 the following “weighted” associativity for � holds:

a� (b� c) =
(
a · (a� b)

)
� c, ∀a, b, c ∈ G.

17 / 33
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Post-groups

Theorem (Bai-Guo-S.-Tang)

Let (G, ·,�) be a post-group. Define ◦ : G×G→ G by

a ◦ b = a · (a� b), ∀a, b ∈ G.

Then (G, ◦) is a group with e being the unit, and the inverse map
† : G→ G given by

a† := (L�
a )−1(a−1).

Moreover, L� : G→ Aut(G) is an action of the group (G, ◦) on
the group (G, ·).

The group G� := (G, ◦) is called the subadjacent group of
the post-group (G, ·,�).

18 / 33
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Define . : g⊗ g→ g by

x.y = L�
∗e(x)(y) =

d

dt

∣∣∣∣
t=0

L�
exp(tx)y =

d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

L�
exp(tx) exp(sy).

Theorem (Bai-Guo-S.-Tang)

Let (G, ·,�) be a post-Lie group. Then (g, [·, ·]g, .) is a post-Lie
algebra.

19 / 33



Introduction
Rota-Baxter groups

Post-groups
Relations between Rota-Baxter operators and post-groups

Other structures

From Rota-Baxter operators to post-groups

Theorem (Bai-Guo-S.-Tang)

Let B : G −→ G be a Rota-Baxter operator on a group (G, ·G).
We define a binary product � : G×G → G as following:

g � h = AdB(g)h, ∀g, h ∈ G.

Then (G, ·G,�) is a post-group.

20 / 33
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From post-groups to Rota-Baxter operators

Proposition (Bai-Guo-S.-Tang)

Let (G, ·,�) be a post-group. Then the identity map Id : G → G
is a relative Rota-Baxter operator on the subadjacent group (G, ◦)
with respect to the action L� on the group (G, ·).
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Skew-left braces
The Yang-Baxter equation
Butcher groups
Operad

Skew-left braces

Definition (Rump)

A skew-left brace (G, ◦, ·) consists of a group (G, ·) and a group
(G, ◦) such that

a ◦ (b · c) = (a ◦ b) · a·−1 · (a ◦ c), ∀a, b, c ∈ G.

W. Rump, A decomposition theorem for square-free unitary solutions of
the quantum Yang-Baxter equation. Adv. Math. 193 (2005), 40-55.

T. Gateva-Ivanova, Set-theoretic solutions of the Yang-Baxter equation,
braces and symmetric groups. Adv. Math. 338 (2018), 649-701.

F. Cedó, A. Smoktunowicz and L. Vendramin, Skew left braces of
nilpotent type. Proc. Lond. Math. Soc. 118 (2019), 1367-1392.
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Proposition (Bai-Guo-S.-Tang)

Let (G, ◦, ·) be a skew-left brace. Define a binary product
� : G×G → G by

a� b = a−1 · (a ◦ b), ∀a, b ∈ G,

here a−1 is the inverse of a in (G, ·). Then (G, ·,�) is a
post-group.

23 / 33
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Skew-left braces

Proposition (Bai-Guo-S.-Tang)

Let (G, ·,�) be a post-group. Then (G, ◦, ·) is a skew-left brace.

Theorem (Bai-Guo-S.-Tang)

The category of post-groups is isomorphic to the category of
skew-left braces.

24 / 33
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Skew-left braces
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The Yang-Baxter equation

We show that a post-group gives rise to a braiding group, and
thus lead to a solution of the Yang-Baxter equation.

Definition (Yang-Baxter)

Let X be a set. A set-theoretical solution to the Yang-Baxter
equation on X is a bijective map R : X ×X → X ×X satisfying:

R12R23R12 = R23R12R23.

25 / 33



Introduction
Rota-Baxter groups

Post-groups
Relations between Rota-Baxter operators and post-groups

Other structures

Skew-left braces
The Yang-Baxter equation
Butcher groups
Operad

Yang-Baxter equations

Let (G, ·,�) be a post-group. Define RG : G×G → G×G
by

RG(x, y) = (x� y, (x� y)† ◦ x ◦ y), ∀x, y ∈ G,

where ◦ is the subadjacent group structure.

Theorem (Bai-Guo-Sheng-Tang)

Let (G, ·,�) be a post-group. Then
(
(G, ◦), RG

)
is a braiding

group, and RG is a solution of the Yang-Baxter equation on the
set G.

J. Lu, M. Yan and Y. Zhu, On the set-theoretical Yang-Baxter equation.
Duke Math. J. 104 (2000), 1-18.
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Butcher groups

Let T be the set of isomorphism classes of rooted trees:

We set T + = T ∪ {∅} and denote by

BR = {a : T + → R|a(∅) = 1}.

Theorem (Hairer-Wanner)

(BR, ◦) is a group, which is called Butcher group, where

(a ◦ b)(τ) = a(τ) +
∑

c∈AC(τ)

a(P c(τ))b(Rc(τ)).

E. Hairer and G. Wanner, On the Butcher group and general multi-value
methods, Computing 13 (1974), 1-15.
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Butcher group

We define an abelian group structure on BR by

(a · b)(∅) = 1, (a · b)(ω) = a(ω) + b(ω), ∀ω ∈ T ,

Define the binary product � : BR × BR → BR by

(a� b)(∅) = 1,

(a� b)(τ) =
∑

c∈AC(τ)

a(P c(τ))b(Rc(τ)), ∀ω ∈ T .

Theorem (Bai-Guo-S.-Tang)

With the above notations, (BR, ·,�) is a post-group, whose
subadjacent group is exactly the Butcher group (BR, ◦).

28 / 33
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P-groups
Let P be a operad. Define G(P) by

G(P) = {IdP} ×
+∞∏
n=2

P(n)Sn .

Denote an element of G(P) by ā = (IdP , a2, · · · , an, · · · ). For
all ā, b̄ ∈ G(P), define ◦ : G(P)×G(P) → G(P) by

(ā ◦ b̄)n =

n∑
k=1

∑
t1+···+tk=n

γ(bk; at1 , · · · , atk).

Theorem (Chapoton-Livernet-van der Laan)

(G(P), ◦) is a group, which is called the P-group.

29 / 33
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P-groups
We define an abelian group structure on G(P) by

(ā · b̄)1 = IdP , (ā · b̄)n = an + bn, ∀n = 2, 3, · · · ,

Define the binary product � : G(P)×G(P) → G(P) by

(ā� b̄)1 = IdP ,

(ā� b̄)n =

n∑
k=2

∑
t1+···+tk=n

γ(bk; at1 , · · · , atk).

Theorem (Bai-Guo-Sheng-Tang)

With the above notations, (G(P), ·,�) is a post-group, whose
subadjacent group is exactly the P-group (G(P), ◦).

30 / 33



Introduction
Rota-Baxter groups

Post-groups
Relations between Rota-Baxter operators and post-groups

Other structures

Skew-left braces
The Yang-Baxter equation
Butcher groups
Operad

Recent developments

M. Goncharov, Rota-Baxter operators on cocommutative Hopf algebras.
J. Algebra (2021).

F. Catino, M. Mazzotta and P. Stefanelli, Rota-Baxter operators on
Clifford semigroups and the Yang-Baxter equation. J. Algebra (2023).

V. G. Bardakov and V. Gubarev, Rota-Baxter groups, skew left braces,
and the Yang-Baxter equation, J. Algebra (2022).
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Thanks for your attention!
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